Analysis of data mining techniques for constructing a predictive model for academic performance
This paper presents and analyzes the experience of applying certain data mining methods and techniques on 932 Systems Engineering students data, from El Bosque University in Bogotá, Colombia; effort which has been pursued in order to construct a predictive model for students academic performance. Pr...
- Autores:
-
Merchán Rubiano, Sandra Milena
Duarte Garcia, Jorge Alberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/3527
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/3527
https://doi.org/10.1109/TLA.2016.7555255
https://repositorio.unbosque.edu.co
- Palabra clave:
- Courseware
Education
Artificial intelligence
Data mining
Predictive modeling
Academic risk prevention
- Rights
- openAccess
- License
- Acceso abierto
id |
UNBOSQUE2_a6336dfab027b8ad66aeea0208bf2590 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/3527 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Analysis of data mining techniques for constructing a predictive model for academic performance |
dc.title.translated.spa.fl_str_mv |
Analysis of data mining techniques for constructing a predictive model for academic performance |
title |
Analysis of data mining techniques for constructing a predictive model for academic performance |
spellingShingle |
Analysis of data mining techniques for constructing a predictive model for academic performance Courseware Education Artificial intelligence Data mining Predictive modeling Academic risk prevention |
title_short |
Analysis of data mining techniques for constructing a predictive model for academic performance |
title_full |
Analysis of data mining techniques for constructing a predictive model for academic performance |
title_fullStr |
Analysis of data mining techniques for constructing a predictive model for academic performance |
title_full_unstemmed |
Analysis of data mining techniques for constructing a predictive model for academic performance |
title_sort |
Analysis of data mining techniques for constructing a predictive model for academic performance |
dc.creator.fl_str_mv |
Merchán Rubiano, Sandra Milena Duarte Garcia, Jorge Alberto |
dc.contributor.author.none.fl_str_mv |
Merchán Rubiano, Sandra Milena Duarte Garcia, Jorge Alberto |
dc.contributor.orcid.none.fl_str_mv |
Merchán Rubiano, Sandra Milena [0000-0003-3142-1417] |
dc.subject.ieee.spa.fl_str_mv |
Courseware Education Artificial intelligence |
topic |
Courseware Education Artificial intelligence Data mining Predictive modeling Academic risk prevention |
dc.subject.keywords.spa.fl_str_mv |
Data mining Predictive modeling Academic risk prevention |
description |
This paper presents and analyzes the experience of applying certain data mining methods and techniques on 932 Systems Engineering students data, from El Bosque University in Bogotá, Colombia; effort which has been pursued in order to construct a predictive model for students academic performance. Previous works were reviewed, related with predictive model construction within academic environments using decision trees, artificial neural networks and other classification techniques. As an iterative discovery and learning process, the experience is analyzed according to the results obtained in each of the process iterations. Each obtained result is evaluated regarding the results that are expected, the datas input and output characterization, what theory dictates and the pertinence of the model obtained in terms of prediction accuracy. Said pertinence is evaluated taking into account particular details about the population studied, and the specific needs manifested by the institution, such as the accompaniment of students along their learning process, and the taking of timely decisions in order to prevent academic risk and desertion. Lastly, some recommendations and thoughts are laid out for the future development of this work, and for other researchers working on similar studies. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-16T15:31:23Z |
dc.date.available.none.fl_str_mv |
2020-07-16T15:31:23Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1548-0992 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/3527 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/TLA.2016.7555255 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
identifier_str_mv |
1548-0992 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
url |
http://hdl.handle.net/20.500.12495/3527 https://doi.org/10.1109/TLA.2016.7555255 https://repositorio.unbosque.edu.co |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
IEEE Latin America transactions, 1548-0992, Vol. 14, Nro. 6, 2016, p. 2783-2788 |
dc.relation.uri.none.fl_str_mv |
https://ieeexplore.ieee.org/abstract/document/7555255 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
dc.rights.creativecommons.none.fl_str_mv |
2016-06 |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 2016-06 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.publisher.journal.spa.fl_str_mv |
IEEE Latin America transactions |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/5f23c51b-81e1-4f18-a305-997e3ec70473/download https://repositorio.unbosque.edu.co/bitstreams/33f4519a-de92-4f98-ad24-ad24ce7ed6c8/download https://repositorio.unbosque.edu.co/bitstreams/a75e88cb-395d-47ed-851c-b73a3af55d75/download https://repositorio.unbosque.edu.co/bitstreams/77cced69-e15c-4f54-b970-209f79013805/download |
bitstream.checksum.fl_str_mv |
7210a811635d1799e7c05fee5d259be7 65e68eb9b9360738fd9a44bac915490a 8a4605be74aa9ea9d79846c1fba20a33 927bd1880fa35377b0c726fc3af350ff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1828164606701338624 |
spelling |
Merchán Rubiano, Sandra MilenaDuarte Garcia, Jorge AlbertoMerchán Rubiano, Sandra Milena [0000-0003-3142-1417]2020-07-16T15:31:23Z2020-07-16T15:31:23Z1548-0992http://hdl.handle.net/20.500.12495/3527https://doi.org/10.1109/TLA.2016.7555255instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coapplication/pdfengIEEEIEEE Latin America transactionsIEEE Latin America transactions, 1548-0992, Vol. 14, Nro. 6, 2016, p. 2783-2788https://ieeexplore.ieee.org/abstract/document/7555255Analysis of data mining techniques for constructing a predictive model for academic performanceAnalysis of data mining techniques for constructing a predictive model for academic performanceArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85CoursewareEducationArtificial intelligenceData miningPredictive modelingAcademic risk preventionThis paper presents and analyzes the experience of applying certain data mining methods and techniques on 932 Systems Engineering students data, from El Bosque University in Bogotá, Colombia; effort which has been pursued in order to construct a predictive model for students academic performance. Previous works were reviewed, related with predictive model construction within academic environments using decision trees, artificial neural networks and other classification techniques. As an iterative discovery and learning process, the experience is analyzed according to the results obtained in each of the process iterations. Each obtained result is evaluated regarding the results that are expected, the datas input and output characterization, what theory dictates and the pertinence of the model obtained in terms of prediction accuracy. Said pertinence is evaluated taking into account particular details about the population studied, and the specific needs manifested by the institution, such as the accompaniment of students along their learning process, and the taking of timely decisions in order to prevent academic risk and desertion. Lastly, some recommendations and thoughts are laid out for the future development of this work, and for other researchers working on similar studies.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2016-06THUMBNAILSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdf.jpgSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdf.jpgimage/jpeg5775https://repositorio.unbosque.edu.co/bitstreams/5f23c51b-81e1-4f18-a305-997e3ec70473/download7210a811635d1799e7c05fee5d259be7MD53ORIGINALSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdfSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdfapplication/pdf321064https://repositorio.unbosque.edu.co/bitstreams/33f4519a-de92-4f98-ad24-ad24ce7ed6c8/download65e68eb9b9360738fd9a44bac915490aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/a75e88cb-395d-47ed-851c-b73a3af55d75/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdf.txtSandra Milena Merchan Rubiano ; Jorge Alberto Duarte Garcia_2016.pdf.txtExtracted texttext/plain36294https://repositorio.unbosque.edu.co/bitstreams/77cced69-e15c-4f54-b970-209f79013805/download927bd1880fa35377b0c726fc3af350ffMD5420.500.12495/3527oai:repositorio.unbosque.edu.co:20.500.12495/35272024-02-07 09:41:35.651restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |