Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D
The development of tissue engineering products has been boosted by advances in the research of new materials for the fabrication of these products, especially in the context of 3D bioprinting. Given the relevance of structures such as scaffolds and implants, it is crucial to consider several propert...
- Autores:
-
Alvarado Solano, Nikoll Ximena
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2024
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/13270
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/13270
- Palabra clave:
- Reología
Ingeniería de tejidos
Bioimpresión 3D
Biotintas
Viscosidad
Viscoelasticidad
615.19
Rheology
Tissue engineering
3D bioprinting
Bioinks
Viscosity
Viscoelasticity
- Rights
- License
- Acceso abierto
id |
UNBOSQUE2_b2da19062a9893a89c65dadc45d8a427 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/13270 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
dc.title.translated.none.fl_str_mv |
Importance of rheological properties in the design of 3D bioprinting-based tissue engineering products |
title |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
spellingShingle |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D Reología Ingeniería de tejidos Bioimpresión 3D Biotintas Viscosidad Viscoelasticidad 615.19 Rheology Tissue engineering 3D bioprinting Bioinks Viscosity Viscoelasticity |
title_short |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
title_full |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
title_fullStr |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
title_full_unstemmed |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
title_sort |
Importancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3D |
dc.creator.fl_str_mv |
Alvarado Solano, Nikoll Ximena |
dc.contributor.advisor.none.fl_str_mv |
Jiménez Cruz , Ronald Andres |
dc.contributor.author.none.fl_str_mv |
Alvarado Solano, Nikoll Ximena |
dc.subject.none.fl_str_mv |
Reología Ingeniería de tejidos Bioimpresión 3D Biotintas Viscosidad Viscoelasticidad |
topic |
Reología Ingeniería de tejidos Bioimpresión 3D Biotintas Viscosidad Viscoelasticidad 615.19 Rheology Tissue engineering 3D bioprinting Bioinks Viscosity Viscoelasticity |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Rheology Tissue engineering 3D bioprinting Bioinks Viscosity Viscoelasticity |
description |
The development of tissue engineering products has been boosted by advances in the research of new materials for the fabrication of these products, especially in the context of 3D bioprinting. Given the relevance of structures such as scaffolds and implants, it is crucial to consider several properties involved in their design, especially rheological properties. In the present work, a literature review on the importance of these properties in products manufactured by 3D bioprinting was carried out. It was evidenced that characteristics such as viscosity, viscoelasticity, and storage and loss moduli play a fundamental role in the design, influencing cell viability, extrudability, shape fidelity and the ability to resist loads, reflecting that rheological properties are critical parameters in the effective development of tissue engineering products. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-20T16:11:29Z |
dc.date.available.none.fl_str_mv |
2024-11-20T16:11:29Z |
dc.date.issued.none.fl_str_mv |
2024-11 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/13270 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/13270 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. S. Kumar Parupelli, S. Saudi, N. Bhattarai y S. Desai, “3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications”, Int. J. Bioprinting, vol. 9, núm. 6, p. 0196, jul. 2023, doi: 10.36922/ijb.0196 2. A. Indurkar, P. Bangde, M. Gore, A. K. Agrawal, R. Jain y P. Dandekar, “Fabrication of guar gum-gelatin scaffold for soft tissue engineering”, Carbohydrate Technologies and Applications, vol. 1, p. 100006, dic. 2020, doi: 10.1016/j.carpta.2020.100006. 3. B. Bindi, A. Perioli, P. Melo, C. Mattu y A. M. Ferreira, “Bioinspired Collagen/Hyaluronic Acid/Fibrin-Based Hydrogels for Soft Tissue Engineering: Design, Synthesis, and In Vitro Characterization”, J. Functional Biomaterials, vol. 14, núm. 10, p. 495, oct. 2023, doi: 10.3390/jfb14100495 4. A. Naylor, A. Dove, y P. Smith, "Implant 4D Medicine limited (T/A 4D Biomaterials)," U.S. Patent US2023381379A1, Nov. 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/073460431/publication/US2023381379A1?q=US20230381379 5. V. Varanasi, A. Ilyas, P. Kramer, T. Azimale, P. Aswath y T. Cebe, “In Vivo Live 3D Printing of Regenerative Bone Healing Scaffolds for Rapid Fracture Healing”, U.S. Patent US2020055302A1, 2020. Disponible en: https://worldwide.espacenet.com/patent/search/family/058719942/publication/US2020055302A1?q=US20200055302 6. K. Pfisterer, L. E. Shaw, D. Symmank y W. Weninger, “The Extracellular Matrix in Skin Inflammation and Infection”, Frontiers Cell Developmental Biology., vol. 9, jul. 2021, doi: 10.3389/fcell.2021.682414. 7. R. Sharma, R. Kirsch, K. P. Valente, M. R. Perez y S. M. Willerth, “Physical and Mechanical Characterization of Fibrin-Based Bioprinted Constructs Containing Drug-Releasing Microspheres for Neural Tissue Engineering Applications”, Processes, vol. 9, núm. 7, p. 1205, jul. 2021, doi: 10.3390/pr9071205. 8. O. Chaudhuri, J. Cooper-White, P. A. Janmey, D. J. Mooney y V. B. Shenoy, “Effects of extracellular matrix viscoelasticity on cellular behaviour”, Nature,vol. 584, núm. 7822, pp. 535–546, ago. 2020, doi:10.1038/s41586-020-2612-2. 9. M. E. Cooke y D. H. Rosenzweig, “The rheology of direct and suspended extrusion bioprinting”, APL Bioeng., vol. 5, núm. 1, mar. 2021, doi: 10.1063/5.0031475. 10. D. I. Wilson, “What is rheology?”, Eye (Lond), vol. 32, núm. 2, pp. 179–183, feb. 2018, doi: 10.1038/eye.2017.267. 11. X. Zhang et al., “Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel”, Biomacromolecules, vol. 21, núm. 5, pp. 1875–1885, may 2020, doi: 10.1021/acs.biomac.9b01745. 12. I. Noh, N. Kim, H. N. Tran, J. Lee y C. Lee, “3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering”, Biomaterials Res.,vol. 23, núm. 1, dic. 2019, doi:10.1186/s40824-018-0152-8. 13. S. Vanaei, M. S. Parizi, S. Vanaei, F. Salemizadehparizi, y H. R. Vanaei, “An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application”, Engineered Regeneration, vol. 2, pp. 1–18, 2021, doi: 10.1016/j.engreg.2020.12.001. 14. S. Zhang et al., “Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle”, Micromachines (Basel), vol. 11, núm. 7, p. 681, jul. 2020, doi: 10.3390/mi11070681. 15. A. Hernández-Sosa et al., “Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing”, Polymers (Basel), vol. 14, núm. 11, p. 2229, may 2022, doi: 10.3390/polym14112229. 16. Y. Delkash et al., “Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications”, J. Functional Biomaterials, vol. 12, núm. 3, p. 45, ago. 2021, doi: 10.3390/jfb12030045. 