Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia
We need a better risk stratifcation system for the increasing number of survivors of extreme prematurity sufering the most severe forms of bronchopulmonary dysplasia (BPD). However, there is still a paucity of studies providing scientifc evidence to guide future updates of BPD severity defnitions. O...
- Autores:
-
Nino, Gustavo
Mansoor, Awais
Perez, Geovanny
Arroyo, Maria
Xu Chen, Xilei
Weinstock, Jered
Salka, Kyle
Said, Mariam
Acuña-Cordero, Ranniery
Sossa-Briceño, Monica P.
Rodríguez-Martínez, Carlos E.
Linguraru, Marius George
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/1928
- Palabra clave:
- Recien nacido prematuro
Enfermedades del recién nacido
Displasia broncopulmonar
Riesgo a la salud
- Rights
- License
- Attribution 4.0 International
id |
UNBOSQUE2_bdea8c7f4e9a39076e629b4bf77492dc |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/1928 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
title |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
spellingShingle |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia Recien nacido prematuro Enfermedades del recién nacido Displasia broncopulmonar Riesgo a la salud |
title_short |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
title_full |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
title_fullStr |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
title_full_unstemmed |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
title_sort |
Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasia |
dc.creator.fl_str_mv |
Nino, Gustavo Mansoor, Awais Perez, Geovanny Arroyo, Maria Xu Chen, Xilei Weinstock, Jered Salka, Kyle Said, Mariam Acuña-Cordero, Ranniery Sossa-Briceño, Monica P. Rodríguez-Martínez, Carlos E. Linguraru, Marius George |
dc.contributor.author.none.fl_str_mv |
Nino, Gustavo Mansoor, Awais Perez, Geovanny Arroyo, Maria Xu Chen, Xilei Weinstock, Jered Salka, Kyle Said, Mariam Acuña-Cordero, Ranniery Sossa-Briceño, Monica P. Rodríguez-Martínez, Carlos E. Linguraru, Marius George |
dc.subject.decs.spa.fl_str_mv |
Recien nacido prematuro Enfermedades del recién nacido Displasia broncopulmonar Riesgo a la salud |
topic |
Recien nacido prematuro Enfermedades del recién nacido Displasia broncopulmonar Riesgo a la salud |
description |
We need a better risk stratifcation system for the increasing number of survivors of extreme prematurity sufering the most severe forms of bronchopulmonary dysplasia (BPD). However, there is still a paucity of studies providing scientifc evidence to guide future updates of BPD severity defnitions. Our goal was to validate a new predictive model for BPD severity that incorporates respiratory assessments beyond 36 weeks postmenstrual age (PMA). We hypothesized that this approach improves BPD risk assessment, particularly in extremely premature infants. This is a longitudinal cohort of premature infants (≤32 weeks PMA, n=188; Washington D.C). We performed receiver operating characteristic analysis to defne optimal BPD severity levels using the duration of supplementary O2 as predictor and respiratory hospitalization after discharge as outcome. Internal validation included lung X-ray imaging and phenotypical characterization of BPD severity levels. External validation was conducted in an independent longitudinal cohort of premature infants (≤36 weeks PMA, n=130; Bogota). We found that incorporating the total number of days requiring O2 (without restricting at 36 weeks PMA) improved the prediction of respiratory outcomes according to BPD severity. In addition, we defned a new severity category (level IV) with prolonged exposure to supplemental O2 (≥120 days) that has the highest risk of respiratory hospitalizations after discharge. We confrmed these fndings in our validation cohort using ambulatory determination of O2 requirements. In conclusion, a new predictive model for BPD severity that incorporates respiratory assessments beyond 36 weeks improves risk stratifcation and should be considered when updating current BPD severity defnitions. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-11T19:03:26Z |
dc.date.available.none.fl_str_mv |
2020-02-11T19:03:26Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
artículo |
dc.identifier.issn.none.fl_str_mv |
2045-2322 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/1928 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1038/s41598-019-56355-5 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
identifier_str_mv |
2045-2322 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/1928 https://doi.org/10.1038/s41598-019-56355-5 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Scientific Reports, 2045-2322, 2020, p. 1-10 |
dc.relation.uri.none.fl_str_mv |
https://www.nature.com/articles/s41598-019-56355-5 |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf379 |
dc.rights.creativecommons.none.fl_str_mv |
2020 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf379 2020 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Nature Publishing Group |
dc.publisher.journal.spa.fl_str_mv |
Scientific Reports |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/b2d9bfa9-9bcb-43d1-9240-e3115863e2e9/download https://repositorio.unbosque.edu.co/bitstreams/289e79e6-a1a5-432b-88d7-5599a8fe0353/download https://repositorio.unbosque.edu.co/bitstreams/71ca4475-315b-4dbb-86cc-0ef974d22c97/download https://repositorio.unbosque.edu.co/bitstreams/449d668c-38a2-4ecd-b7da-d85cd22eb7d1/download https://repositorio.unbosque.edu.co/bitstreams/df855c2d-8d8d-42e4-af31-25047a44d288/download |
bitstream.checksum.fl_str_mv |
737164c08335ebd23049100398be7359 0175ea4a2d4caec4bbcc37e300941108 8a4605be74aa9ea9d79846c1fba20a33 c65ec5d0002d480359d83a7bb0b4085e 7c64bc8d552a30ec6b7232e4665d24ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100709312823296 |
spelling |
Nino, GustavoMansoor, AwaisPerez, GeovannyArroyo, MariaXu Chen, XileiWeinstock, JeredSalka, KyleSaid, MariamAcuña-Cordero, RannierySossa-Briceño, Monica P.Rodríguez-Martínez, Carlos E.Linguraru, Marius George2020-02-11T19:03:26Z2020-02-11T19:03:26Z20202045-2322http://hdl.handle.net/20.500.12495/1928https://doi.org/10.1038/s41598-019-56355-5instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengNature Publishing GroupScientific ReportsScientific Reports, 2045-2322, 2020, p. 1-10https://www.nature.com/articles/s41598-019-56355-5Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf3792020http://purl.org/coar/access_right/c_abf2Validation of a new predictive model to improve risk stratifIcation in bronchopulmonary dysplasiaarticleartículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Recien nacido prematuroEnfermedades del recién nacidoDisplasia broncopulmonarRiesgo a la saludWe need a better risk stratifcation system for the increasing number of survivors of extreme prematurity sufering the most severe forms of bronchopulmonary dysplasia (BPD). However, there is still a paucity of studies providing scientifc evidence to guide future updates of BPD severity defnitions. Our goal was to validate a new predictive model for BPD severity that incorporates respiratory assessments beyond 36 weeks postmenstrual age (PMA). We hypothesized that this approach improves BPD risk assessment, particularly in extremely premature infants. This is a longitudinal cohort of premature infants (≤32 weeks PMA, n=188; Washington D.C). We performed receiver operating characteristic analysis to defne optimal BPD severity levels using the duration of supplementary O2 as predictor and respiratory hospitalization after discharge as outcome. Internal validation included lung X-ray imaging and phenotypical characterization of BPD severity levels. External validation was conducted in an independent longitudinal cohort of premature infants (≤36 weeks PMA, n=130; Bogota). We found that incorporating the total number of days requiring O2 (without restricting at 36 weeks PMA) improved the prediction of respiratory outcomes according to BPD severity. In addition, we defned a new severity category (level IV) with prolonged exposure to supplemental O2 (≥120 days) that has the highest risk of respiratory hospitalizations after discharge. We confrmed these fndings in our validation cohort using ambulatory determination of O2 requirements. In conclusion, a new predictive model for BPD severity that incorporates respiratory assessments beyond 36 weeks improves risk stratifcation and should be considered when updating current BPD severity defnitions.ORIGINALNino, Gustavo_2020.pdfNino, Gustavo_2020.pdfapplication/pdf2578109https://repositorio.unbosque.edu.co/bitstreams/b2d9bfa9-9bcb-43d1-9240-e3115863e2e9/download737164c08335ebd23049100398be7359MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/289e79e6-a1a5-432b-88d7-5599a8fe0353/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/71ca4475-315b-4dbb-86cc-0ef974d22c97/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNino, Gustavo_2020.pdf.jpgNino, Gustavo_2020.pdf.jpgIM Thumbnailimage/jpeg9945https://repositorio.unbosque.edu.co/bitstreams/449d668c-38a2-4ecd-b7da-d85cd22eb7d1/downloadc65ec5d0002d480359d83a7bb0b4085eMD54TEXTNino, Gustavo_2020.pdf.txtNino, Gustavo_2020.pdf.txtExtracted texttext/plain45834https://repositorio.unbosque.edu.co/bitstreams/df855c2d-8d8d-42e4-af31-25047a44d288/download7c64bc8d552a30ec6b7232e4665d24ffMD5520.500.12495/1928oai:repositorio.unbosque.edu.co:20.500.12495/19282024-02-06 23:20:34.174http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |