Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorde...
- Autores:
-
Reza Marateb, Hamid
Farahi, Morteza
Rojas, Mónica
Mañanas, Miguel Angel
Farina, Dario
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/2387
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/2387
https://doi.org/10.1371/journal.pone.0167954
- Palabra clave:
- Episiotomía
Espasticidad muscular
Parto
- Rights
- License
- Attribution 4.0 International
id |
UNBOSQUE2_be7b5ec0fc93fcd7467afae7c3fb7c02 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/2387 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
dc.title.translated.none.fl_str_mv |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
title |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
spellingShingle |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation Episiotomía Espasticidad muscular Parto |
title_short |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
title_full |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
title_fullStr |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
title_full_unstemmed |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
title_sort |
Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation |
dc.creator.fl_str_mv |
Reza Marateb, Hamid Farahi, Morteza Rojas, Mónica Mañanas, Miguel Angel Farina, Dario |
dc.contributor.author.none.fl_str_mv |
Reza Marateb, Hamid Farahi, Morteza Rojas, Mónica Mañanas, Miguel Angel Farina, Dario |
dc.subject.decs.spa.fl_str_mv |
Episiotomía Espasticidad muscular Parto |
topic |
Episiotomía Espasticidad muscular Parto |
description |
Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-04-24T23:44:50Z |
dc.date.available.none.fl_str_mv |
2020-04-24T23:44:50Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
artículo |
dc.identifier.issn.none.fl_str_mv |
1932-6203 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/2387 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1371/journal.pone.0167954 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
identifier_str_mv |
1932-6203 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/2387 https://doi.org/10.1371/journal.pone.0167954 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Plos one, 1932-6203. Vol, 110. Nro, 12, 2016 |
dc.relation.uri.none.fl_str_mv |
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167954#abstract0 |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf282 |
dc.rights.creativecommons.none.fl_str_mv |
2016 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf282 2016 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Public Library of Science |
dc.publisher.journal.spa.fl_str_mv |
Plos one |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/11ae3953-558c-42cb-b4c2-78ff551c3f91/download https://repositorio.unbosque.edu.co/bitstreams/d606b2c0-4799-4199-a3d2-ebf9738ca734/download https://repositorio.unbosque.edu.co/bitstreams/c182f18e-a96b-45bc-868b-5f76ec211d9d/download https://repositorio.unbosque.edu.co/bitstreams/1a452656-c30c-404d-9a77-062771ab4b60/download https://repositorio.unbosque.edu.co/bitstreams/319fd097-5c82-4b6f-b746-56066be97e9b/download https://repositorio.unbosque.edu.co/bitstreams/541a7da4-0cdd-43dd-bd11-2829b8808749/download |
bitstream.checksum.fl_str_mv |
84bdc0f40c9e0a32fd37450f2561d308 a452878f51d96fe337d3398bedd49794 a452878f51d96fe337d3398bedd49794 0175ea4a2d4caec4bbcc37e300941108 8a4605be74aa9ea9d79846c1fba20a33 34122f33dac819cd55244eda3b0a4f8a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100831812714496 |
spelling |
Reza Marateb, HamidFarahi, MortezaRojas, MónicaMañanas, Miguel AngelFarina, Dario2020-04-24T23:44:50Z2020-04-24T23:44:50Z20161932-6203http://hdl.handle.net/20.500.12495/2387https://doi.org/10.1371/journal.pone.0167954instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengPublic Library of SciencePlos onePlos one, 1932-6203. Vol, 110. Nro, 12, 2016https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167954#abstract0Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf2822016http://purl.org/coar/access_right/c_abf2Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentationDetection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentationarticleartículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501EpisiotomíaEspasticidad muscularPartoKnowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies.THUMBNAILMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.jpgMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.jpgIM Thumbnailimage/jpeg13905https://repositorio.unbosque.edu.co/bitstreams/11ae3953-558c-42cb-b4c2-78ff551c3f91/download84bdc0f40c9e0a32fd37450f2561d308MD55ORIGINALMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfapplication/pdf5043446https://repositorio.unbosque.edu.co/bitstreams/d606b2c0-4799-4199-a3d2-ebf9738ca734/downloada452878f51d96fe337d3398bedd49794MD51Marateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfapplication/pdf5043446https://repositorio.unbosque.edu.co/bitstreams/c182f18e-a96b-45bc-868b-5f76ec211d9d/downloada452878f51d96fe337d3398bedd49794MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/1a452656-c30c-404d-9a77-062771ab4b60/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/319fd097-5c82-4b6f-b746-56066be97e9b/download8a4605be74aa9ea9d79846c1fba20a33MD54TEXTMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.txtMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.txtExtracted texttext/plain76847https://repositorio.unbosque.edu.co/bitstreams/541a7da4-0cdd-43dd-bd11-2829b8808749/download34122f33dac819cd55244eda3b0a4f8aMD5620.500.12495/2387oai:repositorio.unbosque.edu.co:20.500.12495/23872024-02-07 11:20:41.86http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |