Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote

Al día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y se...

Full description

Autores:
Orjuela Gongora, Mario Fernando
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12585
Acceso en línea:
https://hdl.handle.net/20.500.12495/12585
https://repositorio.unbosque.edu.co
Palabra clave:
Microplásticos
Filtración
Bioinspiración
610.28
Microplastics
Filtration
Bioinspiration
Rights
License
Acceso abierto
id UNBOSQUE2_c3aa1fef79301879aef0b230b65c7143
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12585
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
dc.title.translated.none.fl_str_mv Development of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanism
title Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
spellingShingle Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
Microplásticos
Filtración
Bioinspiración
610.28
Microplastics
Filtration
Bioinspiration
title_short Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
title_full Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
title_fullStr Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
title_full_unstemmed Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
title_sort Desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por rebote
dc.creator.fl_str_mv Orjuela Gongora, Mario Fernando
dc.contributor.advisor.none.fl_str_mv Espinosa, José Luis
dc.contributor.author.none.fl_str_mv Orjuela Gongora, Mario Fernando
dc.subject.none.fl_str_mv Microplásticos
Filtración
Bioinspiración
topic Microplásticos
Filtración
Bioinspiración
610.28
Microplastics
Filtration
Bioinspiration
dc.subject.ddc.none.fl_str_mv 610.28
dc.subject.keywords.none.fl_str_mv Microplastics
Filtration
Bioinspiration
description Al día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-08T19:31:43Z
dc.date.available.none.fl_str_mv 2024-07-08T19:31:43Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_970fb48d4fbd8a85
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12585
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12585
https://repositorio.unbosque.edu.co
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Adelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454
Ansys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluent
Anycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/
Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089
Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205
Bhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6
Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.en
Browne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249a
Cardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68.
Chi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378
Clark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449b
Da Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013
Divi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533
Enfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049
Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046
Fluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheres
Friedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695n
Fu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561
Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305
Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006
Gomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica.
Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77
Guide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/
Ha, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8
Habib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011
Hopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311
Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054
Laist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10
Lam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-z
Lee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-z
Lee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321k
Lehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512
Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183
Lv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001
McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145
Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416
Okoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428a
Rossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234c
Sanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574
Sankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743
Schwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014
Shahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033
Sol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016
Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050
Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046
Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559
Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070
Vidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos.
Yoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739
Zhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758
Zhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bioingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/bef0c45b-f846-4d6a-8605-8b436b8fd5ec/download
https://repositorio.unbosque.edu.co/bitstreams/0fdaa476-df14-4f2a-858e-5dd71f0a9c9c/download
https://repositorio.unbosque.edu.co/bitstreams/5c7fa6fb-ad98-4c14-b618-217f168a8532/download
https://repositorio.unbosque.edu.co/bitstreams/784577b9-f81b-4b19-9460-7d9e47b522db/download
https://repositorio.unbosque.edu.co/bitstreams/ffea10d1-72fb-4312-8b62-47dc0935b8f7/download
https://repositorio.unbosque.edu.co/bitstreams/b210011e-a0a0-4f73-961e-262a08f4ea23/download
https://repositorio.unbosque.edu.co/bitstreams/15d2a743-c45e-4b6d-94a2-adbec260140f/download
https://repositorio.unbosque.edu.co/bitstreams/d6d0b24c-bba7-4a91-84a1-77f94886c7d0/download
https://repositorio.unbosque.edu.co/bitstreams/b1a7d616-e049-4f4d-9606-a821b6b676ef/download
https://repositorio.unbosque.edu.co/bitstreams/b6ab84d2-a004-4048-b0cf-f87a03de7706/download
https://repositorio.unbosque.edu.co/bitstreams/4b531aad-25fc-466d-8746-3b2a2c826d4d/download
https://repositorio.unbosque.edu.co/bitstreams/7303e911-574b-45f3-80e0-43ac31baa395/download
bitstream.checksum.fl_str_mv c3fe3833670ffd93233adcbfb3355ebf
ee3c7299cb45fb5f4b4fd6d5ceac6046
8bec2ee6dd3b487ac140bb8104313b5f
17cc15b951e7cc6b3728a574117320f9
136cea20c8a1d0b8e571dfc7db84c72d
1e8fea2d780a2ca411c95342437d4627
5356fc2babb64ff3767abade6d67e668
1a648e8090e0ea760b05cfa8955e0de6
f294bcb79d7f942e25f74aa47be43d6b
cbda2851670c8a9d21a9aed34604c0ae
4e65a21cc79d255f73d068721f20c84f
7835ba276486d83584f305e7ce8ec4a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100794854604800
spelling Espinosa, José LuisOrjuela Gongora, Mario Fernando2024-07-08T19:31:43Z2024-07-08T19:31:43Z2024-05https://hdl.handle.net/20.500.12495/12585instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coAl día de hoy no existe una normativa nacional que especifique las concentraciones de microplásticos permisibles en los vertimientos de aguas, por lo que muchos procesos dentro de la industria o sistemas de tratamiento de aguas residuales no cuentan con mecanismos específicos para la filtración y separación de los mismos, generando así, grandes problemas medioambientales y de salud. Como propuesta de solución, en este trabajo de grado se presenta el desarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio, implementando el mecanismo bioinspirado conocido como separación por rebote presente en las mantarrayas, con un porcentaje de remoción del 89.73% para partículas con un tamaño superior a los 100 μm y velocidades de trabajo máximas de 0,7 m/s. Se evaluó su funcionamiento y eficiencia de filtración de forma computacional y real teniendo en cuenta sus variables críticas de velocidad de flujo, carga de microplásticos y tamaño de partícula. De esta manera, este proyecto presenta un nuevo mecanismo para eliminar rápidamente los microplásticos con una alta eficiencia y aplicabilidad en usos industriales, que es prometedora para remediar este tipo de contaminación del agua.BioingenieroPregradoToday there is no national regulation that specifies the concentrations of microplastics permissible in water discharges, so many processes within the industry or wastewater treatment systems do not have specific mechanisms for filtration and separation of them, thus generating major environmental and health problems. As a proposed solution, this degree work presents the development of a functional prototype for microplastic filtration at laboratory scale, implementing the bio-inspired mechanism known as rebound separation present in manta rays, with a removal percentage of 88.8% for particles larger than 100 μm and maximum working speeds of 0.7 m/s. Its performance and filtration