Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
Al día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y se...
- Autores:
-
Orjuela Gongora, Mario Fernando
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2024
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/12585
- Palabra clave:
- Microplásticos
Filtración
Bioinspiración
610.28
Microplastics
Filtration
Bioinspiration
- Rights
- License
- Acceso abierto
id |
UNBOSQUE2_c3aa1fef79301879aef0b230b65c7143 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/12585 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
dc.title.translated.none.fl_str_mv |
Development of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanism |
title |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
spellingShingle |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote Microplásticos Filtración Bioinspiración 610.28 Microplastics Filtration Bioinspiration |
title_short |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
title_full |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
title_fullStr |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
title_full_unstemmed |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
title_sort |
Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote |
dc.creator.fl_str_mv |
Orjuela Gongora, Mario Fernando |
dc.contributor.advisor.none.fl_str_mv |
Espinosa, José Luis |
dc.contributor.author.none.fl_str_mv |
Orjuela Gongora, Mario Fernando |
dc.subject.none.fl_str_mv |
Microplásticos Filtración Bioinspiración |
topic |
Microplásticos Filtración Bioinspiración 610.28 Microplastics Filtration Bioinspiration |
dc.subject.ddc.none.fl_str_mv |
610.28 |
dc.subject.keywords.none.fl_str_mv |
Microplastics Filtration Bioinspiration |
description |
Al día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-08T19:31:43Z |
dc.date.available.none.fl_str_mv |
2024-07-08T19:31:43Z |
dc.date.issued.none.fl_str_mv |
2024-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/12585 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/12585 https://repositorio.unbosque.edu.co |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Adelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454 Ansys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluent Anycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/ Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089 Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205 Bhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6 Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.en Browne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a Cardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68. Chi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378 Clark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449b Da Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013 Divi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533 Enfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049 Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046 Fluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheres Friedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695n Fu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561 Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305 Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006 Gomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica. Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77 Guide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/ Ha, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8 Habib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011 Hopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311 Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054 Laist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10 Lam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-z Lee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-z Lee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321k Lehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512 Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183 Lv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001 McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145 Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416 Okoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428a Rossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234c Sanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574 Sankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743 Schwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014 Shahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033 Sol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016 Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050 Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046 Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559 Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070 Vidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos. Yoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739 Zhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758 Zhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bioingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/bef0c45b-f846-4d6a-8605-8b436b8fd5ec/download https://repositorio.unbosque.edu.co/bitstreams/0fdaa476-df14-4f2a-858e-5dd71f0a9c9c/download https://repositorio.unbosque.edu.co/bitstreams/5c7fa6fb-ad98-4c14-b618-217f168a8532/download https://repositorio.unbosque.edu.co/bitstreams/784577b9-f81b-4b19-9460-7d9e47b522db/download https://repositorio.unbosque.edu.co/bitstreams/ffea10d1-72fb-4312-8b62-47dc0935b8f7/download https://repositorio.unbosque.edu.co/bitstreams/b210011e-a0a0-4f73-961e-262a08f4ea23/download https://repositorio.unbosque.edu.co/bitstreams/15d2a743-c45e-4b6d-94a2-adbec260140f/download https://repositorio.unbosque.edu.co/bitstreams/d6d0b24c-bba7-4a91-84a1-77f94886c7d0/download https://repositorio.unbosque.edu.co/bitstreams/b1a7d616-e049-4f4d-9606-a821b6b676ef/download https://repositorio.unbosque.edu.co/bitstreams/b6ab84d2-a004-4048-b0cf-f87a03de7706/download https://repositorio.unbosque.edu.co/bitstreams/4b531aad-25fc-466d-8746-3b2a2c826d4d/download https://repositorio.unbosque.edu.co/bitstreams/7303e911-574b-45f3-80e0-43ac31baa395/download |
bitstream.checksum.fl_str_mv |
c3fe3833670ffd93233adcbfb3355ebf ee3c7299cb45fb5f4b4fd6d5ceac6046 8bec2ee6dd3b487ac140bb8104313b5f 17cc15b951e7cc6b3728a574117320f9 136cea20c8a1d0b8e571dfc7db84c72d 1e8fea2d780a2ca411c95342437d4627 5356fc2babb64ff3767abade6d67e668 1a648e8090e0ea760b05cfa8955e0de6 f294bcb79d7f942e25f74aa47be43d6b cbda2851670c8a9d21a9aed34604c0ae 4e65a21cc79d255f73d068721f20c84f 7835ba276486d83584f305e7ce8ec4a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100794854604800 |
spelling |
Espinosa, José LuisOrjuela Gongora, Mario Fernando2024-07-08T19:31:43Z2024-07-08T19:31:43Z2024-05https://hdl.handle.net/20.500.12495/12585instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coAl día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua.BioingenieroPregradoToday there is no national regulation that specifies the concentrations of microplastics permissible in water discharges, so many processes within the industry or wastewater treatment systems do not have specific mechanisms for filtration and separation of them, thus generating major environmental and health problems. As a proposed solution, this degree work presents the development of a functional prototype for microplastic filtration at laboratory scale, implementing the bio-inspired mechanism known as rebound separation present in manta rays, with a removal percentage of 88.8% for particles larger than 100 μm and maximum working speeds of 0.7 m/s. Its performance and filtration efficiency were evaluated computationally and real, taking into account its critical variables of flow velocity, microplastic load and particle size. Thus, this project presents a new mechanism to rapidly remove microplastics with high efficiency and applicability in industrial uses, which is promising for remediating this type of water pollution.application/pdfMicroplásticosFiltraciónBioinspiración610.28MicroplasticsFiltrationBioinspirationDesarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por reboteDevelopment of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanismBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Adelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454Ansys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluentAnycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205Bhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.enBrowne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249aCardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68.Chi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378Clark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449bDa Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013Divi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533Enfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046Fluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheresFriedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695nFu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006Gomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica.Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77Guide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/Ha, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8Habib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011Hopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054Laist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10Lam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-zLee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-zLee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321kLehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183Lv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416Okoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428aRossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234cSanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574Sankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743Schwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014Shahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033Sol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070Vidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos.Yoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739Zhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758Zhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195.Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf24324681https://repositorio.unbosque.edu.co/bitstreams/bef0c45b-f846-4d6a-8605-8b436b8fd5ec/downloadc3fe3833670ffd93233adcbfb3355ebfMD51Anexo 1. Planos del prototipo.pdfAnexo 1. Planos del prototipo.pdfapplication/pdf705842https://repositorio.unbosque.edu.co/bitstreams/0fdaa476-df14-4f2a-858e-5dd71f0a9c9c/downloadee3c7299cb45fb5f4b4fd6d5ceac6046MD53Anexo 2. Manual de usuario.pdfAnexo 2. Manual de usuario.pdfapplication/pdf1440898https://repositorio.unbosque.edu.co/bitstreams/5c7fa6fb-ad98-4c14-b618-217f168a8532/download8bec2ee6dd3b487ac140bb8104313b5fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/784577b9-f81b-4b19-9460-7d9e47b522db/download17cc15b951e7cc6b3728a574117320f9MD56Carta de autorización.pdfapplication/pdf155049https://repositorio.unbosque.edu.co/bitstreams/ffea10d1-72fb-4312-8b62-47dc0935b8f7/download136cea20c8a1d0b8e571dfc7db84c72dMD57Anexo 3. Carta de aprobación.pdfapplication/pdf316663https://repositorio.unbosque.edu.co/bitstreams/b210011e-a0a0-4f73-961e-262a08f4ea23/download1e8fea2d780a2ca411c95342437d4627MD58TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102262https://repositorio.unbosque.edu.co/bitstreams/15d2a743-c45e-4b6d-94a2-adbec260140f/download5356fc2babb64ff3767abade6d67e668MD59Anexo 1. Planos del prototipo.pdf.txtAnexo 1. Planos del prototipo.pdf.txtExtracted texttext/plain1731https://repositorio.unbosque.edu.co/bitstreams/d6d0b24c-bba7-4a91-84a1-77f94886c7d0/download1a648e8090e0ea760b05cfa8955e0de6MD511Anexo 2. Manual de usuario.pdf.txtAnexo 2. Manual de usuario.pdf.txtExtracted texttext/plain4420https://repositorio.unbosque.edu.co/bitstreams/b1a7d616-e049-4f4d-9606-a821b6b676ef/downloadf294bcb79d7f942e25f74aa47be43d6bMD513THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2546https://repositorio.unbosque.edu.co/bitstreams/b6ab84d2-a004-4048-b0cf-f87a03de7706/downloadcbda2851670c8a9d21a9aed34604c0aeMD510Anexo 1. Planos del prototipo.pdf.jpgAnexo 1. Planos del prototipo.pdf.jpgGenerated Thumbnailimage/jpeg3930https://repositorio.unbosque.edu.co/bitstreams/4b531aad-25fc-466d-8746-3b2a2c826d4d/download4e65a21cc79d255f73d068721f20c84fMD512Anexo 2. Manual de usuario.pdf.jpgAnexo 2. Manual de usuario.pdf.jpgGenerated Thumbnailimage/jpeg4884https://repositorio.unbosque.edu.co/bitstreams/7303e911-574b-45f3-80e0-43ac31baa395/download7835ba276486d83584f305e7ce8ec4a5MD51420.500.12495/12585oai:repositorio.unbosque.edu.co:20.500.12495/125852024-07-09 03:05:36.142open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |