Modelamiento molecular de análogos al fármaco fluoxetina que actúa como inhibidor selectivo de recaptación de serotonina (ISRS) mediante relaciones cuantitativas estructura - actividad (QSAR)

La depresión es considerada una de las enfermedades más importantes a nivel mundial en cuanto a trastornos mentales, ya que en los últimos años se ha evidenciado un alto crecimiento en sus cifras de afectación. (OMS, 2018) Por esta razón, se crean fármacos antidepresivos con el fin de mitigar los ef...

Full description

Autores:
Naranjo Romero, Juan Pablo
Naranjo Romero, Juan Pablo
Salcedo Villadiego, Carlos Andrés
Salcedo Villadiego, Carlos Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/2580
Acceso en línea:
http://hdl.handle.net/20.500.12495/2580
https://repositorio.unbosque.edu.co
Palabra clave:
ISRS
QSAR
Docking molecular
Depresión
610.28
Fluoxetina
Serotonina
Antidepresivos
SSRIs
QSAR
Molecular docking
Depression
Rights
openAccess
License
Acceso abierto
Description
Summary:La depresión es considerada una de las enfermedades más importantes a nivel mundial en cuanto a trastornos mentales, ya que en los últimos años se ha evidenciado un alto crecimiento en sus cifras de afectación. (OMS, 2018) Por esta razón, se crean fármacos antidepresivos con el fin de mitigar los efectos que causa este trastorno; sin embargo, su efectividad en todos sus aspectos no es la suficiente generando así poca eficiencia y una gran cantidad de efectos secundarios. De aquí se da la creación de nuevos fármacos, en este caso antidepresivos de la clase ISRS (inhibidores selectivos de la recaptación de la Serotonina), los cuales buscan generar menos efectos secundarios y cómo su nombre lo dice, tener mayor selectividad para la recaptación de Serotonina. A pesar de esto, la creación de nuevos fármacos requiere una gran cantidad de gastos y de tiempo; requiriendo así de manera análoga, no solo la creación de nuevos fármacos, sino también la invención de nuevas metodologías para este proceso. Para esta investigación se utilizó la metodología QSAR, la cual tiene el fin último de diseñar teóricamente posibles futuros nuevos fármacos, a partir de la unión de conjuntos de técnicas computacionales; con el objetivo de hallar, un análogo de la clase ISRS el cual presente potencialmente una mayor afinidad por el sitio activo de SERT, proteína recaptadora de Serotonina. (Lozano & Scior, 2012) De aquí, se siguió todo el proceso que requería la metodología; la cual contempla un proceso de virtual screening y uno de machine learning; considerando diferentes técnicas in sílico de modelado molecular, datos de actividad biológica, propiedades fisicoquímicas, estadística y bioinformática; incorporadas entre en si para la creación teórica del nuevo fármaco de la clase ISRS con potencial mayor afinidad por su sitio de interacción.