Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum
El parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia...
- Autores:
-
Galindo Galindo, Angie Catalina
Vera Ruiz, Cristhian Felipe
Patiño Achury, Alejandra
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/12074
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/12074
- Palabra clave:
- Parkinson
Canela
Nanopartículas sólidas lipídicas
615.19
Parkinson's disease
Cinnamon
Solid lipid nanoparticles
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNBOSQUE2_b296a14329efcc3470f361ad807fe313 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/12074 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
dc.title.translated.none.fl_str_mv |
Contribution to the development of a solid lipid nanoparticle formulation loaded with an extract of Cinnamomum Verum. |
title |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
spellingShingle |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum Parkinson Canela Nanopartículas sólidas lipídicas 615.19 Parkinson's disease Cinnamon Solid lipid nanoparticles |
title_short |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
title_full |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
title_fullStr |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
title_full_unstemmed |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
title_sort |
Aporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum Verum |
dc.creator.fl_str_mv |
Galindo Galindo, Angie Catalina Vera Ruiz, Cristhian Felipe Patiño Achury, Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Velandia Paris, María Angélica |
dc.contributor.author.none.fl_str_mv |
Galindo Galindo, Angie Catalina Vera Ruiz, Cristhian Felipe Patiño Achury, Alejandra |
dc.subject.none.fl_str_mv |
Parkinson Canela Nanopartículas sólidas lipídicas |
topic |
Parkinson Canela Nanopartículas sólidas lipídicas 615.19 Parkinson's disease Cinnamon Solid lipid nanoparticles |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Parkinson's disease Cinnamon Solid lipid nanoparticles |
description |
El parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia, etc. El parkinson no tiene cura, no obstante, existen tratamientos como el levodopa-carbidopa que puede reducir y aliviar los síntomas. Este medicamento actúa aumentando la síntesis de dopamina en el cerebro y es el tratamiento de primera línea para esta patología. Pese a esto, se ha reportado en literatura que posee reacciones adversas como lo son el vómito, náuseas, paranoia, irritabilidad, entre otros. Motivo por el cual, se han buscado alternativas que puedan disminur dichos efectos adversos. En la literatura, se ha reportado que la canela tiene diferentes metabolitos activos como el cinamaldehído, ácido cinámico y diferentes polifenoles (Kaempferol, Catequina, entre otros) que tienen efectos neuroprotectores, antiapoptóticos y antiparkinsonianos. El presente trabajo tuvo como fin contribuir al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum verum. Para ello, se evaluaron dos metodologías de extracción para la obtención del extracto (reflujo y ultrasonido) y se determinó cual de ellos fue el más eficiente en términos del contenido total de polifenoles. Los resultados mostraron que la metodología con mayor contenido de polifenoles fue el ultrasonido. Adicionalmente, se caracterizó el nanosistema en términos de potencial zeta (-34,8 mV), tamaño y distribución de partícula (181,0 nm), eficiencia de encapsulación (44,37%) capacidad de carga (1,65%). En cuanto al perfil de liberación, se obtuvo un perfil sostenido de liberación donde el mecanismo de liberación fue de difusión. En conclusión, el presente trabajo desarrolló una metodología que permite la obtención de un extracto de canela con buen rendimiento en términos de contenido de polifenoles totales y una metodología que permite encapsular dicho extracto en nanopartículas sólidas lipídicas con buenos parámetros farmacotécnicos. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11-03 |
dc.date.accessioned.none.fl_str_mv |
2024-04-18T01:35:15Z |
dc.date.available.none.fl_str_mv |
2024-04-18T01:35:15Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/12074 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/12074 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
A. Blainski, G. Lopes, and J. de Mello, “Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L.,” Molecules, vol. 18, no. 6, pp. 6852–6865, Jun. 2013, doi: 10.3390/molecules18066852. A. D. Yahaya et al., “Development of cinnamon essential oil blends microemulsion as natural preservatives for topping creams”, IOP Conf. Ser. Earth Environ. Sci., vol. 736, núm. 1, p. 012070, 2021. Abdulrasheed, M., Ibrahim, I. H., Luka, A., Maryam, A. A., Hafsat, L., Ibrahim, S., ... & Gidado, M. B. (2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20. Akhtar Siddiqui, Alaadin Alayoubi, Yasser El-Malah & Sami Nazzal (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM), Pharmaceutical Development and Technology, 19:3, 342-346, DOI: 10.3109/10837450.2013.784336 Andreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmaceutica Bonaerense, 22(4), 355-364. Angelopoulou, E., Paudel, Y. N., Piperi, C., & Mishra, A. (2021). Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of Biochemical and Molecular Toxicology, 35(4). Belwal T, Ezzat SM, Rastrelli L et al (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal Chem 100:82–102. https://doi.org/10.1016/J.TRAC.2017.12.018 Bhattacharjee S. (2016). DLS and zeta potential - What they are and what they are not?. Journal of controlled release : official journal of the Controlled Release Society, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017 Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31, 1675-1683. Carrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104. Costas Demetzos & Natassa Pippa (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review, Drug Delivery, 21:4, 250-257, DOI: 10.3109/10717544.2013.844745 Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057 D'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences, 11(4), 1321–1342. https://doi.org/10.3390/ijms11041321 Dent, M., Dragović-Uzelac, V., Penić, M., Brnčić, M., Bosiljkov, T., & Levaj, B. (2013). The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology and Biotechnology, 51, 84-91. Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V. y Levaj, B. ( 2020 ). Comparación de diferentes métodos de extracción para la recuperación de polifenoles de hojas de olivo. Procesos, 8( 9 ), 1008. https://doi.org/10.3390/pr8091008 Ekambaram, P., Sathali, A.A., & Priyanka, K. (2012). SOLID LIPID NANOPARTICLES: A REVIEW. Scientific Reviews and Chemical Communications, 2. Fernández-Agulló, A., Freire, M. S., & González-Álvarez, J. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 64, 105-113. G. K. Jayaprakasha & L. Jagan Mohan Rao (2011) Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum, Critical Reviews in Food Science and Nutrition, 51:6, 547-562, DOI: 10.1080/10408391003699550 Gandhi, K. R., & Saadabadi, A. (2022). Levodopa (l-dopa). In StatPearls [Internet]. StatPearls Publishing. Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences, 13(4), 288. Hamid Mollazadeh, & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. PubMed, 19(12), 1258–1270. Hernández Suárez, & D Carlos Brito. (2020). EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA. Infoanalítica (Quito - Impresa), 8(1), 83–97. https://doi.org/10.26807/ia.v8i1.98 Josiah, S. S., Famusiwa, C. D., Crown, O. O., Lawal, A. O., Olaleye, M. T., Akindahunsi, A. A., & Akinmoladun, A. C. (2022). Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 90, 158–171. https://doi.org/10.1016/j.neuro.2022.03.004 Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50(6 Suppl 6), S11-S14. Kolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1. Kujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients, 10(5), 642. https://doi.org/10.3390/nu10050642 L. Ford, K. Theodoridou, G. N. Sheldrake, and P. J. Walsh, “A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds,” Phytochemical Analysis, vol. 30, no. 6, pp. 587–599, Jun. 2019, doi: 10.1002/pca.2851. L. S. Chua, N. A. Latiff, and M. Mohamad, “Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract,” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 3, no. 2, pp. 64–70, May 2016, doi: 10.1016/j.jarmap.2016.01.004. Lee, H. G., Jo, Y., Ameer, K., & Kwon, J. H. (2018). Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food science and biotechnology, 27(6), 1607–1617. https://doi.org/10.1007/s10068-018-0441-y Li, C., Zhang, Y., Su, T., Feng, L., Long, Y., & Chen, Z. (2012). Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002. https://doi.org/10.2147/IJN.S38043 Lourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization of nanoparticles: size and surface properties. International journal of pharmaceutics, 138(1), 1-12. Lozano Estevan, M., Córdoba Díaz, M., & Córdoba Díaz, D. (2014). Manual de tecnología farmacéutica. 1o. Lyu, F., Thomas, M., Hendriks, W. H., & Van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347. M. Suárez H. y C. Brito D., “EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA”, Infoanalítica (Quito - Impresa), vol. 8, núm. 1, pp. 83–97, 2020. Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules (Basel, Switzerland), 27(2), 362. https://doi.org/10.3390/molecules27020362 Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009 Feb;5(1):76-83. doi: 10.1166/jbn.2009.443. PMID: 20055109. Martins, S., Sarmento, B., Souto, E. B., & Ferreira, D. (2007). Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731. https://doi.org/10.1016/j.carbpol.2007.02.012 Melike Üner & Gülgün Yener (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, International Journal of Nanomedicine, 2:3, 289-300, DOI: 10.2147/IJN.S2.3.289 Mesa Vanegas, A. M., (2017). Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Revista Mexicana de Ciencias Farmacéuticas, 48(3), 16-27. Ministerio de Salud y Protección Social (2021) Día Mundial del Parkinson: Colombia se destaca en atención. https://www.minsalud.gov.co/Paginas/Dia-Mundial-del-Parkinson-Colombia-se-destaca-en-atencion.aspx Monteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., ... & Díaz-Rosales, P. (2020). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349-362. Musielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 27(7), 2202. https://doi.org/10.3390/molecules27072202 Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293-298. Oluwaseun Ruth Alara, Nour Hamid Abdurahman, & Chinonso Ishamel Ukaegbu. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011 Ovallath, S., & Sulthana, B. (2017). Levodopa: History and Therapeutic Applications. Annals of Indian Academy of Neurology, 20(3), 185–189. https://doi.org/10.4103/aian.AIAN_241_17 P. Li, L. Tian, y T. Li, “Study on ultrasonic-assisted extraction of essential oil from cinnamon bark and preliminary investigation of its antibacterial activity”, en Lecture Notes in Electrical Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 349–360. Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140–104140. https://doi.org/10.1016/j.jff.2020.104140 Pasupuleti Visweswara Rao, & Siew Hua Gan. (2014). Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2014, 1–12. Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C.. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018 Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811 R. Barrio, “NANOPARTÍCULAS LIPÍDICAS COMO SISTEMAS DE ADMINISTRACIÓN DE SUSTANCIAS ACTIVAS: ASPECTOS TECNOLÓGICOS Y APLICACIONES TERAPÉUTICAS,” 2020. Rainer H. Müller, Karsten Mäder, Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 1, 2000, Pages 161-177, ISSN 0939-6411. Ranasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., Perera, K., Lokuhetty, D., & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73–79. https://doi.org/10.4103/0974-8490.94719 Rowland, M., Noe, C. R., Smith, D. A., Tucker, G. T., Crommelin, D. J., Peck, C. C., Rocci, M. L., Jr, Besançon, L., & Shah, V. P. (2012). Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. Journal of pharmaceutical sciences, 101(11), 4075–4099. https://doi.org/10.1002/jps.23295 Shashikant B. Bagade & Mayur Patil (2021) Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review, Critical Reviews in Analytical Chemistry, 51:2, 138-149, DOI: 10.1080/10408347.2019.1686966 Shekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research, 24(2), 203–227. https://doi.org/10.1007/s11095-006-9146-7 Shi, L., Zhao, W., Yang, Z. et al. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29, 81112–81129 (2022). https://doi.org/10.1007/s11356-022-23337-6 Shimohama, S., Sawada, H., Kitamura, Y., & Taniguchi, T. (2003). Disease model: Parkinson's disease. Trends in molecular medicine, 9(8), 360-365. Stetefeld, J., McKenna, S.A. & Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6 Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 139, 318-324. The United States Pharmacopeia USP Chapter <1236> Solubility Measurements. United States Pharmacopeial Convention, Rockville, MD, 2017, 43 (2) Urbano, C. (2016) Validación del método analítico para la cuantificación de polifenoles totales en productos elaborados con té verde por método colorimétrico folin ciocalteu. Velandia M,A., “Diseño y desarrollo de un sistema microparticular lipopolimérico para la Administración de un péptido sintético modelo de naturaleza hidrofílica,” 2021. Villafuerte R., L., García F., B., Garzón S., M. D., Hernández L., A., & Vázquez R., M. L. (2008). Nanopartículas lipídicas sólidas. Revista Mexicana de Ciencias Farmacéuticas, 39(1), 38-52. Whitfield, A. C., Moore, B. T., & Daniels, R. N. (2014). Classics in chemical neuroscience: levodopa. ACS chemical neuroscience, 5(12), 1192-1197. Xu, Q., Chen, Z., Zhu, B., Wang, G., Jia, Q., Li, Y., & Wu, X. (2020). A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of nutrition, 150(7), 1731–1737. https://doi.org/10.1093/jn/nxaa128 Y. Duan et al., “A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems”, RSC Adv., vol. 10, núm. 45, pp. 26777–26791, 2020. Yadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 5(2), 8-18. |
dc.rights.en.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/09d140fc-f57d-47bc-81ad-ea503c116ba5/download https://repositorio.unbosque.edu.co/bitstreams/7a642cd5-873d-49c1-a0dc-ee4ac27ebe61/download https://repositorio.unbosque.edu.co/bitstreams/f1054f50-b471-4a6e-a697-257a6fc82164/download https://repositorio.unbosque.edu.co/bitstreams/adf413fd-66a0-435c-8399-0c691b3f6ec2/download https://repositorio.unbosque.edu.co/bitstreams/59510877-af8d-4503-b068-1a7da65ddff9/download https://repositorio.unbosque.edu.co/bitstreams/b58c9ee2-4440-4979-8bf4-c3b501e4618c/download https://repositorio.unbosque.edu.co/bitstreams/6d719a4c-3a4a-4d71-87c5-45c6079cf19b/download https://repositorio.unbosque.edu.co/bitstreams/9058f432-91d6-4056-8e78-0511a0dc7602/download https://repositorio.unbosque.edu.co/bitstreams/905da947-2a4a-44a4-b3e5-9c6c71e17706/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 717eef42101d9db6f2a3f9fcde852dd5 8154cf13124f7b063f2489b7b44c7551 d93f5db78fcf73cec9795c8fea744a8b cdd77aecdf1de887ed1b998445185485 ce8e38bb6e1d2761a53606f91a878412 8d1b69dd9bdc9df4a8073c7a8193c7af 4d463894fce9a9ab39914ecc1045a37c 84d6212c501f758978895f1fd37e6871 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100783966191616 |
spelling |
Velandia Paris, María AngélicaGalindo Galindo, Angie CatalinaVera Ruiz, Cristhian FelipePatiño Achury, Alejandra2024-04-18T01:35:15Z2024-04-18T01:35:15Z2023-11-03https://hdl.handle.net/20.500.12495/12074Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl parkinson es una enfermedad neurodegenerativa que causa el deterioro acelerado de las neuronas dopaminérgicas de la vía nigroestriada. Esta enfermedad trae consigo síntomas que empeoran con el tiempo entre los cuales encontramos: temblores, deterioro cognitivo, movimientos involuntarios, demencia, etc. El parkinson no tiene cura, no obstante, existen tratamientos como el levodopa-carbidopa que puede reducir y aliviar los síntomas. Este medicamento actúa aumentando la síntesis de dopamina en el cerebro y es el tratamiento de primera línea para esta patología. Pese a esto, se ha reportado en literatura que posee reacciones adversas como lo son el vómito, náuseas, paranoia, irritabilidad, entre otros. Motivo por el cual, se han buscado alternativas que puedan disminur dichos efectos adversos. En la literatura, se ha reportado que la canela tiene diferentes metabolitos activos como el cinamaldehído, ácido cinámico y diferentes polifenoles (Kaempferol, Catequina, entre otros) que tienen efectos neuroprotectores, antiapoptóticos y antiparkinsonianos. El presente trabajo tuvo como fin contribuir al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum verum. Para ello, se evaluaron dos metodologías de extracción para la obtención del extracto (reflujo y ultrasonido) y se determinó cual de ellos fue el más eficiente en términos del contenido total de polifenoles. Los resultados mostraron que la metodología con mayor contenido de polifenoles fue el ultrasonido. Adicionalmente, se caracterizó el nanosistema en términos de potencial zeta (-34,8 mV), tamaño y distribución de partícula (181,0 nm), eficiencia de encapsulación (44,37%) capacidad de carga (1,65%). En cuanto al perfil de liberación, se obtuvo un perfil sostenido de liberación donde el mecanismo de liberación fue de difusión. En conclusión, el presente trabajo desarrolló una metodología que permite la obtención de un extracto de canela con buen rendimiento en términos de contenido de polifenoles totales y una metodología que permite encapsular dicho extracto en nanopartículas sólidas lipídicas con buenos parámetros farmacotécnicos.PregradoQuímico FarmacéuticoParkinson's disease is a neurodegenerative disease that causes the accelerated deterioration of dopaminergic neurons of the nigrostriatal pathway. This disease brings with it symptoms that worsen with time, among which we find: tremors, cognitive impairment, involuntary movements, dementia, etc. Parkinson's disease has no cure, however, there are treatments such as levodopa-carbidopa that can reduce and alleviate symptoms. This drug acts by increasing the synthesis of dopamine in the brain and is the first-line treatment for this pathology. Despite this, it has been reported in literature that it has adverse reactions such as vomiting, nausea, paranoia, irritability, among others. For this reason, alternatives have been sought to reduce these adverse effects. In the literature, it has been reported that cinnamon has different active metabolites such as cinnamaldehyde, cinnamic acid and different polyphenols (Kaempferol, Catechin, among others) that have neuroprotective, antiapoptotic and antiparkinsonian effects. The present work aims to contribute to the development of a formulation of lipidic solid nanoparticles loaded with an extract of Cinnamomum verum. For this purpose, two extraction methodologies for obtaining the extract (reflux and ultrasound) were evaluated and it was determined which of them was the most efficient in terms of total polyphenol content. The results showed that the methodology with the highest polyphenol content was ultrasound. Additionally, the nanosystem was characterized in terms of zeta potential (-34.8 mV), particle size and distribution (181.0 nm), encapsulation efficiency (44.37%) and loading capacity (1.65%). Regarding the release profile, a sustained release profile was obtained where the release mechanism was diffusion. In conclusion, the present work developed a methodology that allows obtaining a cinnamon extract with good performance in terms of total polyphenol content and a methodology that allows encapsulating this extract in solid lipid nanoparticles with good pharmacotechnical parameters.application/pdfAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ParkinsonCanelaNanopartículas sólidas lipídicas615.19Parkinson's diseaseCinnamonSolid lipid nanoparticlesAporte al desarrollo de una formulación de nanopartículas sólidas lipídicas cargadas con un extracto de Cinnamomum VerumContribution to the development of a solid lipid nanoparticle formulation loaded with an extract of Cinnamomum Verum.Química FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaA. Blainski, G. Lopes, and J. de Mello, “Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L.,” Molecules, vol. 18, no. 6, pp. 6852–6865, Jun. 2013, doi: 10.3390/molecules18066852.A. D. Yahaya et al., “Development of cinnamon essential oil blends microemulsion as natural preservatives for topping creams”, IOP Conf. Ser. Earth Environ. Sci., vol. 736, núm. 1, p. 012070, 2021.Abdulrasheed, M., Ibrahim, I. H., Luka, A., Maryam, A. A., Hafsat, L., Ibrahim, S., ... & Gidado, M. B. (2019). Antibacterial effect of Cinnamon (Cinnamomum zeylanicum) bark extract on different bacterial isolates. Journal of Environmental Microbiology and Toxicology, 7(1), 16-20.Akhtar Siddiqui, Alaadin Alayoubi, Yasser El-Malah & Sami Nazzal (2014) Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM), Pharmaceutical Development and Technology, 19:3, 342-346, DOI: 10.3109/10837450.2013.784336Andreetta, H. A. (2003). Fármacos de acción prolongada: mecanismos de liberación. Usos de distintos modelos. Acta Farmaceutica Bonaerense, 22(4), 355-364.Angelopoulou, E., Paudel, Y. N., Piperi, C., & Mishra, A. (2021). Neuroprotective potential of cinnamon and its metabolites in Parkinson’s disease: Mechanistic insights, limitations, and novel therapeutic opportunities. Journal of Biochemical and Molecular Toxicology, 35(4).Belwal T, Ezzat SM, Rastrelli L et al (2018) A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. TrAC Trends Anal Chem 100:82–102. https://doi.org/10.1016/J.TRAC.2017.12.018Bhattacharjee S. (2016). DLS and zeta potential - What they are and what they are not?. Journal of controlled release : official journal of the Controlled Release Society, 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. A. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31, 1675-1683.Carrera, C., Ruiz-Rodríguez, A., Palma, M., & Barroso, C. G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica chimica acta, 732, 100-104.Costas Demetzos & Natassa Pippa (2014) Advanced drug delivery nanosystems (aDDnSs): a mini-review, Drug Delivery, 21:4, 250-257, DOI: 10.3109/10717544.2013.844745Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057D'Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., & Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences, 11(4), 1321–1342. https://doi.org/10.3390/ijms11041321Dent, M., Dragović-Uzelac, V., Penić, M., Brnčić, M., Bosiljkov, T., & Levaj, B. (2013). The Effect of Extraction Solvents, Temperature and Time on the Composition and Mass Fraction of Polyphenols in Dalmatian Wild Sage (Salvia officinalis L.) Extracts. Food Technology and Biotechnology, 51, 84-91.Dobrinčić, A., Repajić, M., Garofulić, I. E., Tuđen, L., Dragović-Uzelac, V. y Levaj, B. ( 2020 ). Comparación de diferentes métodos de extracción para la recuperación de polifenoles de hojas de olivo. Procesos, 8( 9 ), 1008. https://doi.org/10.3390/pr8091008Ekambaram, P., Sathali, A.A., & Priyanka, K. (2012). SOLID LIPID NANOPARTICLES: A REVIEW. Scientific Reviews and Chemical Communications, 2.Fernández-Agulló, A., Freire, M. S., & González-Álvarez, J. (2015). Effect of the extraction technique on the recovery of bioactive compounds from eucalyptus (Eucalyptus globulus) wood industrial wastes. Industrial Crops and Products, 64, 105-113.G. K. Jayaprakasha & L. Jagan Mohan Rao (2011) Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum, Critical Reviews in Food Science and Nutrition, 51:6, 547-562, DOI: 10.1080/10408391003699550Gandhi, K. R., & Saadabadi, A. (2022). Levodopa (l-dopa). In StatPearls [Internet]. StatPearls Publishing.Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: Applications, advantages and disadvantages. Research in pharmaceutical sciences, 13(4), 288.Hamid Mollazadeh, & Hosseinzadeh, H. (2016). Cinnamon effects on metabolic syndrome: a review based on its mechanisms. PubMed, 19(12), 1258–1270.Hernández Suárez, & D Carlos Brito. (2020). EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA. Infoanalítica (Quito - Impresa), 8(1), 83–97. https://doi.org/10.26807/ia.v8i1.98Josiah, S. S., Famusiwa, C. D., Crown, O. O., Lawal, A. O., Olaleye, M. T., Akindahunsi, A. A., & Akinmoladun, A. C. (2022). Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology, 90, 158–171. https://doi.org/10.1016/j.neuro.2022.03.004Koller, W. C., & Rueda, M. G. (1998). Mechanism of action of dopaminergic agents in Parkinson's disease. Neurology, 50(6 Suppl 6), S11-S14.Kolling, W. M. (2004). Handbook of pharmaceutical excipients. American Journal of Pharmaceutical Education, 68(1-5), BF1.Kujawska, M., & Jodynis-Liebert, J. (2018). Polyphenols in Parkinson’s Disease: A Systematic Review of In Vivo Studies. Nutrients, 10(5), 642. https://doi.org/10.3390/nu10050642L. Ford, K. Theodoridou, G. N. Sheldrake, and P. J. Walsh, “A critical review of analytical methods used for the chemical characterisation and quantification of phlorotannin compounds in brown seaweeds,” Phytochemical Analysis, vol. 30, no. 6, pp. 587–599, Jun. 2019, doi: 10.1002/pca.2851.L. S. Chua, N. A. Latiff, and M. Mohamad, “Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract,” Journal of Applied Research on Medicinal and Aromatic Plants, vol. 3, no. 2, pp. 64–70, May 2016, doi: 10.1016/j.jarmap.2016.01.004.Lee, H. G., Jo, Y., Ameer, K., & Kwon, J. H. (2018). Optimization of green extraction methods for cinnamic acid and cinnamaldehyde from Cinnamon (Cinnamomum cassia) by response surface methodology. Food science and biotechnology, 27(6), 1607–1617. https://doi.org/10.1007/s10068-018-0441-yLi, C., Zhang, Y., Su, T., Feng, L., Long, Y., & Chen, Z. (2012). Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. International journal of nanomedicine, 7, 5995–6002. https://doi.org/10.2147/IJN.S38043Lourenco, C., Teixeira, M., Simões, S., & Gaspar, R. (1996). Steric stabilization of nanoparticles: size and surface properties. International journal of pharmaceutics, 138(1), 1-12.Lozano Estevan, M., Córdoba Díaz, M., & Córdoba Díaz, D. (2014). Manual de tecnología farmacéutica. 1o.Lyu, F., Thomas, M., Hendriks, W. H., & Van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347.M. Suárez H. y C. Brito D., “EFICIENCIA DE ENCAPSULACION Y CAPACIDAD DE CARGA DE ANTOCIANINAS DE Vaccinium floribundim Kunt EN NANOPARTICULAS DE ZEINA”, Infoanalítica (Quito - Impresa), vol. 8, núm. 1, pp. 83–97, 2020.Ma, Y., Meng, A., Liu, P., Chen, Y., Yuan, A., Dai, Y., Ye, K., Yang, Y., Wang, Y., & Li, Z. (2022). Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell. Molecules (Basel, Switzerland), 27(2), 362. https://doi.org/10.3390/molecules27020362Martins S, Silva AC, Ferreira DC, Souto EB. Improving oral absorption of Salmon calcitonin by trimyristin lipid nanoparticles. J Biomed Nanotechnol. 2009 Feb;5(1):76-83. doi: 10.1166/jbn.2009.443. PMID: 20055109.Martins, S., Sarmento, B., Souto, E. B., & Ferreira, D. (2007). Insulin-loaded alginate microspheres for oral delivery – Effect of polysaccharide reinforcement on physicochemical properties and release profile. Carbohydrate Polymers, 69(4), 725–731. https://doi.org/10.1016/j.carbpol.2007.02.012Melike Üner & Gülgün Yener (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, International Journal of Nanomedicine, 2:3, 289-300, DOI: 10.2147/IJN.S2.3.289Mesa Vanegas, A. M., (2017). Una visión histórica en el desarrollo de fármacos a partir de productos naturales. Revista Mexicana de Ciencias Farmacéuticas, 48(3), 16-27.Ministerio de Salud y Protección Social (2021) Día Mundial del Parkinson: Colombia se destaca en atención. https://www.minsalud.gov.co/Paginas/Dia-Mundial-del-Parkinson-Colombia-se-destaca-en-atencion.aspxMonteiro, M., Santos, R. A., Iglesias, P., Couto, A., Serra, C. R., Gouvinhas, I., ... & Díaz-Rosales, P. (2020). Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. Journal of Applied Phycology, 32, 349-362.Musielak, E., Feliczak-Guzik, A., & Nowak, I. (2022). Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis. Molecules, 27(7), 2202. https://doi.org/10.3390/molecules27072202Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293-298.Oluwaseun Ruth Alara, Nour Hamid Abdurahman, & Chinonso Ishamel Ukaegbu. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4, 200–214. https://doi.org/10.1016/j.crfs.2021.03.011Ovallath, S., & Sulthana, B. (2017). Levodopa: History and Therapeutic Applications. Annals of Indian Academy of Neurology, 20(3), 185–189. https://doi.org/10.4103/aian.AIAN_241_17P. Li, L. Tian, y T. Li, “Study on ultrasonic-assisted extraction of essential oil from cinnamon bark and preliminary investigation of its antibacterial activity”, en Lecture Notes in Electrical Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 349–360.Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140–104140. https://doi.org/10.1016/j.jff.2020.104140Pasupuleti Visweswara Rao, & Siew Hua Gan. (2014). Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complementary and Alternative Medicine, 2014, 1–12.Paz, J. E. W., Contreras, C. R., Munguía, A. R., Aguilar, C. N., & Inungaray, M. L. C.. (2018). Phenolic content and antibacterial activity of extracts of Hamelia patens obtained by different extraction methods. Brazilian Journal of Microbiology, 49(3), 656–661. https://doi.org/10.1016/j.bjm.2017.03.018Platzer, M., Kiese, S., Herfellner, T., Schweiggert-Weisz, U., & Eisner, P. (2021). How Does the Phenol Structure Influence the Results of the Folin-Ciocalteu Assay? Antioxidants, 10(5), 811. https://doi.org/10.3390/antiox10050811R. Barrio, “NANOPARTÍCULAS LIPÍDICAS COMO SISTEMAS DE ADMINISTRACIÓN DE SUSTANCIAS ACTIVAS: ASPECTOS TECNOLÓGICOS Y APLICACIONES TERAPÉUTICAS,” 2020.Rainer H. Müller, Karsten Mäder, Sven Gohla. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, Volume 50, Issue 1, 2000, Pages 161-177, ISSN 0939-6411.Ranasinghe, P., Perera, S., Gunatilake, M., Abeywardene, E., Gunapala, N., Premakumara, S., Perera, K., Lokuhetty, D., & Katulanda, P. (2012). Effects of Cinnamomum zeylanicum (Ceylon cinnamon) on blood glucose and lipids in a diabetic and healthy rat model. Pharmacognosy research, 4(2), 73–79. https://doi.org/10.4103/0974-8490.94719Rowland, M., Noe, C. R., Smith, D. A., Tucker, G. T., Crommelin, D. J., Peck, C. C., Rocci, M. L., Jr, Besançon, L., & Shah, V. P. (2012). Impact of the pharmaceutical sciences on health care: a reflection over the past 50 years. Journal of pharmaceutical sciences, 101(11), 4075–4099. https://doi.org/10.1002/jps.23295Shashikant B. Bagade & Mayur Patil (2021) Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review, Critical Reviews in Analytical Chemistry, 51:2, 138-149, DOI: 10.1080/10408347.2019.1686966Shekunov, B. Y., Chattopadhyay, P., Tong, H. H., & Chow, A. H. (2007). Particle size analysis in pharmaceutics: principles, methods and applications. Pharmaceutical research, 24(2), 203–227. https://doi.org/10.1007/s11095-006-9146-7Shi, L., Zhao, W., Yang, Z. et al. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ Sci Pollut Res 29, 81112–81129 (2022). https://doi.org/10.1007/s11356-022-23337-6Shimohama, S., Sawada, H., Kitamura, Y., & Taniguchi, T. (2003). Disease model: Parkinson's disease. Trends in molecular medicine, 9(8), 360-365.Stetefeld, J., McKenna, S.A. & Patel, T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8, 409–427 (2016). https://doi.org/10.1007/s12551-016-0218-6Sveinbjornsdottir, S. (2016). The clinical symptoms of Parkinson's disease. Journal of neurochemistry, 139, 318-324.The United States Pharmacopeia USP Chapter <1236> Solubility Measurements. United States Pharmacopeial Convention, Rockville, MD, 2017, 43 (2)Urbano, C. (2016) Validación del método analítico para la cuantificación de polifenoles totales en productos elaborados con té verde por método colorimétrico folin ciocalteu.Velandia M,A., “Diseño y desarrollo de un sistema microparticular lipopolimérico para la Administración de un péptido sintético modelo de naturaleza hidrofílica,” 2021.Villafuerte R., L., García F., B., Garzón S., M. D., Hernández L., A., & Vázquez R., M. L. (2008). Nanopartículas lipídicas sólidas. Revista Mexicana de Ciencias Farmacéuticas, 39(1), 38-52.Whitfield, A. C., Moore, B. T., & Daniels, R. N. (2014). Classics in chemical neuroscience: levodopa. ACS chemical neuroscience, 5(12), 1192-1197.Xu, Q., Chen, Z., Zhu, B., Wang, G., Jia, Q., Li, Y., & Wu, X. (2020). A-Type Cinnamon Procyanidin Oligomers Protect Against 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Neurotoxicity in Mice Through Inhibiting the P38 Mitogen-Activated Protein Kinase/P53/BCL-2 Associated X Protein Signaling Pathway. The Journal of nutrition, 150(7), 1731–1737. https://doi.org/10.1093/jn/nxaa128Y. Duan et al., “A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems”, RSC Adv., vol. 10, núm. 45, pp. 26777–26791, 2020.Yadav, N., Khatak, S., & Sara, U. S. (2013). Solid lipid nanoparticles-a review. Int. J. Appl. Pharm, 5(2), 8-18.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/09d140fc-f57d-47bc-81ad-ea503c116ba5/download17cc15b951e7cc6b3728a574117320f9MD51ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1324597https://repositorio.unbosque.edu.co/bitstreams/7a642cd5-873d-49c1-a0dc-ee4ac27ebe61/download717eef42101d9db6f2a3f9fcde852dd5MD54Anexo 1 Acta de trabajo de grado.pdfAnexo 1 Acta de trabajo de grado.pdfapplication/pdf549058https://repositorio.unbosque.edu.co/bitstreams/f1054f50-b471-4a6e-a697-257a6fc82164/download8154cf13124f7b063f2489b7b44c7551MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.unbosque.edu.co/bitstreams/adf413fd-66a0-435c-8399-0c691b3f6ec2/downloadd93f5db78fcf73cec9795c8fea744a8bMD56Carta de autorización.pdfapplication/pdf198018https://repositorio.unbosque.edu.co/bitstreams/59510877-af8d-4503-b068-1a7da65ddff9/downloadcdd77aecdf1de887ed1b998445185485MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102129https://repositorio.unbosque.edu.co/bitstreams/b58c9ee2-4440-4979-8bf4-c3b501e4618c/downloadce8e38bb6e1d2761a53606f91a878412MD58Anexo 1 Acta de trabajo de grado.pdf.txtAnexo 1 Acta de trabajo de grado.pdf.txtExtracted texttext/plain8https://repositorio.unbosque.edu.co/bitstreams/6d719a4c-3a4a-4d71-87c5-45c6079cf19b/download8d1b69dd9bdc9df4a8073c7a8193c7afMD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2715https://repositorio.unbosque.edu.co/bitstreams/9058f432-91d6-4056-8e78-0511a0dc7602/download4d463894fce9a9ab39914ecc1045a37cMD59Anexo 1 Acta de trabajo de grado.pdf.jpgAnexo 1 Acta de trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3859https://repositorio.unbosque.edu.co/bitstreams/905da947-2a4a-44a4-b3e5-9c6c71e17706/download84d6212c501f758978895f1fd37e6871MD51120.500.12495/12074oai:repositorio.unbosque.edu.co:20.500.12495/120742024-04-18 03:03:34.119http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |