Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum

El parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia...

Full description

Autores:
Galindo Galindo, Angie Catalina
Vera Ruiz, Cristhian Felipe
Patiño Achury, Alejandra
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2023
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12074
Acceso en línea:
https://hdl.handle.net/20.500.12495/12074
Palabra clave:
Parkinson
Canela
Nanopartículas sólidas lipídicas
615.19
Parkinson's disease
Cinnamon
Solid lipid nanoparticles
Rights
openAccess
License
Attribution 4.0 International
id UNBOSQUE2_b296a14329efcc3470f361ad807fe313
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12074
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
dc.title.translated.none.fl_str_mv Contribution to the development of a solid lipid nanoparticle formulation loaded with an extract of Cinnamomum Verum.
title Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
spellingShingle Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
Parkinson
Canela
Nanopartículas sólidas lipídicas
615.19
Parkinson's disease
Cinnamon
Solid lipid nanoparticles
title_short Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
title_full Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
title_fullStr Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
title_full_unstemmed Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
title_sort Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
dc.creator.fl_str_mv Galindo Galindo, Angie Catalina
Vera Ruiz, Cristhian Felipe
Patiño Achury, Alejandra
dc.contributor.advisor.none.fl_str_mv Velandia Paris, María Angélica
dc.contributor.author.none.fl_str_mv Galindo Galindo, Angie Catalina
Vera Ruiz, Cristhian Felipe
Patiño Achury, Alejandra
dc.subject.none.fl_str_mv Parkinson
Canela
Nanopartículas sólidas lipídicas
topic Parkinson
Canela
Nanopartículas sólidas lipídicas
615.19
Parkinson's disease
Cinnamon
Solid lipid nanoparticles
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Parkinson's disease
Cinnamon
Solid lipid nanoparticles
description El parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia, etc. El parkinson no tiene cura, no obstante, existen tratamientos como el levodopa-carbidopa que puede reducir y aliviar los síntomas. Este medicamento actúa aumentando la síntesis de dopamina en el cerebro y es el tratamiento de primera línea para esta patología. Pese a esto, se ha reportado en literatura que posee reacciones adversas como lo son el vómito, náuseas, paranoia, irritabilidad, entre otros. Motivo por el cual, se han buscado alternativas que puedan disminur dichos efectos adversos. En la literatura, se ha reportado que la canela tiene diferentes metabolitos activos como el cinamaldehído, ácido cinámico y diferentes polifenoles (Kaempferol, Catequina, entre otros) que tienen efectos neuroprotectores, antiapoptóticos y antiparkinsonianos. El presente trabajo tuvo como fin contribuir al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum verum. Para ello, se evaluaron dos metodologías de extracción para la obtención del extracto (reflujo y ultrasonido) y se determinó cual de ellos fue el más eficiente en términos del contenido total de polifenoles. Los resultados mostraron que la metodología con mayor contenido de polifenoles fue el ultrasonido. Adicionalmente, se caracterizó el nanosistema en términos de potencial zeta (-34,8 mV), tamaño y distribución de partícula (181,0 nm), eficiencia de encapsulación (44,37%) capacidad de carga (1,65%). En cuanto al perfil de liberación, se obtuvo un perfil sostenido de liberación donde el mecanismo de liberación fue de difusión. En conclusión, el presente trabajo desarrolló una metodología que permite la obtención de un extracto de canela con buen rendimiento en términos de contenido de polifenoles totales y una metodología que permite encapsular dicho extracto en nanopartículas sólidas lipídicas con buenos parámetros farmacotécnicos.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-03
dc.date.accessioned.none.fl_str_mv 2024-04-18T01:35:15Z
dc.date.available.none.fl_str_mv 2024-04-18T01:35:15Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12074
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12074
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. Blainski, G. Lopes, and J. de Mello, “Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L.,” Molecules, vol. 18, no. 6, pp. 6852–6865, Jun. 2013, doi: 10.3390/molecules18066852.
A. D. Yahaya et al., “Development of cinnamon essential oil blends microemulsion as natural preservatives for topping creams”, IOP Conf. Ser. Earth Environ. Sci., vol. 736, núm. 1, p. 012070, 2021.
Abdulrasheed, M., Ibrahim, I. H., Luka, A., Maryam, A. A., Hafsat, L., Ibrahim, S., ... & Gidado, M. B. (2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20.
Akhtar Siddiqui, Alaadin Alayoubi, Yasser El-Malah & Sami Nazzal (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM), Pharmaceutical Development and Technology, 19:3, 342-346, DOI: 10.3109/10837450.2013.784336
Andreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmaceutica Bonaerense, 22(4), 355-364.
Angelopoulou, E., Paudel, Y. N., Piperi, C., & Mishra, A. (2021). Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of Biochemical and Molecular Toxicology, 35(4).
Belwal T, Ezzat SM, Rastrelli L et al (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal Chem 100:82–102. https://doi.org/10.1016/J.TRAC.2017.12.018
Bhattacharjee S. (2016). DLS and zeta potential - What they are and what they are not?. Journal of controlled release : official journal of the Controlled Release Society, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31, 1675-1683.
Carrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104.
Costas Demetzos & Natassa Pippa (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review, Drug Delivery, 21:4, 250-257, DOI: 10.3109/10717544.2013.844745
Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
D'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences, 11(4), 1321–1342. https://doi.org/10.3390/ijms11041321
Dent, M., Dragović-Uzelac, V., Penić, M., Brnčić, M., Bosiljkov, T., & Levaj, B. (2013). The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology and Biotechnology, 51, 84-91.
Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V. y Levaj, B. ( 2020 ). Comparación de diferentes métodos de extracción para la recuperación de polifenoles de hojas de olivo. Procesos, 8( 9 ), 1008. https://doi.org/10.3390/pr8091008
Ekambaram, P., Sathali, A.A., & Priyanka, K. (2012). SOLID LIPID NANOPARTICLES: A REVIEW. Scientific Reviews and Chemical Communications, 2.
Fernández-Agulló, A., Freire, M. S., & González-Álvarez, J. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 64, 105-113.
G. K. Jayaprakasha & L. Jagan Mohan Rao (2011) Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum, Critical Reviews in Food Science and Nutrition, 51:6, 547-562, DOI: 10.1080/10408391003699550
Gandhi, K. R., & Saadabadi, A. (2022). Levodopa (l-dopa). In StatPearls [Internet]. StatPearls Publishing.
Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences, 13(4), 288.
Hamid Mollazadeh, & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. PubMed, 19(12), 1258–1270.
Hernández Suárez, & D Carlos Brito. (2020). EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA. Infoanalítica (Quito - Impresa), 8(1), 83–97. https://doi.org/10.26807/ia.v8i1.98
Josiah, S. S., Famusiwa, C. D., Crown, O. O., Lawal, A. O., Olaleye, M. T., Akindahunsi, A. A., & Akinmoladun, A. C. (2022). Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 90, 158–171. https://doi.org/10.1016/j.neuro.2022.03.004
Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50(6 Suppl 6), S11-S14.
Kolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1.
Kujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients, 10(5), 642. https://doi.org/10.3390/nu10050642
L. Ford, K. Theodoridou, G. N. Sheldrake, and P. J. Walsh, “A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds,” Phytochemical Analysis, vol. 30, no. 6, pp. 587–599, Jun. 2019, doi: 10.1002/pca.2851.
L. S. Chua, N. A. Latiff, and M. Mohamad, “Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract,” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 3, no. 2, pp. 64–70, May 2016, doi: 10.1016/j.jarmap.2016.01.004.
Lee, H. G., Jo, Y., Ameer, K., & Kwon, J. H. (2018). Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food science and biotechnology, 27(6), 1607–1617. https://doi.org/10.1007/s10068-018-0441-y
Li, C., Zhang, Y., Su, T., Feng, L., Long, Y., & Chen, Z. (2012). Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002. https://doi.org/10.2147/IJN.S38043
Lourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization of nanoparticles: size and surface properties. International journal of pharmaceutics, 138(1), 1-12.
Lozano Estevan, M., Córdoba Díaz, M., & Córdoba Díaz, D. (2014). Manual de tecnología farmacéutica. 1o.
Lyu, F., Thomas, M., Hendriks, W. H., & Van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347.
M. Suárez H. y C. Brito D., “EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA”, Infoanalítica (Quito - Impresa), vol. 8, núm. 1, pp. 83–97, 2020.
Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules (Basel, Switzerland), 27(2), 362. https://doi.org/10.3390/molecules27020362
Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009 Feb;5(1):76-83. doi: 10.1166/jbn.2009.443. PMID: 20055109.
Martins, S., Sarmento, B., Souto, E. B., & Ferreira, D. (2007). Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731. https://doi.org/10.1016/j.carbpol.2007.02.012
Melike Üner & Gülgün Yener (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, International Journal of Nanomedicine, 2:3, 289-300, DOI: 10.2147/IJN.S2.3.289
Mesa Vanegas, A. M., (2017). Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Revista Mexicana de Ciencias Farmacéuticas, 48(3), 16-27.
Ministerio de Salud y Protección Social (2021) Día Mundial del Parkinson: Colombia se destaca en atención. https://www.minsalud.gov.co/Paginas/Dia-Mundial-del-Parkinson-Colombia-se-destaca-en-atencion.aspx
Monteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., ... & Díaz-Rosales, P. (2020). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349-362.
Musielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 27(7), 2202. https://doi.org/10.3390/molecules27072202
Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293-298.
Oluwaseun Ruth Alara, Nour Hamid Abdurahman, & Chinonso Ishamel Ukaegbu. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
Ovallath, S., & Sulthana, B. (2017). Levodopa: History and Therapeutic Applications. Annals of Indian Academy of Neurology, 20(3), 185–189. https://doi.org/10.4103/aian.AIAN_241_17
P. Li, L. Tian, y T. Li, “Study on ultrasonic-assisted extraction of essential oil from cinnamon bark and preliminary investigation of its antibacterial activity”, en Lecture Notes in Electrical Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 349–360.
Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140–104140. https://doi.org/10.1016/j.jff.2020.104140
Pasupuleti Visweswara Rao, & Siew Hua Gan. (2014). Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2014, 1–12.
Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C.. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018
Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811
R. Barrio, “NANOPARTÍCULAS LIPÍDICAS COMO SISTEMAS DE ADMINISTRACIÓN DE SUSTANCIAS ACTIVAS: ASPECTOS TECNOLÓGICOS Y APLICACIONES TERAPÉUTICAS,” 2020.
Rainer H. Müller, Karsten Mäder, Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 1, 2000, Pages 161-177, ISSN 0939-6411.
Ranasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., Perera, K., Lokuhetty, D., & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73–79. https://doi.org/10.4103/0974-8490.94719
Rowland, M., Noe, C. R., Smith, D. A., Tucker, G. T., Crommelin, D. J., Peck, C. C., Rocci, M. L., Jr, Besançon, L., & Shah, V. P. (2012). Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. Journal of pharmaceutical sciences, 101(11), 4075–4099. https://doi.org/10.1002/jps.23295
Shashikant B. Bagade & Mayur Patil (2021) Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review, Critical Reviews in Analytical Chemistry, 51:2, 138-149, DOI: 10.1080/10408347.2019.1686966
Shekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research, 24(2), 203–227. https://doi.org/10.1007/s11095-006-9146-7
Shi, L., Zhao, W., Yang, Z. et al. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29, 81112–81129 (2022). https://doi.org/10.1007/s11356-022-23337-6
Shimohama, S., Sawada, H., Kitamura, Y., & Taniguchi, T. (2003). Disease model: Parkinson's disease. Trends in molecular medicine, 9(8), 360-365.
Stetefeld, J., McKenna, S.A. & Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6
Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 139, 318-324.
The United States Pharmacopeia USP Chapter <1236> Solubility Measurements. United States Pharmacopeial Convention, Rockville, MD, 2017, 43 (2)
Urbano, C. (2016) Validación del método analítico para la cuantificación de polifenoles totales en productos elaborados con té verde por método colorimétrico folin ciocalteu.
Velandia M,A., “Diseño y desarrollo de un sistema microparticular lipopolimérico para la Administración de un péptido sintético modelo de naturaleza hidrofílica,” 2021.
Villafuerte R., L., García F., B., Garzón S., M. D., Hernández L., A., & Vázquez R., M. L. (2008). Nanopartículas lipídicas sólidas. Revista Mexicana de Ciencias Farmacéuticas, 39(1), 38-52.
Whitfield, A. C., Moore, B. T., & Daniels, R. N. (2014). Classics in chemical neuroscience: levodopa. ACS chemical neuroscience, 5(12), 1192-1197.
Xu, Q., Chen, Z., Zhu, B., Wang, G., Jia, Q., Li, Y., & Wu, X. (2020). A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of nutrition, 150(7), 1731–1737. https://doi.org/10.1093/jn/nxaa128
Y. Duan et al., “A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems”, RSC Adv., vol. 10, núm. 45, pp. 26777–26791, 2020.
Yadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 5(2), 8-18.
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/09d140fc-f57d-47bc-81ad-ea503c116ba5/download
https://repositorio.unbosque.edu.co/bitstreams/7a642cd5-873d-49c1-a0dc-ee4ac27ebe61/download
https://repositorio.unbosque.edu.co/bitstreams/f1054f50-b471-4a6e-a697-257a6fc82164/download
https://repositorio.unbosque.edu.co/bitstreams/adf413fd-66a0-435c-8399-0c691b3f6ec2/download
https://repositorio.unbosque.edu.co/bitstreams/59510877-af8d-4503-b068-1a7da65ddff9/download
https://repositorio.unbosque.edu.co/bitstreams/b58c9ee2-4440-4979-8bf4-c3b501e4618c/download
https://repositorio.unbosque.edu.co/bitstreams/6d719a4c-3a4a-4d71-87c5-45c6079cf19b/download
https://repositorio.unbosque.edu.co/bitstreams/9058f432-91d6-4056-8e78-0511a0dc7602/download
https://repositorio.unbosque.edu.co/bitstreams/905da947-2a4a-44a4-b3e5-9c6c71e17706/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
717eef42101d9db6f2a3f9fcde852dd5
8154cf13124f7b063f2489b7b44c7551
d93f5db78fcf73cec9795c8fea744a8b
cdd77aecdf1de887ed1b998445185485
ce8e38bb6e1d2761a53606f91a878412
8d1b69dd9bdc9df4a8073c7a8193c7af
4d463894fce9a9ab39914ecc1045a37c
84d6212c501f758978895f1fd37e6871
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100783966191616
spelling Velandia Paris, María AngélicaGalindo Galindo, Angie CatalinaVera Ruiz, Cristhian FelipePatiño Achury, Alejandra2024-04-18T01:35:15Z2024-04-18T01:35:15Z2023-11-03https://hdl.handle.net/20.500.12495/12074Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia, etc. El parkinson no tiene cura, no obstante, existen tratamientos como el levodopa-carbidopa que puede reducir y aliviar los síntomas. Este medicamento actúa aumentando la síntesis de dopamina en el cerebro y es el tratamiento de primera línea para esta patología. Pese a esto, se ha reportado en literatura que posee reacciones adversas como lo son el vómito, náuseas, paranoia, irritabilidad, entre otros. Motivo por el cual, se han buscado alternativas que puedan disminur dichos efectos adversos. En la literatura, se ha reportado que la canela tiene diferentes metabolitos activos como el cinamaldehído, ácido cinámico y diferentes polifenoles (Kaempferol, Catequina, entre otros) que tienen efectos neuroprotectores, antiapoptóticos y antiparkinsonianos. El presente trabajo tuvo como fin contribuir al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum verum. Para ello, se evaluaron dos metodologías de extracción para la obtención del extracto (reflujo y ultrasonido) y se determinó cual de ellos fue el más eficiente en términos del contenido total de polifenoles. Los resultados mostraron que la metodología con mayor contenido de polifenoles fue el ultrasonido. Adicionalmente, se caracterizó el nanosistema en términos de potencial zeta (-34,8 mV), tamaño y distribución de partícula (181,0 nm), eficiencia de encapsulación (44,37%) capacidad de carga (1,65%). En cuanto al perfil de liberación, se obtuvo un perfil sostenido de liberación donde el mecanismo de liberación fue de difusión. En conclusión, el presente trabajo desarrolló una metodología que permite la obtención de un extracto de canela con buen rendimiento en términos de contenido de polifenoles totales y una metodología que permite encapsular dicho extracto en nanopartículas sólidas lipídicas con buenos parámetros farmacotécnicos.PregradoQuímico FarmacéuticoParkinson's disease is a neurodegenerative disease that causes the accelerated deterioration of dopaminergic neurons of the nigrostriatal pathway. This disease brings with it symptoms that worsen with time, among which we find: tremors, cognitive impairment, involuntary movements, dementia, etc. Parkinson's disease has no cure, however, there are treatments such as levodopa-carbidopa that can reduce and alleviate symptoms. This drug acts by increasing the synthesis of dopamine in the brain and is the first-line treatment for this pathology. Despite this, it has been reported in literature that it has adverse reactions such as vomiting, nausea, paranoia, irritability, among others. For this reason, alternatives have been sought to reduce these adverse effects. In the literature, it has been reported that cinnamon has different active metabolites such as cinnamaldehyde, cinnamic acid and different polyphenols (Kaempferol, Catechin, among others) that have neuroprotective, antiapoptotic and antiparkinsonian effects. The present work aims to contribute to the development of a formulation of lipidic solid nanoparticles loaded with an extract of Cinnamomum verum. For this purpose, two extraction methodologies for obtaining the extract (reflux and ultrasound) were evaluated and it was determined which of them was the most efficient in terms of total polyphenol content. The results showed that the methodology with the highest polyphenol content was ultrasound. Additionally, the nanosystem was characterized in terms of zeta potential (-34.8 mV), particle size and distribution (181.0 nm), encapsulation efficiency (44.37%) and loading capacity (1.65%). Regarding the release profile, a sustained release profile was obtained where the release mechanism was diffusion. In conclusion, the present work developed a methodology that allows obtaining a cinnamon extract with good performance in terms of total polyphenol content and a methodology that allows encapsulating this extract in solid lipid nanoparticles with good pharmacotechnical parameters.application/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ParkinsonCanelaNanopartículas sólidas lipídicas615.19Parkinson's diseaseCinnamonSolid lipid nanoparticlesAporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum VerumContribution to the development of a solid lipid nanoparticle formulation loaded with an extract of Cinnamomum Verum.Química FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaA. Blainski, G. Lopes, and J. de Mello, “Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L.,” Molecules, vol. 18, no. 6, pp. 6852–6865, Jun. 2013, doi: 10.3390/molecules18066852.A. D. Yahaya et al., “Development of cinnamon essential oil blends microemulsion as natural preservatives for topping creams”, IOP Conf. Ser. Earth Environ. Sci., vol. 736, núm. 1, p. 012070, 2021.Abdulrasheed, M., Ibrahim, I. H., Luka, A., Maryam, A. A., Hafsat, L., Ibrahim, S., ... & Gidado, M. B. (2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20.Akhtar Siddiqui, Alaadin Alayoubi, Yasser El-Malah & Sami Nazzal (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM), Pharmaceutical Development and Technology, 19:3, 342-346, DOI: 10.3109/10837450.2013.784336Andreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmaceutica Bonaerense, 22(4), 355-364.Angelopoulou, E., Paudel, Y. N., Piperi, C., & Mishra, A. (2021). Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of Biochemical and Molecular Toxicology, 35(4).Belwal T, Ezzat SM, Rastrelli L et al (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal Chem 100:82–102. https://doi.org/10.1016/J.TRAC.2017.12.018Bhattacharjee S. (2016). DLS and zeta potential - What they are and what they are not?. Journal of controlled release : official journal of the Controlled Release Society, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31, 1675-1683.Carrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104.Costas Demetzos & Natassa Pippa (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review, Drug Delivery, 21:4, 250-257, DOI: 10.3109/10717544.2013.844745Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057D'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences, 11(4), 1321–1342. https://doi.org/10.3390/ijms11041321Dent, M., Dragović-Uzelac, V., Penić, M., Brnčić, M., Bosiljkov, T., & Levaj, B. (2013). The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology and Biotechnology, 51, 84-91.Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V. y Levaj, B. ( 2020 ). Comparación de diferentes métodos de extracción para la recuperación de polifenoles de hojas de olivo. Procesos, 8( 9 ), 1008. https://doi.org/10.3390/pr8091008Ekambaram, P., Sathali, A.A., & Priyanka, K. (2012). SOLID LIPID NANOPARTICLES: A REVIEW. Scientific Reviews and Chemical Communications, 2.Fernández-Agulló, A., Freire, M. S., & González-Álvarez, J. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 64, 105-113.G. K. Jayaprakasha & L. Jagan Mohan Rao (2011) Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum, Critical Reviews in Food Science and Nutrition, 51:6, 547-562, DOI: 10.1080/10408391003699550Gandhi, K. R., & Saadabadi, A. (2022). Levodopa (l-dopa). In StatPearls [Internet]. StatPearls Publishing.Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences, 13(4), 288.Hamid Mollazadeh, & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. PubMed, 19(12), 1258–1270.Hernández Suárez, & D Carlos Brito. (2020). EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA. Infoanalítica (Quito - Impresa), 8(1), 83–97. https://doi.org/10.26807/ia.v8i1.98Josiah, S. S., Famusiwa, C. D., Crown, O. O., Lawal, A. O., Olaleye, M. T., Akindahunsi, A. A., & Akinmoladun, A. C. (2022). Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 90, 158–171. https://doi.org/10.1016/j.neuro.2022.03.004Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50(6 Suppl 6), S11-S14.Kolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1.Kujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients, 10(5), 642. https://doi.org/10.3390/nu10050642L. Ford, K. Theodoridou, G. N. Sheldrake, and P. J. Walsh, “A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds,” Phytochemical Analysis, vol. 30, no. 6, pp. 587–599, Jun. 2019, doi: 10.1002/pca.2851.L. S. Chua, N. A. Latiff, and M. Mohamad, “Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract,” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 3, no. 2, pp. 64–70, May 2016, doi: 10.1016/j.jarmap.2016.01.004.Lee, H. G., Jo, Y., Ameer, K., & Kwon, J. H. (2018). Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food science and biotechnology, 27(6), 1607–1617. https://doi.org/10.1007/s10068-018-0441-yLi, C., Zhang, Y., Su, T., Feng, L., Long, Y., & Chen, Z. (2012). Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002. https://doi.org/10.2147/IJN.S38043Lourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization of nanoparticles: size and surface properties. International journal of pharmaceutics, 138(1), 1-12.Lozano Estevan, M., Córdoba Díaz, M., & Córdoba Díaz, D. (2014). Manual de tecnología farmacéutica. 1o.Lyu, F., Thomas, M., Hendriks, W. H., & Van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347.M. Suárez H. y C. Brito D., “EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA”, Infoanalítica (Quito - Impresa), vol. 8, núm. 1, pp. 83–97, 2020.Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules (Basel, Switzerland), 27(2), 362. https://doi.org/10.3390/molecules27020362Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009 Feb;5(1):76-83. doi: 10.1166/jbn.2009.443. PMID: 20055109.Martins, S., Sarmento, B., Souto, E. B., & Ferreira, D. (2007). Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731. https://doi.org/10.1016/j.carbpol.2007.02.012Melike Üner & Gülgün Yener (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, International Journal of Nanomedicine, 2:3, 289-300, DOI: 10.2147/IJN.S2.3.289Mesa Vanegas, A. M., (2017). Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Revista Mexicana de Ciencias Farmacéuticas, 48(3), 16-27.Ministerio de Salud y Protección Social (2021) Día Mundial del Parkinson: Colombia se destaca en atención. https://www.minsalud.gov.co/Paginas/Dia-Mundial-del-Parkinson-Colombia-se-destaca-en-atencion.aspxMonteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., ... & Díaz-Rosales, P. (2020). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349-362.Musielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 27(7), 2202. https://doi.org/10.3390/molecules27072202Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293-298.Oluwaseun Ruth Alara, Nour Hamid Abdurahman, & Chinonso Ishamel Ukaegbu. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011Ovallath, S., & Sulthana, B. (2017). Levodopa: History and Therapeutic Applications. Annals of Indian Academy of Neurology, 20(3), 185–189. https://doi.org/10.4103/aian.AIAN_241_17P. Li, L. Tian, y T. Li, “Study on ultrasonic-assisted extraction of essential oil from cinnamon bark and preliminary investigation of its antibacterial activity”, en Lecture Notes in Electrical Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 349–360.Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140–104140. https://doi.org/10.1016/j.jff.2020.104140Pasupuleti Visweswara Rao, & Siew Hua Gan. (2014). Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2014, 1–12.Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C.. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811R. Barrio, “NANOPARTÍCULAS LIPÍDICAS COMO SISTEMAS DE ADMINISTRACIÓN DE SUSTANCIAS ACTIVAS: ASPECTOS TECNOLÓGICOS Y APLICACIONES TERAPÉUTICAS,” 2020.Rainer H. Müller, Karsten Mäder, Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 1, 2000, Pages 161-177, ISSN 0939-6411.Ranasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., Perera, K., Lokuhetty, D., & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73–79. https://doi.org/10.4103/0974-8490.94719Rowland, M., Noe, C. R., Smith, D. A., Tucker, G. T., Crommelin, D. J., Peck, C. C., Rocci, M. L., Jr, Besançon, L., & Shah, V. P. (2012). Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. Journal of pharmaceutical sciences, 101(11), 4075–4099. https://doi.org/10.1002/jps.23295Shashikant B. Bagade & Mayur Patil (2021) Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review, Critical Reviews in Analytical Chemistry, 51:2, 138-149, DOI: 10.1080/10408347.2019.1686966Shekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research, 24(2), 203–227. https://doi.org/10.1007/s11095-006-9146-7Shi, L., Zhao, W., Yang, Z. et al. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29, 81112–81129 (2022). https://doi.org/10.1007/s11356-022-23337-6Shimohama, S., Sawada, H., Kitamura, Y., & Taniguchi, T. (2003). Disease model: Parkinson's disease. Trends in molecular medicine, 9(8), 360-365.Stetefeld, J., McKenna, S.A. & Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 139, 318-324.The United States Pharmacopeia USP Chapter <1236> Solubility Measurements. United States Pharmacopeial Convention, Rockville, MD, 2017, 43 (2)Urbano, C. (2016) Validación del método analítico para la cuantificación de polifenoles totales en productos elaborados con té verde por método colorimétrico folin ciocalteu.Velandia M,A., “Diseño y desarrollo de un sistema microparticular lipopolimérico para la Administración de un péptido sintético modelo de naturaleza hidrofílica,” 2021.Villafuerte R., L., García F., B., Garzón S., M. D., Hernández L., A., & Vázquez R., M. L. (2008). Nanopartículas lipídicas sólidas. Revista Mexicana de Ciencias Farmacéuticas, 39(1), 38-52.Whitfield, A. C., Moore, B. T., & Daniels, R. N. (2014). Classics in chemical neuroscience: levodopa. ACS chemical neuroscience, 5(12), 1192-1197.Xu, Q., Chen, Z., Zhu, B., Wang, G., Jia, Q., Li, Y., & Wu, X. (2020). A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of nutrition, 150(7), 1731–1737. https://doi.org/10.1093/jn/nxaa128Y. Duan et al., “A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems”, RSC Adv., vol. 10, núm. 45, pp. 26777–26791, 2020.Yadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 5(2), 8-18.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/09d140fc-f57d-47bc-81ad-ea503c116ba5/download17cc15b951e7cc6b3728a574117320f9MD51ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1324597https://repositorio.unbosque.edu.co/bitstreams/7a642cd5-873d-49c1-a0dc-ee4ac27ebe61/download717eef42101d9db6f2a3f9fcde852dd5MD54Anexo 1 Acta de trabajo de grado.pdfAnexo 1 Acta de trabajo de grado.pdfapplication/pdf549058https://repositorio.unbosque.edu.co/bitstreams/f1054f50-b471-4a6e-a697-257a6fc82164/download8154cf13124f7b063f2489b7b44c7551MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.unbosque.edu.co/bitstreams/adf413fd-66a0-435c-8399-0c691b3f6ec2/downloadd93f5db78fcf73cec9795c8fea744a8bMD56Carta de autorización.pdfapplication/pdf198018https://repositorio.unbosque.edu.co/bitstreams/59510877-af8d-4503-b068-1a7da65ddff9/downloadcdd77aecdf1de887ed1b998445185485MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102129https://repositorio.unbosque.edu.co/bitstreams/b58c9ee2-4440-4979-8bf4-c3b501e4618c/downloadce8e38bb6e1d2761a53606f91a878412MD58Anexo 1 Acta de trabajo de grado.pdf.txtAnexo 1 Acta de trabajo de grado.pdf.txtExtracted texttext/plain8https://repositorio.unbosque.edu.co/bitstreams/6d719a4c-3a4a-4d71-87c5-45c6079cf19b/download8d1b69dd9bdc9df4a8073c7a8193c7afMD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2715https://repositorio.unbosque.edu.co/bitstreams/9058f432-91d6-4056-8e78-0511a0dc7602/download4d463894fce9a9ab39914ecc1045a37cMD59Anexo 1 Acta de trabajo de grado.pdf.jpgAnexo 1 Acta de trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3859https://repositorio.unbosque.edu.co/bitstreams/905da947-2a4a-44a4-b3e5-9c6c71e17706/download84d6212c501f758978895f1fd37e6871MD51120.500.12495/12074oai:repositorio.unbosque.edu.co:20.500.12495/120742024-04-18 03:03:34.119http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=