Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA

Los procesos gaussianos (GP) nos proveen de una gran alternativa, independiente del modelo físico, con el fin de obtener información cosmológica relevante a partir de datos observacionales. En la presente tesis, se utilizaron GP para realizar un análisis conjunto a partir de datos cosmológicos como...

Full description

Autores:
Piraneque Tenjica, Johan Stiwer
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2023
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14611
Acceso en línea:
https://hdl.handle.net/20.500.12495/14611
Palabra clave:
Procesos Gaussianos
Energía Oscura
Parámetros Cosmológicos
Simulación de Datos
510
Gaussian Processes
Dark Energy
Cosmological Parameters
Data Simulation
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_b6fcbace874227175b175f7aaf017401
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14611
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
dc.title.translated.none.fl_str_mv ΛCDM cosmology in light of the most recent observational evidence, including a Machine Learning analysis and a prediction with simulated LISA data
title Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
spellingShingle Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
Procesos Gaussianos
Energía Oscura
Parámetros Cosmológicos
Simulación de Datos
510
Gaussian Processes
Dark Energy
Cosmological Parameters
Data Simulation
title_short Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
title_full Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
title_fullStr Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
title_full_unstemmed Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
title_sort Cosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISA
dc.creator.fl_str_mv Piraneque Tenjica, Johan Stiwer
dc.contributor.advisor.none.fl_str_mv Bonilla Rivera, Alexander
dc.contributor.author.none.fl_str_mv Piraneque Tenjica, Johan Stiwer
dc.subject.none.fl_str_mv Procesos Gaussianos
Energía Oscura
Parámetros Cosmológicos
Simulación de Datos
topic Procesos Gaussianos
Energía Oscura
Parámetros Cosmológicos
Simulación de Datos
510
Gaussian Processes
Dark Energy
Cosmological Parameters
Data Simulation
dc.subject.ddc.none.fl_str_mv 510
dc.subject.keywords.none.fl_str_mv Gaussian Processes
Dark Energy
Cosmological Parameters
Data Simulation
description Los procesos gaussianos (GP) nos proveen de una gran alternativa, independiente del modelo físico, con el fin de obtener información cosmológica relevante a partir de datos observacionales. En la presente tesis, se utilizaron GP para realizar un análisis conjunto a partir de datos cosmológicos como Supernova Tipo Ia (SN), Cronómetros Cósmicos (CC), Oscilaciones Acústicas Bariónicas (BAO) y una simulación de puntos de datos como sirenas estándar de ondas gravitacionales (GWs) del proyecto Laser Interferometer Space Antena (LISA) de la Agencia Espacial Europea (ESA), con el fin de restringir los principales parámetros cosmológicos del modelo estándar ΛCDM, tales como la tasa de expansión del universo H₀ y reconstruir algunas propiedades de la energía oscura (DE), la ecuación del parámetro de estado ω, la velocidad del sonido de las perturbaciones de DE c²ₛ y la evolución de la densidad de DE X con el tiempo cosmológico. Se compararon los valores de H₀, la distancia comovil normalizada D(z) y su derivada D'(z) obtenidos con los distintos kernels planteados para el GP, tanto con los datos SN+CC+BAO como con SN+CC+BAO+LISA. Del análisis conjunto SN+CC+BAO+LISA, se obtuvo que H₀ está restringido a una precisión de 1% con H₀ = 69.035 ± 1.151 km s⁻¹ Mpc⁻¹. En lo referente a los parámetros DE, para el corrimiento al rojo z=0 se encontraron los valores de ω(z = 0)=-0.981 ± 0.062 y c²ₛ(z=0)=-0.275 ± 0.066. Además, se halló c²ₛ < 0 en ∼2σ CL con desplazamientos al rojo altos.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12
dc.date.accessioned.none.fl_str_mv 2025-06-09T20:49:38Z
dc.date.available.none.fl_str_mv 2025-06-09T20:49:38Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14611
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14611
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009, 1009(1998).9805201
[2] S. Perlmutter et al. [Supernova Cosmology Project], Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565, (1999). 9812133
[3] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155
[4] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61, 1 (1989).