17. Y. Wang, L. Yang, N. Shao, X. Yang, y X. Zhang, "Injectable anti-heart failure hydrogel having myocardial tissue repair functionality, method for preparing same, and use thereof," World Patent WO2023216099 A1, Nov. 2023. Disponible en: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2023216099A1&KC=A1&FT=D&ND=&date=20231116&DB=&locale=en_EP 18. K. Janosi-Fair, "Immunomodulatory, oral microbiome altering and tissue regenerative oral care compositions and methods of use in the prevention and treatment of periodontal and peri-implant diseases," U.S. Patent US2023270761A1, 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/087762016/publication/US2023270761A1?q=US20230270761 19. D. Myung et al., "Hydrogels for in situ-forming tissue constructs," U.S. Patent US2023263943A1, 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/078374056/publication/US2023263943A1?q=US20230263943 20. R. Changshun, H. Chengshen, H. Nan, T. Lan, y Z. Xinzhou, "Antibacterial sodium alginate tissue engineering scaffold and preparation method therefor and use thereof," World Patent WO2022179255 A1, Sept. 2022. Disponible en: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2022179255A1&KC=A1&FT=D&ND=&date=20220901&DB=&locale=en_EP 21. C. Hauser, S. Alshehri, y H. Susapto, "Scaffolds from self-assembling tetrapeptides support 3D spreading, osteogenic differentiation and angiogenesis of mesenchymal stem cells," U.S. Patent US2022054706A1, 2022. Disponible en: https://worldwide.espacenet.com/patent/search/family/080269262/publication/US2022054706A1?q=pn%3DUS2022054706A1. 22. R. Ramakrishnan, N. Kasoju, R. Raju, R. Geevarghese, A. Gauthaman y A. Bhatt, “Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose-Fibrinogen based Bioink for 3D Bioprinting of Skin Tissue Constructs”, Carbohydrate Polymer Technologies and Applications, vol. 3, p. 100184, jun. 2022, doi:10.1016/j.carpta.2022.100184. 23. K. J. Hogan et al., “Development of Photoreactive Demineralized Bone Matrix 3D-Printing Colloidal Inks for Bone Tissue Engineering”, Regen Biomater, vol. 10, ene. 2023, doi: 10.1093/rb/rbad090. 24. B. A. Frost, B. P. Sutliff, P. Thayer, M. J. Bortner y E. J. Foster, “Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting”, Frontiers Bioeng. Biotechnol., vol. 7, oct. 2019, doi: 10.3389/fbioe.2019.00280. 25. H. Baniasadi et al., “High-resolution 3D printing of xanthan gum/nanocellulose bio-inks”, Int. J. Biol. Macromolecules, , vol. 209, pp. 2020–2031, jun. 2022, doi: 10.1016/j.ijbiomac.2022.04.183. 26. G. Kaya y F. Oytun, “Rheological Properties of İnjectable Hyaluronic Acid Hydrogels for Soft Tissue Engineering Applications”, Biointerface Res Appl Chem, vol. 11, núm. 1, pp. 8424–8430, jul. 2021, doi: 10.33263/BRIAC111.84248430. 27. T. Christiani, K. Mys, K. Dyer, J. Kadlowec, C. Iftode, y A. J. Vernengo, “Using embedded alginate microparticles to tune the properties of in situ forming poly(N-isopropylacrylamide)-graft-chondroitin sulfate bioadhesive hydrogels for replacement and repair of the nucleus pulposus of the intervertebral disc”, JOR Spine, vol. 4, núm. 3, sep. 2021, doi: 10.1002/jsp2.1161. 28. R. Gogoi, G. Manik, y S. K. Sahoo, “Viscoelastic behavior of elastomer blends and composites”, en Elastomer Blends and Composites, Elsevier, 2022, 10, pp. 171–194. doi: 10.1016/B978-0-323-85832-8.00014-6. 29. A. D. Štiglic et al., “Organic Acid Crosslinked 3D printed Cellulose Nanocomposite Bioscaffolds with Controlled Porosity, Mechanical Strength and Biocompatibility”, iScience, vol. 25, núm. 5, p. 104263, may 2022, doi: 10.1016/j.isci.2022.104263. 30. S. Im et al., “An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering”, Int. J. Biol. Macromolecules, vol. 205, pp. 520–529, abr. 2022, doi: 10.1016/j.ijbiomac.2022.02.012. 31. M. S. Haider et al., “Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting”, Gels, vol. 7, núm. 3, p. 78, jun. 2021, doi: 10.3390/gels7030078 32. C. Vyas et al., “3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications”, Materials Science and Engineering: C, vol. 118, p. 111433, ene. 2021, doi: 10.1016/j.msec.2020.111433. 33. P. Singh, K. Sharma, I. Puchades y P. B. Agarwal, “A comprehensive review on MEMS-based viscometers”, Sens. Actuators A, vol. 338, p. 113456, mayo de 2022, doi: 10.1016/j.sna.2022.113456. 34. Organovo “3D bioprinted therapeutic liver tissue” Organovo. Accedido el 23 de octubre de 2024. Disponible: https://organovo.com/3d-bioprinted-therapeutic-liver-tissue/ 35. Acuity Surgical “Biologics - Acuity Surgical”. Acuity surgical Accedido el 24 de octubre de 2024. Disponible: https://acuitysurgical.com/biologics/ 36. BIOLIFE4D “Bioprinting Human Hearts, the BIOLIFE4D Process” BIOLIFE4D. Accedido el 24 de octubre de 2024. Disponible: https://biolife4d.com/process/ 37. Kelyniam “Our Technology | Kelyniam” Kelyniam. Accedido el 24 de octubre de 2024. Disponible: https://kelyniam.com/our-technology/ 38. Aspect Biosystems “A pipeline of bioprinted tissue therapeutics” Aspect Biosystems. Accedido el 25 de octubre de 2024. Disponible en: https://www.aspectbiosystems.com/programs |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/cc35af44-0a54-441f-ac18-6d5228aa2246/download https://repositorio.unbosque.edu.co/bitstreams/7a39a403-982a-4c68-82cb-0cf5ee0c61d8/download https://repositorio.unbosque.edu.co/bitstreams/70f6eb6b-04f4-4382-8a01-782913bbc2d9/download https://repositorio.unbosque.edu.co/bitstreams/695c61fc-30ef-41cf-aa75-8eead8ee4e5b/download https://repositorio.unbosque.edu.co/bitstreams/864ce3f5-d131-43ff-bf8d-da0093e3e79e/download https://repositorio.unbosque.edu.co/bitstreams/e56a1823-f11f-4a05-8879-5f13e1df9589/download |
bitstream.checksum.fl_str_mv |
7d14a9f67f7458e154e5b1d8157ba8da 17cc15b951e7cc6b3728a574117320f9 73eea679d9afd7eda03efada3f64618e 7ec1ac7a8b645781b16f86c935b7bbbd 118bd647055651453323ba3ee26ecfc7 8ccfc6e911163ad290a9dfa5d1ca4018 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1828164394039640064 |
spelling |
Jiménez Cruz , Ronald AndresAlvarado Solano, Nikoll Ximena2024-11-20T16:11:29Z2024-11-20T16:11:29Z2024-11https://hdl.handle.net/20.500.12495/13270Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coThe development of tissue engineering products has been boosted by advances in the research of new materials for the fabrication of these products, especially in the context of 3D bioprinting. Given the relevance of structures such as scaffolds and implants, it is crucial to consider several properties involved in their design, especially rheological properties. In the present work, a literature review on the importance of these properties in products manufactured by 3D bioprinting was carried out. It was evidenced that characteristics such as viscosity, viscoelasticity, and storage and loss moduli play a fundamental role in the design, influencing cell viability, extrudability, shape fidelity and the ability to resist loads, reflecting that rheological properties are critical parameters in the effective development of tissue engineering products.PregradoQuímico FarmacéuticoEl desarrollo de productos de ingeniería de tejidos se ha potencializado gracias al avance en la investigación de nuevos materiales para la fabricación de estos productos, especialmente en el contexto de la bioimpresión 3D. Dada la relevancia de estructuras como scaffolds e implantes, es crucial considerar diversas propiedades involucradas en su diseño, destacándose las propiedades reológicas. En el presente trabajo se realizó una revisión de la literatura sobre la importancia de estas propiedades en productos fabricados por bioimpresión 3D. Se evidenció que características como la viscosidad, la viscoelasticidad y los módulos de almacenamiento y de pérdida juegan un papel fundamental en el diseño, influyendo en la viabilidad celular, en la capacidad de extrusión, en la fidelidad de la forma y la capacidad de resistir cargas, lo que refleja que las propiedades reológicas son parámetros críticos en el desarrollo efectivo de productos de ingeniería de tejidos.application/pdfReologíaIngeniería de tejidosBioimpresión 3DBiotintasViscosidadViscoelasticidad615.19RheologyTissue engineering3D bioprintingBioinksViscosityViscoelasticityImportancia de las propiedades reológicas en el diseño de productos de ingeniería de tejidos basados en bioimpresión 3DImportance of rheological properties in the design of 3D bioprinting-based tissue engineering productsQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. S. Kumar Parupelli, S. Saudi, N. Bhattarai y S. Desai, “3D printing of PCL-ceramic composite scaffolds for bone tissue engineering applications”, Int. J. Bioprinting, vol. 9, núm. 6, p. 0196, jul. 2023, doi: 10.36922/ijb.01962. A. Indurkar, P. Bangde, M. Gore, A. K. Agrawal, R. Jain y P. Dandekar, “Fabrication of guar gum-gelatin scaffold for soft tissue engineering”, Carbohydrate Technologies and Applications, vol. 1, p. 100006, dic. 2020, doi: 10.1016/j.carpta.2020.100006.3. B. Bindi, A. Perioli, P. Melo, C. Mattu y A. M. Ferreira, “Bioinspired Collagen/Hyaluronic Acid/Fibrin-Based Hydrogels for Soft Tissue Engineering: Design, Synthesis, and In Vitro Characterization”, J. Functional Biomaterials, vol. 14, núm. 10, p. 495, oct. 2023, doi: 10.3390/jfb141004954. A. Naylor, A. Dove, y P. Smith, "Implant 4D Medicine limited (T/A 4D Biomaterials)," U.S. Patent US2023381379A1, Nov. 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/073460431/publication/US2023381379A1?q=US202303813795. V. Varanasi, A. Ilyas, P. Kramer, T. Azimale, P. Aswath y T. Cebe, “In Vivo Live 3D Printing of Regenerative Bone Healing Scaffolds for Rapid Fracture Healing”, U.S. Patent US2020055302A1, 2020. Disponible en: https://worldwide.espacenet.com/patent/search/family/058719942/publication/US2020055302A1?q=US202000553026. K. Pfisterer, L. E. Shaw, D. Symmank y W. Weninger, “The Extracellular Matrix in Skin Inflammation and Infection”, Frontiers Cell Developmental Biology., vol. 9, jul. 2021, doi: 10.3389/fcell.2021.682414.7. R. Sharma, R. Kirsch, K. P. Valente, M. R. Perez y S. M. Willerth, “Physical and Mechanical Characterization of Fibrin-Based Bioprinted Constructs Containing Drug-Releasing Microspheres for Neural Tissue Engineering Applications”, Processes, vol. 9, núm. 7, p. 1205, jul. 2021, doi: 10.3390/pr9071205.8. O. Chaudhuri, J. Cooper-White, P. A. Janmey, D. J. Mooney y V. B. Shenoy, “Effects of extracellular matrix viscoelasticity on cellular behaviour”, Nature,vol. 584, núm. 7822, pp. 535–546, ago. 2020, doi:10.1038/s41586-020-2612-2.9. M. E. Cooke y D. H. Rosenzweig, “The rheology of direct and suspended extrusion bioprinting”, APL Bioeng., vol. 5, núm. 1, mar. 2021, doi: 10.1063/5.0031475.10. D. I. Wilson, “What is rheology?”, Eye (Lond), vol. 32, núm. 2, pp. 179–183, feb. 2018, doi: 10.1038/eye.2017.267.11. X. Zhang et al., “Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel”, Biomacromolecules, vol. 21, núm. 5, pp. 1875–1885, may 2020, doi: 10.1021/acs.biomac.9b01745.12. I. Noh, N. Kim, H. N. Tran, J. Lee y C. Lee, “3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering”, Biomaterials Res.,vol. 23, núm. 1, dic. 2019, doi:10.1186/s40824-018-0152-8.13. S. Vanaei, M. S. Parizi, S. Vanaei, F. Salemizadehparizi, y H. R. Vanaei, “An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application”, Engineered Regeneration, vol. 2, pp. 1–18, 2021, doi: 10.1016/j.engreg.2020.12.001.14. S. Zhang et al., “Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle”, Micromachines (Basel), vol. 11, núm. 7, p. 681, jul. 2020, doi: 10.3390/mi11070681.15. A. Hernández-Sosa et al., “Optimization of the Rheological Properties of Self-Assembled Tripeptide/Alginate/Cellulose Hydrogels for 3D Printing”, Polymers (Basel), vol. 14, núm. 11, p. 2229, may 2022, doi: 10.3390/polym14112229.16. Y. Delkash et al., “Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications”, J. Functional Biomaterials, vol. 12, núm. 3, p. 45, ago. 2021, doi: 10.3390/jfb12030045.17. Y. Wang, L. Yang, N. Shao, X. Yang, y X. Zhang, "Injectable anti-heart failure hydrogel having myocardial tissue repair functionality, method for preparing same, and use thereof," World Patent WO2023216099 A1, Nov. 2023. Disponible en: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2023216099A1&KC=A1&FT=D&ND=&date=20231116&DB=&locale=en_EP18. K. Janosi-Fair, "Immunomodulatory, oral microbiome altering and tissue regenerative oral care compositions and methods of use in the prevention and treatment of periodontal and peri-implant diseases," U.S. Patent US2023270761A1, 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/087762016/publication/US2023270761A1?q=US2023027076119. D. Myung et al., "Hydrogels for in situ-forming tissue constructs," U.S. Patent US2023263943A1, 2023. Disponible en: https://worldwide.espacenet.com/patent/search/family/078374056/publication/US2023263943A1?q=US2023026394320. R. Changshun, H. Chengshen, H. Nan, T. Lan, y Z. Xinzhou, "Antibacterial sodium alginate tissue engineering scaffold and preparation method therefor and use thereof," World Patent WO2022179255 A1, Sept. 2022. Disponible en: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2022179255A1&KC=A1&FT=D&ND=&date=20220901&DB=&locale=en_EP21. C. Hauser, S. Alshehri, y H. Susapto, "Scaffolds from self-assembling tetrapeptides support 3D spreading, osteogenic differentiation and angiogenesis of mesenchymal stem cells," U.S. Patent US2022054706A1, 2022. Disponible en: https://worldwide.espacenet.com/patent/search/family/080269262/publication/US2022054706A1?q=pn%3DUS2022054706A1.22. R. Ramakrishnan, N. Kasoju, R. Raju, R. Geevarghese, A. Gauthaman y A. Bhatt, “Exploring the Potential of Alginate-Gelatin-Diethylaminoethyl Cellulose-Fibrinogen based Bioink for 3D Bioprinting of Skin Tissue Constructs”, Carbohydrate Polymer Technologies and Applications, vol. 3, p. 100184, jun. 2022, doi:10.1016/j.carpta.2022.100184.23. K. J. Hogan et al., “Development of Photoreactive Demineralized Bone Matrix 3D-Printing Colloidal Inks for Bone Tissue Engineering”, Regen Biomater, vol. 10, ene. 2023, doi: 10.1093/rb/rbad090.24. B. A. Frost, B. P. Sutliff, P. Thayer, M. J. Bortner y E. J. Foster, “Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting”, Frontiers Bioeng. Biotechnol., vol. 7, oct. 2019, doi: 10.3389/fbioe.2019.00280.25. H. Baniasadi et al., “High-resolution 3D printing of xanthan gum/nanocellulose bio-inks”, Int. J. Biol. Macromolecules, , vol. 209, pp. 2020–2031, jun. 2022, doi: 10.1016/j.ijbiomac.2022.04.183.26. G. Kaya y F. Oytun, “Rheological Properties of İnjectable Hyaluronic Acid Hydrogels for Soft Tissue Engineering Applications”, Biointerface Res Appl Chem, vol. 11, núm. 1, pp. 8424–8430, jul. 2021, doi: 10.33263/BRIAC111.84248430.27. T. Christiani, K. Mys, K. Dyer, J. Kadlowec, C. Iftode, y A. J. Vernengo, “Using embedded alginate microparticles to tune the properties of in situ forming poly(N-isopropylacrylamide)-graft-chondroitin sulfate bioadhesive hydrogels for replacement and repair of the nucleus pulposus of the intervertebral disc”, JOR Spine, vol. 4, núm. 3, sep. 2021, doi: 10.1002/jsp2.1161.28. R. Gogoi, G. Manik, y S. K. Sahoo, “Viscoelastic behavior of elastomer blends and composites”, en Elastomer Blends and Composites, Elsevier, 2022, 10, pp. 171–194. doi: 10.1016/B978-0-323-85832-8.00014-6.29. A. D. Štiglic et al., “Organic Acid Crosslinked 3D printed Cellulose Nanocomposite Bioscaffolds with Controlled Porosity, Mechanical Strength and Biocompatibility”, iScience, vol. 25, núm. 5, p. 104263, may 2022, doi: 10.1016/j.isci.2022.104263.30. S. Im et al., “An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering”, Int. J. Biol. Macromolecules, vol. 205, pp. 520–529, abr. 2022, doi: 10.1016/j.ijbiomac.2022.02.012.31. M. S. Haider et al., “Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting”, Gels, vol. 7, núm. 3, p. 78, jun. 2021, doi: 10.3390/gels703007832. C. Vyas et al., “3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications”, Materials Science and Engineering: C, vol. 118, p. 111433, ene. 2021, doi: 10.1016/j.msec.2020.111433.33. P. Singh, K. Sharma, I. Puchades y P. B. Agarwal, “A comprehensive review on MEMS-based viscometers”, Sens. Actuators A, vol. 338, p. 113456, mayo de 2022, doi: 10.1016/j.sna.2022.113456.34. Organovo “3D bioprinted therapeutic liver tissue” Organovo. Accedido el 23 de octubre de 2024. Disponible: https://organovo.com/3d-bioprinted-therapeutic-liver-tissue/35. Acuity Surgical “Biologics - Acuity Surgical”. Acuity surgical Accedido el 24 de octubre de 2024. Disponible: https://acuitysurgical.com/biologics/36. BIOLIFE4D “Bioprinting Human Hearts, the BIOLIFE4D Process” BIOLIFE4D. Accedido el 24 de octubre de 2024. Disponible: https://biolife4d.com/process/37. Kelyniam “Our Technology | Kelyniam” Kelyniam. Accedido el 24 de octubre de 2024. Disponible: https://kelyniam.com/our-technology/38. Aspect Biosystems “A pipeline of bioprinted tissue therapeutics” Aspect Biosystems. Accedido el 25 de octubre de 2024. Disponible en: https://www.aspectbiosystems.com/programsAcceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf906140https://repositorio.unbosque.edu.co/bitstreams/cc35af44-0a54-441f-ac18-6d5228aa2246/download7d14a9f67f7458e154e5b1d8157ba8daMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/7a39a403-982a-4c68-82cb-0cf5ee0c61d8/download17cc15b951e7cc6b3728a574117320f9MD53Acta de sustentacion.pdfapplication/pdf1122056https://repositorio.unbosque.edu.co/bitstreams/70f6eb6b-04f4-4382-8a01-782913bbc2d9/download73eea679d9afd7eda03efada3f64618eMD54Carta de autorizacion.pdfapplication/pdf152564https://repositorio.unbosque.edu.co/bitstreams/695c61fc-30ef-41cf-aa75-8eead8ee4e5b/download7ec1ac7a8b645781b16f86c935b7bbbdMD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain79615https://repositorio.unbosque.edu.co/bitstreams/864ce3f5-d131-43ff-bf8d-da0093e3e79e/download118bd647055651453323ba3ee26ecfc7MD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5121https://repositorio.unbosque.edu.co/bitstreams/e56a1823-f11f-4a05-8879-5f13e1df9589/download8ccfc6e911163ad290a9dfa5d1ca4018MD5720.500.12495/13270oai:repositorio.unbosque.edu.co:20.500.12495/132702024-11-21 03:02:04.251open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |