Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation

Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorde...

Full description

Autores:
Reza Marateb, Hamid
Farahi, Morteza
Rojas, Mónica
Mañanas, Miguel Angel
Farina, Dario
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/2387
Acceso en línea:
http://hdl.handle.net/20.500.12495/2387
https://doi.org/10.1371/journal.pone.0167954
Palabra clave:
Episiotomía
Espasticidad muscular
Parto
Rights
License
Attribution 4.0 International
id UNBOSQUE2_be7b5ec0fc93fcd7467afae7c3fb7c02
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/2387
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
dc.title.translated.none.fl_str_mv Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
title Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
spellingShingle Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
Episiotomía
Espasticidad muscular
Parto
title_short Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
title_full Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
title_fullStr Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
title_full_unstemmed Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
title_sort Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentation
dc.creator.fl_str_mv Reza Marateb, Hamid
Farahi, Morteza
Rojas, Mónica
Mañanas, Miguel Angel
Farina, Dario
dc.contributor.author.none.fl_str_mv Reza Marateb, Hamid
Farahi, Morteza
Rojas, Mónica
Mañanas, Miguel Angel
Farina, Dario
dc.subject.decs.spa.fl_str_mv Episiotomía
Espasticidad muscular
Parto
topic Episiotomía
Espasticidad muscular
Parto
description Knowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-04-24T23:44:50Z
dc.date.available.none.fl_str_mv 2020-04-24T23:44:50Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv artículo
dc.identifier.issn.none.fl_str_mv 1932-6203
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/2387
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1371/journal.pone.0167954
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
identifier_str_mv 1932-6203
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/2387
https://doi.org/10.1371/journal.pone.0167954
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Plos one, 1932-6203. Vol, 110. Nro, 12, 2016
dc.relation.uri.none.fl_str_mv https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167954#abstract0
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf282
dc.rights.creativecommons.none.fl_str_mv 2016
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf282
2016
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Public Library of Science
dc.publisher.journal.spa.fl_str_mv Plos one
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/11ae3953-558c-42cb-b4c2-78ff551c3f91/download
https://repositorio.unbosque.edu.co/bitstreams/d606b2c0-4799-4199-a3d2-ebf9738ca734/download
https://repositorio.unbosque.edu.co/bitstreams/c182f18e-a96b-45bc-868b-5f76ec211d9d/download
https://repositorio.unbosque.edu.co/bitstreams/1a452656-c30c-404d-9a77-062771ab4b60/download
https://repositorio.unbosque.edu.co/bitstreams/319fd097-5c82-4b6f-b746-56066be97e9b/download
https://repositorio.unbosque.edu.co/bitstreams/541a7da4-0cdd-43dd-bd11-2829b8808749/download
bitstream.checksum.fl_str_mv 84bdc0f40c9e0a32fd37450f2561d308
a452878f51d96fe337d3398bedd49794
a452878f51d96fe337d3398bedd49794
0175ea4a2d4caec4bbcc37e300941108
8a4605be74aa9ea9d79846c1fba20a33
34122f33dac819cd55244eda3b0a4f8a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100831812714496
spelling Reza Marateb, HamidFarahi, MortezaRojas, MónicaMañanas, Miguel AngelFarina, Dario2020-04-24T23:44:50Z2020-04-24T23:44:50Z20161932-6203http://hdl.handle.net/20.500.12495/2387https://doi.org/10.1371/journal.pone.0167954instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengPublic Library of SciencePlos onePlos one, 1932-6203. Vol, 110. Nro, 12, 2016https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167954#abstract0Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf2822016http://purl.org/coar/access_right/c_abf2Detection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentationDetection of multiple innervation zones from multi-channel Surface EMG Recordings with Low signal-to-noise ratio using graph-cut segmentationarticleartículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501EpisiotomíaEspasticidad muscularPartoKnowledge of the location of muscle Innervation Zones (IZs) is important in many applications, e.g. for minimizing the quantity of injected botulinum toxin for the treatment of spasticity or for deciding on the type of episiotomy during child delivery. Surface EMG (sEMG) can be noninvasively recorded to assess physiological and morphological characteristics of contracting muscles. However, it is not often possible to record signals of high quality. Moreover, muscles could have multiple IZs, which should all be identified. We designed a fully-automatic algorithm based on the enhanced image Graph-Cut segmentation and morphological image processing methods to identify up to five IZs in 60-ms intervals of very-low to moderate quality sEMG signal detected with multi-channel electrodes (20 bipolar channels with Inter Electrode Distance (IED) of 5 mm). An anisotropic multilayered cylinder model was used to simulate 750 sEMG signals with signal-to-noise ratio ranging from -5 to 15 dB (using Gaussian noise) and in each 60-ms signal frame, 1 to 5 IZs were included. The micro- and macro- averaged performance indices were then reported for the proposed IZ detection algorithm. In the micro-averaging procedure, the number of True Positives, False Positives and False Negatives in each frame were summed up to generate cumulative measures. In the macro-averaging, on the other hand, precision and recall were calculated for each frame and their averages are used to determine F1-score. Overall, the micro (macro)-averaged sensitivity, precision and F1-score of the algorithm for IZ channel identification were 82.7% (87.5%), 92.9% (94.0%) and 87.5% (90.6%), respectively. For the correctly identified IZ locations, the average bias error was of 0.02±0.10 IED ratio. Also, the average absolute conduction velocity estimation error was 0.41±0.40 m/s for such frames. The sensitivity analysis including increasing IED and reducing interpolation coefficient for time samples was performed. Meanwhile, the effect of adding power-line interference and using other image interpolation methods on the deterioration of the performance of the proposed algorithm was investigated. The average running time of the proposed algorithm on each 60-ms sEMG frame was 25.5±8.9 (s) on an Intel dual-core 1.83 GHz CPU with 2 GB of RAM. The proposed algorithm correctly and precisely identified multiple IZs in each signal epoch in a wide range of signal quality and is thus a promising new offline tool for electrophysiological studies.THUMBNAILMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.jpgMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.jpgIM Thumbnailimage/jpeg13905https://repositorio.unbosque.edu.co/bitstreams/11ae3953-558c-42cb-b4c2-78ff551c3f91/download84bdc0f40c9e0a32fd37450f2561d308MD55ORIGINALMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfapplication/pdf5043446https://repositorio.unbosque.edu.co/bitstreams/d606b2c0-4799-4199-a3d2-ebf9738ca734/downloada452878f51d96fe337d3398bedd49794MD51Marateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdfapplication/pdf5043446https://repositorio.unbosque.edu.co/bitstreams/c182f18e-a96b-45bc-868b-5f76ec211d9d/downloada452878f51d96fe337d3398bedd49794MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/1a452656-c30c-404d-9a77-062771ab4b60/download0175ea4a2d4caec4bbcc37e300941108MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/319fd097-5c82-4b6f-b746-56066be97e9b/download8a4605be74aa9ea9d79846c1fba20a33MD54TEXTMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.txtMarateb H.R., Farahi M., Rojas M., Mañanas M.A., Farina D._2016.pdf.txtExtracted texttext/plain76847https://repositorio.unbosque.edu.co/bitstreams/541a7da4-0cdd-43dd-bd11-2829b8808749/download34122f33dac819cd55244eda3b0a4f8aMD5620.500.12495/2387oai:repositorio.unbosque.edu.co:20.500.12495/23872024-02-07 11:20:41.86http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=