Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia
La valorización de biosólidos, provenientes de plantas de tratamiento de aguas residuales domésticas, puede promover el mejoramiento de las condiciones de fertilidad del suelo. Sin embargo, la presencia de contaminantes emergentes, sustancias con riesgos poco identificados o regulados, limita su apl...
- Autores:
-
Baquero Cardona, Mariapaz
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14558
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14558
- Palabra clave:
- Química verde
Sostenibilidad
Micorremediación
Planta de tratamiento de aguas residuales
Trametes versicolor
628
Green chemistry
Sustainability
Mycoremediation
Waste water treatment plant
Trametes versicolor
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNBOSQUE2_9d7d6c2eece0e502fadbcf9f8d1b2c67 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14558 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
dc.title.translated.none.fl_str_mv |
Analysis of a proposal for the biological treatment of biosolids as a sustainable contribution to waste valorization: Case study of a WWTP in Funza-Cundinamarca, Colombia |
title |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
spellingShingle |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia Química verde Sostenibilidad Micorremediación Planta de tratamiento de aguas residuales Trametes versicolor 628 Green chemistry Sustainability Mycoremediation Waste water treatment plant Trametes versicolor |
title_short |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
title_full |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
title_fullStr |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
title_full_unstemmed |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
title_sort |
Análisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, Colombia |
dc.creator.fl_str_mv |
Baquero Cardona, Mariapaz |
dc.contributor.advisor.none.fl_str_mv |
Figueroa del Castillo, Liliana Fung, Yih Wen Boada Hurtado, Luisa Fernanda |
dc.contributor.author.none.fl_str_mv |
Baquero Cardona, Mariapaz |
dc.contributor.orcid.none.fl_str_mv |
Baquero Cardona, Mariapaz [0009-0009-8713-3167] |
dc.subject.none.fl_str_mv |
Química verde Sostenibilidad Micorremediación Planta de tratamiento de aguas residuales Trametes versicolor |
topic |
Química verde Sostenibilidad Micorremediación Planta de tratamiento de aguas residuales Trametes versicolor 628 Green chemistry Sustainability Mycoremediation Waste water treatment plant Trametes versicolor |
dc.subject.ddc.none.fl_str_mv |
628 |
dc.subject.keywords.none.fl_str_mv |
Green chemistry Sustainability Mycoremediation Waste water treatment plant Trametes versicolor |
description |
La valorización de biosólidos, provenientes de plantas de tratamiento de aguas residuales domésticas, puede promover el mejoramiento de las condiciones de fertilidad del suelo. Sin embargo, la presencia de contaminantes emergentes, sustancias con riesgos poco identificados o regulados, limita su aplicación directa. Si bien Trametes versicolor, hongo ligninolítico, ha sido ampliamente investigado como herramienta de biorremediación, aún se desconoce su impacto en la calidad nutricional resultante. Este estudio tuvo como objetivo evaluar el potencial de valorización de biosólidos con T. versicolor frente a sus condiciones nutricionales, bajo una óptica de viabilidad como estrategia sostenible frente a métodos tradicionales de estabilización. Se diseñaron 4 tratamientos in vitro, utilizando biosólidos no estériles con y sin adición de salvado de trigo y T. versicolor. Durante 40 días, se monitorearon parámetros físicos, químicos y nutricionales, acompañados de un bioensayo de fitotoxicidad en semillas de tomate (Solanum lycospersicum) y un análisis comparativo de sostenibilidad basado en revisión de literatura y estimación del acercamiento verde. Se estableció, de acuerdo con los resultados y la NTC 5167:2022, que los tratamientos con T. versicolor retuvieron mayor contenido de materia orgánica (-55,05%), incrementaron las concentraciones de fosfatos (1768,55%) y potasio (681,87%) y alcanzaron índices de germinación superiores al 80%. Asimismo, obtuvieron el mayor acercamiento verde (61%) y la segunda mayor remoción de contaminantes emergentes (67,9%) de acuerdo con la revisión bibliográfica. En conjunto, se validó parcialmente la hipótesis de que T. versicolor puede ser una alternativa eficaz para la valorización sostenible de biosólidos en línea con la química verde. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-05T14:17:38Z |
dc.date.available.none.fl_str_mv |
2025-06-05T14:17:38Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14558 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14558 |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
[1] Yang, S., Zhao, W., Liu, Y., Cherubini, F., Fu, B., and Pereira, P., 2020, Prioritizing sustainable development goals and linking them to ecosystem services: A global expert's knowledge evaluation. Geography and Sustainability, 1(4), 321–330. doi: 10.1016/j.geosus.2020.09.004. [2] Marchuk, S., Tait, S., Sinha, P., Harris, P., Antille, D.L., and McCabe, B.K., 2023, Biosolids-derived fertilisers: A review of challenges and opportunities. Science of The Total Environment, 875, 162555. doi: 10.1016/j.scitotenv.2023.162555. [3] Presidencia de la República, 2014, Decreto 1287 de 2014: Por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales (Bogotá, Colombia: Diario Oficial No. 49208, 10 de julio). Available online at: https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Decretos/1259502 (accessed 30 February 2025). [4] Mohajerani, A., Lound, S., Liassos, G., Kurmus, H., Ukwatta, A., and Nazari, M., 2017, Physical, mechanical and chemical properties of biosolids and raw brown coal fly ash, and their combination for road structural fill applications. Journal of Cleaner Production, 166, 1–11. doi: 10.1016/j.jclepro.2017.07.250. [5] Bora, A.P., Gupta, D.P., and Durbha, K.S., 2020, Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel, 259, 116262. doi: 10.1016/j.fuel.2019.116262. [6] Tezel, U., Tandukar, M., and Pavlostathis, S.G., 2011, Anaerobic Biotreatment of Municipal Sewage Sludge. In: M. Moo-Young (Ed.) Comprehensive Biotechnology, Second Edition, Vol. 6 (Amsterdam: Elsevier), pp. 447–461. [7] Kim, K.R., and Owens, G., 2011, Potential for Enhanced Phytoremediation of Landfills Using Biosolids – A Review. In: M. Moo-Young (Ed.) Comprehensive Biotechnology, Third Edition, Vol. 6 (Amsterdam: Elsevier), pp. 276–284. [8] Poornima, R., Suganya, K., and Sebastian, S.P., 2022, Biosolids towards Back-To-Earth alternative concept (BEA) for environmental sustainability: a review. Environmental Science and Pollution Research, 29, 3246–3287. doi: 10.1007/s11356-021-16639-8. [9] Wang, J., Xu, S., Zhao, K., Song, G., Zhao, S., and Liu, R., 2023, Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Science of The Total Environment, 877, 162772. doi: 10.1016/J.SCITOTENV.2023.162772. [10] Pan, B., Tian, H., Pan, B., Zhong, T., Xin, M., Ding, J., Wei, J., Huang, H.-J., Tang, J.-Q., Zhang, F., Feng, N.-X. and Mo, C.-H., 2024, Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. Science of The Total Environment, 957, 177758. doi: 10.1016/j.scitotenv.2024.177758. [11] Vaithyanathan, V.K., and Cabana, H., 2021, Integrated Biotechnology Management of Biosolids: Sustainable Ways to Produce Value-Added Products. Frontiers in Water, 3. doi: 10.3389/frwa.2021.729679. [12] Manjarrés-Hernández, E.H., Castellanos-Rozo, J.M., Galvis-López, J.A., and Merchán-Castellanos, N. A., 2021, Uso de biosólidos en Colombia: métodos de estabilización y aplicaciones a nivel agrícola. I3+, 4(1), 9–27. doi: 10.24267/23462329.792. [13] Kosma, C.I., Kapsi, M.G., Konstas, P.