[5] T. Padmanabhan, Cosmological constant: The Weight of the vacuum, Phys. Rept. 380, 235 (2003). 0212290
[6] R. Bousso, TASI Lectures on the Cosmological Constant, Gen. Rel. Grav. 40, 607 (2008). 0708.423
[7] D. Huterer, D.L. Shafer, Dark energy two decades after: Observables, probes, consistency tests, Rep. Prog. Phys. 81, 016901 (2017). 1709.01091
[8] S. Capozziello, R. D’Agostino, O. Luongo, Extended Gravity Cosmography, Int. J Mod. Phys. D, 28, 1930016 (2019). 1904.01427
[9] M. Ishak, Testing General Relativity in Cosmology, Living Rev. Rel. 1, 22 (2019). 1806.10122
[10] N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmo- logical parameters, 1807.06209
[11] A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1 % Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, 1 (2019). 1903.07603
[12] S. Birrer et al., TDCOSMO IV: Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles, 2007.02941
[13] W.L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, 1907.05922
[14] L. Verde, T. Treu, A.G. Riess, Tensions between the early and late Universe, Nature Astronomy 3, 891 (2019). 1907.10625
[15] V. Poulin, T.L. Smith, T. Karwal, M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019). 1811.04083
[16] E. M ̈ortsell, S. Dhawan, Does the Hubble constant tension call for new physics?, J. Cosmol. Astrop. Phys. 09, 025 (2018). 1801.07260
[17] R. Arjona, S. Nesseris, Hints of dark energy anisotropic stress using Machine Learning, 2001.11420
[18] C. Cattoen, M. Visser, Cosmographic Hubble fits to the supernova data, Phys. Rev. D 78, 063501 (2008). 0809.0537
[19] S. Capozziello, R. D’Agostino, O. Luongo, Cosmographic analysis with Chebyshev polynomials, Mon. Not. Roy. Astron. Soc. 476, 3924 (2018). 1712.04380
[20] C. Cattoen, M. Visser, The Hubble series: Convergence properties and redshift variables, Class. Quant. Grav. 24, 5985 (2007). 0710.1887
[21] E.M. Barboza Jr., F. Carvalho, A kinematic method to probe cosmic acceleration, Phys. Lett. B 715, 19 (2012).
[22] Allahyari, Alireza and Nunes, Rafael C. and Mota, David F., No slip gravity in light of LISA standard sirens, Mon. Not. Roy. Astron. Soc. (2022). 2110.07634
[23] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009,1009(1998).9805201
[24] M. Seikel, C. Clarkson, M. Smith, Reconstruction of dark energy and expansion dynamics using Gaussian processes, J. Cosmol. Astrop. Phys. 07, 036 (2012). 1204.2832
[25] M. Seikel, C. Clarkson, Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae, 1311.6678
[26] A. Shafieloo, A.G. Kim, E.V. Linder, Gaussian process cosmography, Phys. Rev. D 85, 123530 (2012). 1204.2272
[27] R.G. Cai, N. Tamanini, T. Yang, Reconstructing the dark sector interaction with LISA, J. Cosmol. Astrop. Phys. 05, 031 (2017). 1703.07323
[28] M.J. Zhang, H. Li, Gaussian processes reconstruction of dark energy from observational data, Eur. Phys. J. C 78, 460 (2018). 1806.02981
[29] Ade, P. A. R. et al. (2016a). Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13.
[30] Hogg, D. W. (1999). Distance measures in cosmology.
[31] Vagnozzi, Sunny (2020). Overview of Physical Cosmology. Springer International Publishing, Pg. 37–63.
[32] Etherington, I. M. H. (1933). On the Definition of Distance in General Relativity. Philosophical Magazine, 15.
[33] E. Di Valentino et al., “Cosmology Intertwined II: The Hubble Constant Tension,” arXiv:2008.11284 [astro-ph.CO].
[34] A. De Gouvˆea, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, “Fundamental physics with the diffuse supernova background neutrinos,” Phys. Rev. D 102 (2020), 123012 doi:10.1103/PhysRevD.102.123012 [arXiv:2007.13748 [hep-ph]].
[35] Hirata, K. and 22 colleagues 1987. Observation of a neutrino burst from the supernova SN1987A. Physical Review Letters 58, 1490–1493. doi:10.1103/PhysRevLett.58.1490
[36] Sandage, A. (1962). The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:319.
[37] McVittie, G. C. (1962). Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:334.
[38] Piattella, O. F. and Giani, L. (2017). Redshift drift of gravitational lensing. Phys. Rev., D95(10):101301.
[39] Avelino, A. and Kirshner, R. P. (2016). The dimensionless age of the Universe: a riddle for our time. Astrophys. J., 828(1):35.
[40] Riess, A. G. et al. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J., 116:1009-1038.
[41] Perlmutter, S. et al. (1999). Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J., 517:565–586.
[42] M. Moresco et al., A 6% measurement of the hubble parameter at z ∼ 0,45: direct evidence of the epoch of cosmic re-acceleration, J. Cosmol. Astrop. Phys. 05, 014 (2016). 1601.01701
[43] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155
[44] G.-B. Zhao et al., The clustering of the sdss-iv extended baryon oscillation spectroscopic survey dr14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights, Mon. Not. Roy. Astron. Soc. 482, 3497 (2019). 1801.03043
[45] H. du Mas des Bourboux et al., The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations with Lyman-α forests, 2007.08995
[46] H. du Mas des Bourboux et al., Baryon acoustic oscillations from the complete sdss-iii lyα-quasar cross-correlation function at z = 2,4, Astron. Astrophys. 608, A130 (2017). 1708.02225
[47] D. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018). 1710.00845
[48] A.G. Riess et al., Type Ia Supernova Distances at Redshift > 1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate, Astrophys. J. 853, 126 (2018). 1710.00844
[49] B.S. Haridasu, V.V. Lukovi´ c, M. Moresco, N. Vittorio, An improved model-independent assessment of the late-time cosmic expansion, J. Cosmol. Astrop. Phys. 10, 015 (2018). 1805.03595
[50] V. Sahni, A. Shafieloo, A.A. Starobinsky, Two new diagnostics of dark energy, Phys. Rev. D 78, 103502 (2008). 0807.3548
[51] T.M.C. Abbott et al., (DES Collaboration), Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data, Mon. Not. Roy. Astron. Soc. 480 3 (2018). 1711.00403
[52] O.H.E. Philcox, M.M. Ivanov, M. Simonovic, M. Zaldarriaga, Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0, J. Cosmol. Astrop. Phys. 05, 032 (2020). 2002.04035
[53] K.C. Wong et al., (H0LiCOW Collaboration), H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes, 1907.04869
[54] T. Delubac et al. [BOSS], Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015). 1404.1801
[55] É. Aubourg et al. [BOSS], Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92, 123516 (2015). 1411.1074
[56] B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Reconstruction of a scalar tensor theory of gravity in an accelerating universe, Phys. Rev. Lett. 85, 2236 (2000). 0001066
[57] V. Sahni, A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys. D 15, 2105 (2006). 0610026
[58] A.D. Dolgov, Field Model With A Dynamic Cancellation Of The Cosmological Constant, JETP Lett. 41, 345 (1985).
[59] P. Brax, C. van de Bruck, Cosmology and brane worlds: A Review, Class. Quant. Grav. 20, R201 (2003). 0303095
[60] Ö. Akarsu, N. Katırcı, S. Kumar, Cosmic acceleration in a dust only universe via energy-momentum powered gravity, Phys. Rev. D 97, 024011 (2018). 1709.02367
[61] Ö. Akarsu, N. Katirci, S. Kumar, R. C. Nunes, B. Ozturk, S. Sharma, Rastall gravity extension of the standard ΛCDM model: Theoretical features and observational constraints, 2004.04074
[62] Ö. Akarsu, J.D. Barrow, L.A. Escamilla, J.A. Vazquez, Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant, Phys. Rev. D 101, 063528 (2020). 1912.08751
[63] L. Visinelli, S. Vagnozzi, U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11, 1035 (2019). 1907.07953
[64] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, the MIT Press, (2006). ISBN 0-262-18253-X
[65] A. Bonilla et al., Measurements of H0 and reconstruction of the dark energy properties from a model-independent joint analysis, Eur. Phys. J. C 81, 2 (2021). 2011.07140
[66] J.M. Tejeiro., Fundamentos de la Relatividad General, (2004).
[67] Friedmann, A. (1922). Ueber die Kruemmung des Raumes . Z. Phys., 10:377-386.
[68] Friedmann, A. (1924). Ueber die Moeglichkeit einer Welt mit konstanter negativer Kruemmung des Raumes. Z. Phys., 21:326–332.
[69] Robertson, H. P. (1935). Kinematics and World-Structure. Astrophys. J., 82:284.
[70] Robertson, H. P. (1936). Kinematics and World-Structure III. Astrophys. J., 83:257.
[71] Walker, A. G. (1937). On milne’s theory of world-structure. Proceedings of the London Mathematical Society, 2(1):90–127.
[72] Lemaitre, G. (1931). The Expanding Universe. Mon. Not. Roy. Astron. Soc., 91:490–501.
[73] Lemaitre, G. (1997). The expanding universe. Gen. Rel. Grav., 29:641–680.
[74] Schutz, B. F. (1985). A First Course In General Relativity. Cambridge, Uk: Univ. Pr.
[75] Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley- New York.
[76] Maartens, R. (1996). Causal thermodynamics in relativity.
[77] Wu, K. K. S., Lahav, O., and Rees, M. J. (1999). The large-scale smoothness of the Universe. Nature, 397:225–230. [,19(1998)].
[78] Sarkar, S. and Pandey, B. (2016). An information theory based search for homogeneity on the largest accessible scale. Mon. Not. Roy. Astron. Soc., 463(1):L12–L16
[79] Giblin, J. T., Mertens, J. B., and Starkman, G. D. (2016). Observable Deviations from Homogeneity in an Inhomogeneous Universe. Astrophys. J., 833(2):247.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Matemáticas
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/4b147c35-ffc1-4675-b46b-5528130b75e7/download
https://repositorio.unbosque.edu.co/bitstreams/69df5280-7a10-4871-a543-50e1fb0367f9/download
https://repositorio.unbosque.edu.co/bitstreams/423c5968-e989-408f-b8ad-55413375bdd5/download
https://repositorio.unbosque.edu.co/bitstreams/5d5814c2-eb38-4381-8acd-9bd24706117b/download
https://repositorio.unbosque.edu.co/bitstreams/93beb426-5564-4f91-9a71-35edfe72177e/download
https://repositorio.unbosque.edu.co/bitstreams/041e77ce-f193-49cf-8225-5f9829bc8d23/download
bitstream.checksum.fl_str_mv 9b12a049f4ea1eb13a95208475ccc2f9
17cc15b951e7cc6b3728a574117320f9
9a26a6d2d45a98d77af29a7e69f99408
3b6ce8e9e36c89875e8cf39962fe8920
d5161f6581674b6342ed43c0b4c7a7aa
d8572bf448fe02297f74a6602b4fc7af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1836752121383354368
spelling Bonilla Rivera, AlexanderPiraneque Tenjica, Johan Stiwer2025-06-09T20:49:38Z2025-06-09T20:49:38Z2023-12https://hdl.handle.net/20.500.12495/14611instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLos procesos gaussianos (GP) nos proveen de una gran alternativa, independiente del modelo físico, con el fin de obtener información cosmológica relevante a partir de datos observacionales. En la presente tesis, se utilizaron GP para realizar un análisis conjunto a partir de datos cosmológicos como Supernova Tipo Ia (SN), Cronómetros Cósmicos (CC), Oscilaciones Acústicas Bariónicas (BAO) y una simulación de puntos de datos como sirenas estándar de ondas gravitacionales (GWs) del proyecto Laser Interferometer Space Antena (LISA) de la Agencia Espacial Europea (ESA), con el fin de restringir los principales parámetros cosmológicos del modelo estándar ΛCDM, tales como la tasa de expansión del universo H₀ y reconstruir algunas propiedades de la energía oscura (DE), la ecuación del parámetro de estado ω, la velocidad del sonido de las perturbaciones de DE c²ₛ y la evolución de la densidad de DE X con el tiempo cosmológico. Se compararon los valores de H₀, la distancia comovil normalizada D(z) y su derivada D'(z) obtenidos con los distintos kernels planteados para el GP, tanto con los datos SN+CC+BAO como con SN+CC+BAO+LISA. Del análisis conjunto SN+CC+BAO+LISA, se obtuvo que H₀ está restringido a una precisión de 1% con H₀ = 69.035 ± 1.151 km s⁻¹ Mpc⁻¹. En lo referente a los parámetros DE, para el corrimiento al rojo z=0 se encontraron los valores de ω(z = 0)=-0.981 ± 0.062 y c²ₛ(z=0)=-0.275 ± 0.066. Además, se halló c²ₛ < 0 en ∼2σ CL con desplazamientos al rojo altos.MatemáticoPregradoGaussian processes (GP) provide us with a great alternative, independent of the physical model, in order to obtain relevant cosmological information from observational data. In the present thesis, GPs were used to perform a joint analysis from cosmological data such as Type Ia Supernova (SN), Cosmic Chronometers (CC), Baryon Acoustic Oscillations (BAO) and a simulation of data points such as standard wave sirens. gravitational forces (GWs) of the Laser Interferometer Space Antenna (LISA) project of the European Space Agency (ESA), in order to constrain the main cosmological parameters of the standard model ΛCDM, such as the expansion rate of the universe H₀ and reconstruct some properties of dark energy (DE), the equation of the state parameter ω, the speed of sound from DE perturbations c²ₛ and the evolution of the DE density X with the cosmological time. The values of H₀, the normalized comove distance D(z) and its derivative D'(z) obtained with the different kernels proposed for the GP were compared, both with the SN+CC+BAO data and with SN+CC+BAO+LISA. From the joint SN+CC+BAO+LISA analysis, it was obtained that H₀ is restricted to a precision of 1% with H₀ = 69.035 ± 1.151 km s⁻¹ Mpc⁻¹. Regarding the DE parameters, for the redshift z=0 the values of ω(z = 0)=-0.981 ± 0.062 and c²ₛ(z=0)=-0.275 ± 0.066 were found. Furthermore, c²ₛ < 0 was found in ∼2σ CL at high redshifts.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Procesos GaussianosEnergía OscuraParámetros CosmológicosSimulación de Datos510Gaussian ProcessesDark EnergyCosmological ParametersData SimulationCosmología ΛCDM a la luz de las más recientes pruebas observacionales, incluyendo un análisis de Machine Learnig y una predicción con datos simulados de LISAΛCDM cosmology in light of the most recent observational evidence, including a Machine Learning analysis and a prediction with simulated LISA dataMatemáticasUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009, 1009(1998).9805201[2] S. Perlmutter et al. [Supernova Cosmology Project], Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J. 517, 565, (1999). 9812133[3] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155[4] S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61, 1 (1989).[5] T. Padmanabhan, Cosmological constant: The Weight of the vacuum, Phys. Rept. 380, 235 (2003). 0212290[6] R. Bousso, TASI Lectures on the Cosmological Constant, Gen. Rel. Grav. 40, 607 (2008). 0708.423[7] D. Huterer, D.L. Shafer, Dark energy two decades after: Observables, probes, consistency tests, Rep. Prog. Phys. 81, 016901 (2017). 1709.01091[8] S. Capozziello, R. D’Agostino, O. Luongo, Extended Gravity Cosmography, Int. J Mod. Phys. D, 28, 1930016 (2019). 1904.01427[9] M. Ishak, Testing General Relativity in Cosmology, Living Rev. Rel. 1, 22 (2019). 1806.10122[10] N. Aghanim et al. (Planck Collaboration), Planck 2018 results. VI. Cosmo- logical parameters, 1807.06209[11] A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1 % Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, 1 (2019). 1903.07603[12] S. Birrer et al., TDCOSMO IV: Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles, 2007.02941[13] W.L. Freedman et al., The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch, 1907.05922[14] L. Verde, T. Treu, A.G. Riess, Tensions between the early and late Universe, Nature Astronomy 3, 891 (2019). 1907.10625[15] V. Poulin, T.L. Smith, T. Karwal, M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019). 1811.04083[16] E. M ̈ortsell, S. Dhawan, Does the Hubble constant tension call for new physics?, J. Cosmol. Astrop. Phys. 09, 025 (2018). 1801.07260[17] R. Arjona, S. Nesseris, Hints of dark energy anisotropic stress using Machine Learning, 2001.11420[18] C. Cattoen, M. Visser, Cosmographic Hubble fits to the supernova data, Phys. Rev. D 78, 063501 (2008). 0809.0537[19] S. Capozziello, R. D’Agostino, O. Luongo, Cosmographic analysis with Chebyshev polynomials, Mon. Not. Roy. Astron. Soc. 476, 3924 (2018). 1712.04380[20] C. Cattoen, M. Visser, The Hubble series: Convergence properties and redshift variables, Class. Quant. Grav. 24, 5985 (2007). 0710.1887[21] E.M. Barboza Jr., F. Carvalho, A kinematic method to probe cosmic acceleration, Phys. Lett. B 715, 19 (2012).[22] Allahyari, Alireza and Nunes, Rafael C. and Mota, David F., No slip gravity in light of LISA standard sirens, Mon. Not. Roy. Astron. Soc. (2022). 2110.07634[23] A.G. Riess, et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.1161009,1009(1998).9805201[24] M. Seikel, C. Clarkson, M. Smith, Reconstruction of dark energy and expansion dynamics using Gaussian processes, J. Cosmol. Astrop. Phys. 07, 036 (2012). 1204.2832[25] M. Seikel, C. Clarkson, Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae, 1311.6678[26] A. Shafieloo, A.G. Kim, E.V. Linder, Gaussian process cosmography, Phys. Rev. D 85, 123530 (2012). 1204.2272[27] R.G. Cai, N. Tamanini, T. Yang, Reconstructing the dark sector interaction with LISA, J. Cosmol. Astrop. Phys. 05, 031 (2017). 1703.07323[28] M.J. Zhang, H. Li, Gaussian processes reconstruction of dark energy from observational data, Eur. Phys. J. C 78, 460 (2018). 1806.02981[29] Ade, P. A. R. et al. (2016a). Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys., 594:A13.[30] Hogg, D. W. (1999). Distance measures in cosmology.[31] Vagnozzi, Sunny (2020). Overview of Physical Cosmology. Springer International Publishing, Pg. 37–63.[32] Etherington, I. M. H. (1933). On the Definition of Distance in General Relativity. Philosophical Magazine, 15.[33] E. Di Valentino et al., “Cosmology Intertwined II: The Hubble Constant Tension,” arXiv:2008.11284 [astro-ph.CO].[34] A. De Gouvˆea, I. Martinez-Soler, Y. F. Perez-Gonzalez and M. Sen, “Fundamental physics with the diffuse supernova background neutrinos,” Phys. Rev. D 102 (2020), 123012 doi:10.1103/PhysRevD.102.123012 [arXiv:2007.13748 [hep-ph]].[35] Hirata, K. and 22 colleagues 1987. Observation of a neutrino burst from the supernova SN1987A. Physical Review Letters 58, 1490–1493. doi:10.1103/PhysRevLett.58.1490[36] Sandage, A. (1962). The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:319.[37] McVittie, G. C. (1962). Appendix to The Change of Redshift and Apparent Luminosity of Galaxies due to the Deceleration of Selected Expanding Universes. The Astrophysical Journal, 136:334.[38] Piattella, O. F. and Giani, L. (2017). Redshift drift of gravitational lensing. Phys. Rev., D95(10):101301.[39] Avelino, A. and Kirshner, R. P. (2016). The dimensionless age of the Universe: a riddle for our time. Astrophys. J., 828(1):35.[40] Riess, A. G. et al. (1998). Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J., 116:1009-1038.[41] Perlmutter, S. et al. (1999). Measurements of Omega and Lambda from 42 High-Redshift Supernovae. Astrophys. J., 517:565–586.[42] M. Moresco et al., A 6% measurement of the hubble parameter at z ∼ 0,45: direct evidence of the epoch of cosmic re-acceleration, J. Cosmol. Astrop. Phys. 05, 014 (2016). 1601.01701[43] S. Alam et al. [BOSS], The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). 1607.03155[44] G.-B. Zhao et al., The clustering of the sdss-iv extended baryon oscillation spectroscopic survey dr14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights, Mon. Not. Roy. Astron. Soc. 482, 3497 (2019). 1801.03043[45] H. du Mas des Bourboux et al., The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon acoustic oscillations with Lyman-α forests, 2007.08995[46] H. du Mas des Bourboux et al., Baryon acoustic oscillations from the complete sdss-iii lyα-quasar cross-correlation function at z = 2,4, Astron. Astrophys. 608, A130 (2017). 1708.02225[47] D. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018). 1710.00845[48] A.G. Riess et al., Type Ia Supernova Distances at Redshift > 1.5 from the Hubble Space Telescope Multi-cycle Treasury Programs: The Early Expansion Rate, Astrophys. J. 853, 126 (2018). 1710.00844[49] B.S. Haridasu, V.V. Lukovi´ c, M. Moresco, N. Vittorio, An improved model-independent assessment of the late-time cosmic expansion, J. Cosmol. Astrop. Phys. 10, 015 (2018). 1805.03595[50] V. Sahni, A. Shafieloo, A.A. Starobinsky, Two new diagnostics of dark energy, Phys. Rev. D 78, 103502 (2008). 0807.3548[51] T.M.C. Abbott et al., (DES Collaboration), Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data, Mon. Not. Roy. Astron. Soc. 480 3 (2018). 1711.00403[52] O.H.E. Philcox, M.M. Ivanov, M. Simonovic, M. Zaldarriaga, Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6% CMB-independent constraint on H0, J. Cosmol. Astrop. Phys. 05, 032 (2020). 2002.04035[53] K.C. Wong et al., (H0LiCOW Collaboration), H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes, 1907.04869[54] T. Delubac et al. [BOSS], Baryon acoustic oscillations in the Lyα forest of BOSS DR11 quasars, Astron. Astrophys. 574, A59 (2015). 1404.1801[55] É. Aubourg et al. [BOSS], Cosmological implications of baryon acoustic oscillation measurements, Phys. Rev. D 92, 123516 (2015). 1411.1074[56] B. Boisseau, G. Esposito-Farese, D. Polarski, A.A. Starobinsky, Reconstruction of a scalar tensor theory of gravity in an accelerating universe, Phys. Rev. Lett. 85, 2236 (2000). 0001066[57] V. Sahni, A. Starobinsky, Reconstructing Dark Energy, Int. J. Mod. Phys. D 15, 2105 (2006). 0610026[58] A.D. Dolgov, Field Model With A Dynamic Cancellation Of The Cosmological Constant, JETP Lett. 41, 345 (1985).[59] P. Brax, C. van de Bruck, Cosmology and brane worlds: A Review, Class. Quant. Grav. 20, R201 (2003). 0303095[60] Ö. Akarsu, N. Katırcı, S. Kumar, Cosmic acceleration in a dust only universe via energy-momentum powered gravity, Phys. Rev. D 97, 024011 (2018). 1709.02367[61] Ö. Akarsu, N. Katirci, S. Kumar, R. C. Nunes, B. Ozturk, S. Sharma, Rastall gravity extension of the standard ΛCDM model: Theoretical features and observational constraints, 2004.04074[62] Ö. Akarsu, J.D. Barrow, L.A. Escamilla, J.A. Vazquez, Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant, Phys. Rev. D 101, 063528 (2020). 1912.08751[63] L. Visinelli, S. Vagnozzi, U. Danielsson, Revisiting a negative cosmological constant from low-redshift data, Symmetry 11, 1035 (2019). 1907.07953[64] C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning, the MIT Press, (2006). ISBN 0-262-18253-X[65] A. Bonilla et al., Measurements of H0 and reconstruction of the dark energy properties from a model-independent joint analysis, Eur. Phys. J. C 81, 2 (2021). 2011.07140[66] J.M. Tejeiro., Fundamentos de la Relatividad General, (2004).[67] Friedmann, A. (1922). Ueber die Kruemmung des Raumes . Z. Phys., 10:377-386.[68] Friedmann, A. (1924). Ueber die Moeglichkeit einer Welt mit konstanter negativer Kruemmung des Raumes. Z. Phys., 21:326–332.[69] Robertson, H. P. (1935). Kinematics and World-Structure. Astrophys. J., 82:284.[70] Robertson, H. P. (1936). Kinematics and World-Structure III. Astrophys. J., 83:257.[71] Walker, A. G. (1937). On milne’s theory of world-structure. Proceedings of the London Mathematical Society, 2(1):90–127.[72] Lemaitre, G. (1931). The Expanding Universe. Mon. Not. Roy. Astron. Soc., 91:490–501.[73] Lemaitre, G. (1997). The expanding universe. Gen. Rel. Grav., 29:641–680.[74] Schutz, B. F. (1985). A First Course In General Relativity. Cambridge, Uk: Univ. Pr.[75] Weinberg, S. (1972). Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley- New York.[76] Maartens, R. (1996). Causal thermodynamics in relativity.[77] Wu, K. K. S., Lahav, O., and Rees, M. J. (1999). The large-scale smoothness of the Universe. Nature, 397:225–230. [,19(1998)].[78] Sarkar, S. and Pandey, B. (2016). An information theory based search for homogeneity on the largest accessible scale. Mon. Not. Roy. Astron. Soc., 463(1):L12–L16[79] Giblin, J. T., Mertens, J. B., and Starkman, G. D. (2016). Observable Deviations from Homogeneity in an Inhomogeneous Universe. Astrophys. J., 833(2):247.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf3133930https://repositorio.unbosque.edu.co/bitstreams/4b147c35-ffc1-4675-b46b-5528130b75e7/download9b12a049f4ea1eb13a95208475ccc2f9MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/69df5280-7a10-4871-a543-50e1fb0367f9/download17cc15b951e7cc6b3728a574117320f9MD55Carta de autorizacion.pdfapplication/pdf423696https://repositorio.unbosque.edu.co/bitstreams/423c5968-e989-408f-b8ad-55413375bdd5/download9a26a6d2d45a98d77af29a7e69f99408MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/5d5814c2-eb38-4381-8acd-9bd24706117b/download3b6ce8e9e36c89875e8cf39962fe8920MD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102838https://repositorio.unbosque.edu.co/bitstreams/93beb426-5564-4f91-9a71-35edfe72177e/downloadd5161f6581674b6342ed43c0b4c7a7aaMD58THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3831https://repositorio.unbosque.edu.co/bitstreams/041e77ce-f193-49cf-8225-5f9829bc8d23/downloadd8572bf448fe02297f74a6602b4fc7afMD5920.500.12495/14611oai:repositorio.unbosque.edu.co:20.500.12495/146112025-06-10 05:04:46.383http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=