Análisis de estructuras del grupo de monodromía y el grupo de Galois para polinomios por medio del teorema de Abel-Ruffini

El teorema fundamental del álgebra garantiza que la ecuación general de grado n tiene al menos una solución en los complejos, pero no es posible encontrar una solución general por radicales para tal ecuación cuando n ≥ 5, esta afirmación es conocida como el teorema de Abel-Ruffini. Son varias las de...

Full description

Autores:
Barón Aya, Mónica Julieth
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/7923
Acceso en línea:
http://hdl.handle.net/20.500.12495/7923
Palabra clave:
Grupo Galois
Grupo monodromía
Polinomio general
510
Galois group
Monodromy group
General polynomial
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Description
Summary:El teorema fundamental del álgebra garantiza que la ecuación general de grado n tiene al menos una solución en los complejos, pero no es posible encontrar una solución general por radicales para tal ecuación cuando n ≥ 5, esta afirmación es conocida como el teorema de Abel-Ruffini. Son varias las demostraciones para este teorema, siendo una de estas la planteada por el mismísimo Niels Henrick Abel. Sin embargo, en este trabajo las demostraciones de interés son aquellas desarrolladas por Évariste Galois y Vladimir Igorevich Arnold, quienes abordan el teorema desde distintos campos de la matématica; por un lado, la primera demostración usa el grupo de Galois, por su parte, la segunda usa el grupo de monodromía. El objetivo principal del presente trabajo consiste en analizar el grupo de Galois desde la Teoría de Galois y el grupo de monodromía desde la topología Algebraica con el fin de encontrar las herramientas que permitan la creación de un isomorfismo entre ambos grupos. Para ello se realiza una revisión de todos los conceptos previos que permiten comprender a cada uno de los grupos con su respectiva demostración del teorema de Abel-Ruffini. Tras el análisis se encuentra que los grupos de Galois de un polinomio f(x) y monodromía de una función multivaluada w(z) son grupos de permutaciones, en el primer caso se permutan las raíces del polinomio, mientras que en el segundo hay una permutación de los posibles valores que toma la función w al ser evaluada en un punto z_0. Además, si se toma la función multivaluada w(z) tal que f(w(z)) = 0 las permutaciones del grupo de Galois permutan la misma cantidad de elementos que las del grupo de monodromía.