-S.G., Trantopoulos, E.P., Boti, V.I., Konstantinou, I.K., and Albanis, T.A., 2020, Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environmental Research, 191, 110152. doi: 10.1016/j.envres.2020.110152. [14] Kinney, C.A., and Heuvel, B.V., 2020, Translocation of pharmaceuticals and personal care products after land application of biosolids. Current Opinion in Environmental Science & Health, 14, 23–30. doi: 10.1016/j.coesh.2019.11.004. [15] Sidhu, H., Bae, H.S., Ogram, A., O’Connor, G., and Yu, F., 2021, Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils. Applied and Environmental Microbiology, 87(16). doi: 10.1128/aem.00373-21. [16] Ellen MacArthur Foundation, 2013, Towards the circular economy: Economic and business rationale for an accelerated transition (Cowes, UK: Ellen MacArthur Foundation). Available online at: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed 30 February 2025). [17] United Nations Economic Commission for Latin America and the Caribbean (CEPAL), 2022, Oportunidades de la economía circular en el tratamiento de aguas residuales en América Latina y el Caribe (Santiago: CEPAL). Available online at: https://repositorio.cepal.org/entities/publication/28d129e6-2774-4544-9437-fe8e5622aa50 (accessed 30 February 2025). [18] Anastas, P.T., and Warner, J.C., 1998, Green Chemistry: Theory and Practice. (Oxford:University Press). [19] Manahan, S.E., 2008, Fundamentals of Environmental Chemistry (Boca Raton: CRC Press). [20] Torres, P., Pérez, A., Escobar, J.C., Uribe, I.E., and Imery, R., 2007, Compostaje de biosólidos de plantas de tratamiento de aguas residuales. Engenharia Agrícola, 27(1), 267–275. doi: 10.1590/s0100-69162007000100021. [21] Darshan, K., Sagar, S.P., Vajramma, B., Shreedevasena, S., Ashajyothi, M., Asaiya, A.J.K., and Mishra, S.N., 2024, Medicinal potential of Turkey tail mushroom (Trametes versicolor): A comprehensive review. South African Journal of Botany, 172, 254–266. doi: 10.1016/j.sajb.2024.07.013. [22] Rodríguez-Rodríguez, C.E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., and Vicent, T., 2011, Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresource Technology, 102(10), 5602–5608. doi: 10.1016/j.biortech.2011.02.029. [23] Mir-Tutusaus, J.A., Parladé, E., Llorca, M., Villagrasa, M., Barceló, D., Rodríguez-Mozaz, S., Martínez-Alonso, M., Gaju, N., Caminal, G., and Sarrà, M., 2017, Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Research, 116, 65–75. doi: 10.1016/j.watres.2017.03.005. [24] Tormo-Budowski, R., Cambronero-Heinrichs, J.C., Durán, J.E., Masís-Mora, M., Ramírez-Morales, D., Quirós-Fournier, J.P., and Rodríguez-Rodríguez, C. E., 2021, Removal of pharmaceuticals and ecotoxicological changes in wastewater using Trametes versicolor: A comparison of fungal stirred tank and trickle-bed bioreactors. Chemical Engineering Journal, 410, 128210. doi: 10.1016/j.cej.2020.128210. [25] Saibi, S., Haroune, L., Savary, O., Bellenger, J.P., and Cabana, H., 2022, Impact of pharmaceutical compounds in the bioremediation of municipal biosolids by the white-rot fungus Trametes hirsuta. Frontiers in Fungal Biology, 3. doi: 10.3389/ffunb.2022.896043. [26] Pariente, M.I., Segura, Y., Álvarez-Torrellas, S., Casas, J.A., de Pedro, Z.M., Diaz, E., García, J., López-Muñoz, M.J., Marugán, J., Mohedano, A.F., Molina, R., Munoz, M., Pablos, C., Perdigón-Melón, J.A., Petre, A.L., Rodríguez, J.J., Tobajas, M., and Martínez, F., 2022, Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. Journal of Environmental Management, 320, 115769. doi: 10.1016/j.jenvman.2022.115769. [27] Rodríguez-Rodríguez, C.E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., and Vicent, T., 