efficiency were evaluated computationally and real, taking into account its critical variables of flow velocity, microplastic load and particle size. Thus, this project presents a new mechanism to rapidly remove microplastics with high efficiency and applicability in industrial uses, which is promising for remediating this type of water pollution.application/pdfMicroplásticosFiltraciónBioinspiración610.28MicroplasticsFiltrationBioinspirationDesarrollo de un prototipo funcional de filtración de microplásticos a escala de laboratorio utilizando el mecanismo bioinspirado de separación por reboteDevelopment of a functional prototype for laboratory scale filtration of microplastics using the bioinspired rebound separation mechanismBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Adelmann, B., Schwiddessen, T., Götzendorfer, B., & Hellmann, R. (2022). Evaluation of SLS 3D-Printed Filter Structures Based on Bionic Manta Structures. Materials, 15(23), 8454. https://doi.org/10.3390/ma15238454Ansys fluent. (2024, 6 febrero). Fluid Simulation Software. https://www.ansys.com/products/fluids/ansys-fluentAnycubic Tienda oficial | Impresora 3D | Resina | Filamento. (s. f.). ANYCUBIC-ES. https://www.anycubic.es/Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A., & Campiglia, A. D. (2020). A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastic studies: From the detection to the toxicological assessment. Environmental Research, 182, 109089. https://doi.org/10.1016/j.envres.2019.109089Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. A. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions Of The Royal Society B, 364(1526), 1985-1998. https://doi.org/10.1098/rstb.2008.0205Bhave, R. R. (1996). Cross-Flow filtration. En Elsevier eBooks (pp. 271-347). https://doi.org/10.1016/b978-081551407-7.50010-6Boucher, J., & Friot, D. (2017). Primary microplastics in the oceans: A global evaluation of sources. https://doi.org/10.2305/iucn.ch.2017.01.enBrowne, M. A. O., Dissanayake, A., Galloway, T. S., Lowe, D. M., & Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13), 5026-5031. https://doi.org/10.1021/es800249aCardoza, Y. F. (2005). LA MICROSCOPÍA DE FLUORESCENCIA y SU APLICACIÓN EN EL DIAGNÓSTICO DE BACTERIAS FITOPATÓGENAS. Redalyc, 9(3), 65-68.Chi, D., Chen, A. D., Dorante, M. I., Lee, B. T., & Sacks, J. M. (2020). Plastic Surgery in the Time of COVID-19. Journal Of Reconstructive Microsurgery, 37(02), 124-131. https://doi.org/10.1055/s-0040-1714378Clark, A. C., & San-Miguel, A. (2021). A bioinspired, passive microfluidic lobe filtration system. Lab On A Chip, 21(19), 3762-3774. https://doi.org/10.1039/d1lc00449bDa Costa, J. P., Reis, V., Paço, A., Costa, M. F., & Rocha-Santos, T. (2019). Micro(nano)plastics – Analytical challenges towards risk evaluation. TrAC Trends In Analytical Chemistry, 111, 173-184. https://doi.org/10.1016/j.trac.2018.12.013Divi, R. V., Strother, J. A., & Paig-Tran, E. M. (2018). Manta rays feed using ricochet separation, a novel nonclogging filtration mechanism. Science Advances, 4(9). https://doi.org/10.1126/sciadv.aat9533Enfrin, M., Dumée, L. F., & Lee, J. (2019). Nano/microplastics in water and wastewater treatment processes – Origin, impact and potential solutions. Water Research, 161, 621-638. https://doi.org/10.1016/j.watres.2019.06.049Farrell, P., & Nelson, K. (2013). Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution, 177, 1-3. https://doi.org/10.1016/j.envpol.2013.01.046Fluorescent polystyrene microspheres. (s. f.). Lab 261. https://www.lab261.com/pages/fluorescent-polystyrene-microspheresFriedman, C. L., Burgess, R. M., Perron, M. M., Cantwell, M. G., Ho, K. T., & Lohmann, R. (2009). Comparing Polychaete and Polyethylene Uptake to Assess Sediment Resuspension Effects on PCB Bioavailability. Environmental Science & Technology, 43(8), 2865-2870. https://doi.org/10.1021/es803695nFu, W., Min, J., Jiang, W., Li, Y., & Wen, Z. (2020). Separation, characterization and identification of microplastics and nanoplastics in the environment. Science Of The Total Environment, 721, 137561. https://doi.org/10.1016/j.scitotenv.2020.137561Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science Of The Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006Gomez, J. W. (2023). Tecnologías avanzadas del tratamiento de agua, una revisión bibliográfica.Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G., & Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. DOAJ (DOAJ: Directory Of Open Access Journals). https://doaj.org/article/c403867b2f80415783a7bb11b0361c77Guide to 3D Printing Materials: Types, Applications, and Properties. (s. f.). Formlabs. https://formlabs.com/blog/3d-printing-materials/Ha, J., & Yeo, M. (2018). The environmental effects of microplastics on aquatic ecosystems. Molecular & Cellular Toxicology, 14(4), 353-359. https://doi.org/10.1007/s13273-018-0039-8Habib, R. Z., Kendi, R. A., & Thiemann, T. (2021). The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. Journal Of Environmental Protection, 12(03), 161-195. https://doi.org/10.4236/jep.2021.123011Hopewell, J., Dvorak, R. G., & Kosior, E. (2009). Plastics recycling: challenges and opportunities. Philosophical Transactions Of The Royal Society B, 364(1526), 2115-2126. https://doi.org/10.1098/rstb.2008.0311Koelmans, A. A., Nor, N. H. M., Hermsen, E., Kooi, M., Mintenig, S. M., & De France, J. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155, 410-422. https://doi.org/10.1016/j.watres.2019.02.054Laist, D. W. (1997). Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records. En Springer series on environmental management (pp. 99-139). https://doi.org/10.1007/978-1-4613-8486-1_10Lam, C. S., Ramanathan, S., Carbery, M., Gray, K. F., Vanka, K. S., Maurin, C., Bush, R. T., & Thavamani, P. (2018). A Comprehensive Analysis of Plastics and Microplastic Legislation Worldwide. Water, Air, & Soil Pollution, 229(11). https://doi.org/10.1007/s11270-018-4002-zLee, H. S., Shim, J. E., Park, I. H., Choo, K. S., & Yeo, M. (2022). Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Molecular & Cellular Toxicology, 19(1), 13-25. https://doi.org/10.1007/s13273-022-00289-zLee, W. S., Cho, H., Kim, E., Huh, Y. H., Kim, H., Kim, B., Kang, T., Lee, J., & Jeong, J. (2019). Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in zebrafish embryos. Nanoscale, 11(7), 3173-3185. https://doi.org/10.1039/c8nr09321kLehner, R., Weder, C., Petri‐Fink, A., & Rothen‐Rutishauser, B. (2019). Emergence of Nanoplastic in the Environment and Possible Impact on Human Health. Environmental Science & Technology, 53(4), 1748-1765. https://doi.org/10.1021/acs.est.8b05512Lu, Y., Zhang, Y., Deng, Y., Jiang, W., Zhao, Y., Geng, J., Ding, L., & Ren, H. (2016). Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environmental Science & Technology, 50(7), 4054-4060. https://doi.org/10.1021/acs.est.6b00183Lv, P., Hu, B., Hua, R., Zhang, J., Zhang, H., Liu, Z., Xu, L., He, Z., Li, X., Guo, M., Pan, K., Zhang, Z., Zeng, Q., Wu, Z., Sun, L., Guo, M., Zhou, L., Xu, X., Yu, B., . . . Li, Y.(2022). A novelly designed protein antagonist confers potent neutralization against SARS-CoV-2 variants of concern. Journal Of Infection, 85(3), e72-e76. https://doi.org/10.1016/j.jinf.2022.06.001McCarthy, J., Gong, X., Nahirney, D., Duszyk, M., & Radomski, M. W. (2011). Polystyrene nanoparticles activate ion transport in human airway epithelial cells. International Journal Of Nanomedicine, 1343. https://doi.org/10.2147/ijn.s21145Murphy, F., Ewins, C., Carbonnier, F., & Quinn, B. (2016). Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environmental Science & Technology, 50(11), 5800-5808. https://doi.org/10.1021/acs.est.5b05416Okoffo, E. D., O’Brien, S., O’Brien, J., Tscharke, B. J., & Thomas, K. V. (2019a). Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. Environmental Science, 5(11), 1908-1931. https://doi.org/10.1039/c9ew00428aRossi, G., Barnoud, J., & Monticelli, L. (2013). Polystyrene nanoparticles perturb lipid membranes. The Journal Of Physical Chemistry Letters, 5(1), 241-246. https://doi.org/10.1021/jz402234cSanderson, S. L., Cheer, A. Y., Goodrich, J. S., Graziano, J. D., & Callan, W. T. (2001). Crossflow filtration in suspension-feeding fishes. Nature, 412(6845), 439-441. https://doi.org/10.1038/35086574Sankrityayan, P., & Biswas, S. (2022). Plastic Filtration and Decomposition According to Ricochet Filtering Mechanism Using Ideonella sakaiensis. Frontiers In Marine Science, 9. https://doi.org/10.3389/fmars.2022.919743Schwaferts, C., Nießner, R., Elsner, M., & Ivleva, N. P. (2019a). Methods for the analysis of submicrometer- and nanoplastic particles in the environment. TrAC Trends In Analytical Chemistry, 112, 52-65. https://doi.org/10.1016/j.trac.2018.12.014Shahbazi, M., Ghalkhani, M., & Maleki, H. (2020). Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications. Advanced Engineering Materials, 22(7). https://doi.org/10.1002/adem.202000033Sol, D., Laca, A., Laca, A., & DıÁ z, M. (2020a). Approaching the environmental problem of microplastics: Importance of WWTP treatments. Science Of The Total Environment, 740, 140016. https://doi.org/10.1016/j.scitotenv.2020.140016Sun, J., Dai, X., Wang, Q., Van Loosdrecht, M. C., & Ni, B. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research, 152, 21-37. https://doi.org/10.1016/j.watres.2018.12.050Talvitie, J., Mikola, A., Setälä, O., Heinonen, M., & Koistinen, A. (2017). How well is microlitter purified from wastewater? – A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Research, 109, 164-172. https://doi.org/10.1016/j.watres.2016.11.046Thompson, R. C., Olsen, Y. S., Mitchell, R. P., Davis, A., Rowland, S. J., John, A., McGonigle, D. F., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838. https://doi.org/10.1126/science.1094559Vermaire, J. C., Pomeroy, C., Herczegh, S. M., Haggart, O., & Murphy, M. A. (2017). Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets, 2(1), 301-314. https://doi.org/10.1139/facets-2016-0070Vidal, F. J. R. (2003). Procesos de potabilización del agua e influencia del tratamiento de ozonización. Ediciones Díaz de Santos.Yoon, J., Yoon, Y., Yun, S. L., & Lee, W. (2021). The Current State of Management and Disposal of Wastes Related to COVID-19 : A review. Journal Of Korean Society Of Environmental Engineers, 43(12), 739-746. https://doi.org/10.4491/ksee.2021.43.12.739Zhang, X., Li, H., Zhu, C., Huang, X., Greiner, A., & Xu, Z. (2022). Biomimetic gill-inspired membranes with direct-through micropores for water remediation by efficiently removing microplastic particles. Chemical Engineering Journal, 434, 134758. https://doi.org/10.1016/j.cej.2022.134758Zhang, H., et al. (2018). Removal of microplastics from water environment by adsorption process: A review. Chemical Engineering Journal, 359, 180-195.Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf24324681https://repositorio.unbosque.edu.co/bitstreams/bef0c45b-f846-4d6a-8605-8b436b8fd5ec/downloadc3fe3833670ffd93233adcbfb3355ebfMD51Anexo 1. Planos del prototipo.pdfAnexo 1. Planos del prototipo.pdfapplication/pdf705842https://repositorio.unbosque.edu.co/bitstreams/0fdaa476-df14-4f2a-858e-5dd71f0a9c9c/downloadee3c7299cb45fb5f4b4fd6d5ceac6046MD53Anexo 2. Manual de usuario.pdfAnexo 2. Manual de usuario.pdfapplication/pdf1440898https://repositorio.unbosque.edu.co/bitstreams/5c7fa6fb-ad98-4c14-b618-217f168a8532/download8bec2ee6dd3b487ac140bb8104313b5fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/784577b9-f81b-4b19-9460-7d9e47b522db/download17cc15b951e7cc6b3728a574117320f9MD56Carta de autorización.pdfapplication/pdf155049https://repositorio.unbosque.edu.co/bitstreams/ffea10d1-72fb-4312-8b62-47dc0935b8f7/download136cea20c8a1d0b8e571dfc7db84c72dMD57Anexo 3. Carta de aprobación.pdfapplication/pdf316663https://repositorio.unbosque.edu.co/bitstreams/b210011e-a0a0-4f73-961e-262a08f4ea23/download1e8fea2d780a2ca411c95342437d4627MD58TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102262https://repositorio.unbosque.edu.co/bitstreams/15d2a743-c45e-4b6d-94a2-adbec260140f/download5356fc2babb64ff3767abade6d67e668MD59Anexo 1. Planos del prototipo.pdf.txtAnexo 1. Planos del prototipo.pdf.txtExtracted texttext/plain1731https://repositorio.unbosque.edu.co/bitstreams/d6d0b24c-bba7-4a91-84a1-77f94886c7d0/download1a648e8090e0ea760b05cfa8955e0de6MD511Anexo 2. Manual de usuario.pdf.txtAnexo 2. Manual de usuario.pdf.txtExtracted texttext/plain4420https://repositorio.unbosque.edu.co/bitstreams/b1a7d616-e049-4f4d-9606-a821b6b676ef/downloadf294bcb79d7f942e25f74aa47be43d6bMD513THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2546https://repositorio.unbosque.edu.co/bitstreams/b6ab84d2-a004-4048-b0cf-f87a03de7706/downloadcbda2851670c8a9d21a9aed34604c0aeMD510Anexo 1. Planos del prototipo.pdf.jpgAnexo 1. Planos del prototipo.pdf.jpgGenerated Thumbnailimage/jpeg3930https://repositorio.unbosque.edu.co/bitstreams/4b531aad-25fc-466d-8746-3b2a2c826d4d/download4e65a21cc79d255f73d068721f20c84fMD512Anexo 2. Manual de usuario.pdf.jpgAnexo 2. Manual de usuario.pdf.jpgGenerated Thumbnailimage/jpeg4884https://repositorio.unbosque.edu.co/bitstreams/7303e911-574b-45f3-80e0-43ac31baa395/download7835ba276486d83584f305e7ce8ec4a5MD51420.500.12495/12585oai:repositorio.unbosque.edu.co:20.500.12495/125852024-07-09 03:05:36.142open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=