2012, Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Bioresource Technology, 46, 12012–12020. doi: 10.1021/es301788n. [28] Rodríguez-Rodríguez, C.E., Marco-Urrea, E., and Caminal, G., 2010, Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresource Technology, 101(7), 2259–2266. doi: 10.1016/j.biortech.2009.11.089. [29] Vélez, J.A., 2007, Los biosólidos: ¿una solución o un problema?. Producción + Limpia, 2(2), 57–71. [30] Bedoya-Urrego., K., Acevedo-Ruiz, J.M., Peláez-Jaramillo, C.A., and Agudelo-López, S., 2013, Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia). Revista de Salud Pública, 15(5), 778–790. [31] Autoridad Nacional de Licencias Ambientales (ANLA), 2024, Acta Reunión y Seguimiento Ambiental (Acta No. 288/2024) (Bogotá: ANLA). Available online at: https://www.anla.gov.co/images/documentos/actas/2024-07-19-anla-acta-288-24052024.pdf (accessed 30 February 2025). [32] Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), n.d., Erosión. Available online at: http://www.siac.gov.co/erosion (accessed 30 February 2025). [33] De la Cuesta, I., 2023, Productos fertilizantes en Colombia (Bogotá: Oficina Económica y Comercial de España en Colombia). Available online at: https://www.icex.es/content/dam/es/icex/oficinas/020/documentos/2023/09/anexos/FS_Productos%20fertilizantes%20en%20Colombia%202023_REV.pdf (accessed 30 February 2025). [34] ICONTEC, 2022, Norma Técnica Colombiana NTC 5167: Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo (Bogotá: Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC). [35] Food and Agriculture Organization of the United Nations (FAO), 2018, Protocolo de Monitoreo de Biosólidos (Lima: FAO Perú). Available online at: https://faolex.fao.org/docs/pdf/per177818anx.pdf (accessed 30 February 2025). [36] Dalecka, B., Strods, M., Juhna, T., and Rajarao, G.K., 2020, Removal of total phosphorus, ammonia nitrogen and organic carbon from non-sterile municipal wastewater with Trametes versicolor and Aspergillus luchuensis. Microbiological Research, 241, 126586. doi: 10.1016/j.micres.2020.126586. [37] Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K., 2021, Remediation of trace organic contaminants from biosolids: Influence of various pre-treatment strategies prior to Bacillus subtilis aerobic digestion. Chemical Engineering Journal, 419, 129966. doi: 10.1016/j.jhazmat.2020.123872. [38] Rodríguez-Rodríguez, C.E., Lucas, D., Barón, E., Gago-Ferrero, P., Molins-Delgado, D., Rodríguez-Mozaz, S., Eljarrat, E., Díaz-Cruz, M.S., Barceló, D., Caminal, G., and Vicent, T., 2014, Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge. Bioresource Technology, 168, 180–189. doi: 10.1016/j.cej.2021.129966. [39] Hanna Instruments México, 2018, Preparación de una muestra de suelo para medir pH y CE. Available online at: https://www.youtube.com/watch?v=84WwlO6zHs4 (accessed 30 February 2025). [40] Ortiz, G., Quintero-Lizaola, P.L., Espinoza-Hernández, R., Benedicto-Valdés, G.S., and Sánchez-Colín, M.J., 2012, Respiración de CO₂ como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamericana, 30(4), 355–362. [41] Llorens-Blanch, G., Parladé, E., Martinez-Alonso, M., Gaju, N., Caminal, G., and Blánquez, P., 2018, A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge: Drug content and microbial evaluation. Waste Management, 72, 206–217. doi: 10.1016/j.wasman.2017.10.048. [42] Carballa, M., Omil, F., Ternes, T., and Lema, J.M., 2007, Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41(10), 2139–2150. doi: 10.1016/j.watres.2007.02.012. [43] Phan, H.V., Wickham, R., Xie, S., McDonald, J.A., Khan, S.J., Ngo, H.H., Guo, W., and Nghiem, L.D., 2018, The fate of trace organic contaminants during anaerobic digestion of primary sludge: A pilot scale study. Bioresource Technology, 256, 384–390. doi: 10.1016/j.biortech.2018.02.040. [44] Samaras, V.G., Stasinakis, A.S., Thomaidis, N.S., Mamais, D., and Lekkas, T.D., 2014, Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge. Bioresource Technology, 162, 365–372. doi:10.1016/j.biortech.2014.03.154. [45] Gallardo-Altamirano, M.J., Maza-Márquez, P., Montemurro, N., Pérez, S., Rodelas, B., Osorio, F., and Pozo, C., 2021, Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. Science of The Total Environment, 789, 147869. doi: 10.1016/j.scitotenv.2021.147869. [46] Narumiya, M., Nakada, N., Yamashita, N., and Tanaka, H., 2013, Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. Journal of Hazardous Materials, 260, 305–312. doi: 10.1016/j.jhazmat.2013.05.032. [47] vom Eyser, C., Palmu, K., Schmidt, T.C., and Tuerk, J., 2015, Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization. Science of The Total Environment, 537, 180–186. doi: 10.1016/j.scitotenv.2015.08.021. [48] Varjúová, D., Staňová, A.V., Grabicová, K., et al., 2025, Thermal methods of sludge processing—are they suitable for pharmaceuticals and illicit drugs removal from sewage sludge?. Biomass Conversion and Biorefinery, 15, 5247–5256. doi: 10.1007/s13399-024-05409-4. [49] Martín, J., Camacho-Muñoz, M.D., Santos, J.L., Aparicio, I., and Alonso, E., 2012, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils. Journal of Environmental Management, 102, 18–25. doi: 10.1016/j.jenvman.2012.02.020. [50] Gros, M., Ahrens, L., Levén, L., Koch, A., Dalahmeh, S., Ljung, E., Lundin, G., Jönsson, H., Eveborn, D., and Wiberg, K., 2020, Pharmaceuticals in source separated sanitation systems: Fecal sludge and blackwater treatment. Science of The Total Environment, 703, 135530. doi: 10.1016/j.scitotenv.2019.135530. [51] Angeles-De Paz, G., Cubero-Cardoso, J., Pozo, C., Calvo, C., Aranda, E., and Robledo-Mahón, T., 2025, Optimizing bioaugmentation for pharmaceutical stabilization of sewage sludge: A study on short-term composting under real conditions. Journal of Fungi, 11(1), 67. doi: 10.3390/jof11010067. [52] Aboulfotoh, A.M., Fouad, H.A., Bakry, A.Y., and El-hefny, R., 2022, Viscosity and total organic carbon removal in high-solid anaerobic digestion of sewage sludge. Engineering Research Journal – Faculty of Engineering (Shoubra), 51(3), 60–66. doi: 10.21608/erjsh.2022.249387. [53] Bauer, A., Mayr, H., Hopfner-Sixt, K., and Amon, T., 2009, Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. Journal of Biotechnology, 142(1), 56–63. doi: 10.1016/j.jbiotec.2009.01.016. [54] Szaja, A., Montusiewicz, A., and Lebiocka, M., 2023, Variability of micro- and macro-elements in anaerobic co-digestion of municipal sewage sludge and food industrial by-products. International Journal of Environmental Research and Public Health, 20(7), 5405. doi: 10.3390/ijerph20075405. [55] Guo, Y., Guo, Y., Gong, H., Fang, N., Tan, Y., Zhou, W., Huang, J., Dai, L., and Dai, X., 2021, Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion–solar drying–land utilization process”: Case study in China. Science of The Total Environment, 801, 149609. doi: 10.1016/j.scitotenv.2021.149609. [56] Giraldo, Ó., and Lozano de Yunda, A., 2006, Efecto del secado de los biosólidos de la planta de tratamiento de aguas residuales El Salitre (Bogotá) sobre su contenido de nutrientes, metales pesados y patógenos. Agronomía Colombiana, 24(2), 348–354. [57] Toledo, M., Márquez, P., Siles, J.A., Chica, A.F., and Martín, M.A., 2019, Co-composting of sewage sludge and eggplant waste at full scale: Feasibility study to valorize eggplant waste and minimize the odoriferous impact of sewage sludge. Journal of Environmental Management, 247, 205–213. doi: 10.1016/j.jenvman.2019.06.076. [58] Torres, P., Pérez, A., Escobar, J.C., and Uribe, I.E., 2007, Compostaje de biosólidos de plantas de tratamiento de aguas residuales. Engenharia Agrícola, 27(1). doi: 10.1590/S0100-69162007000100021. [59] Awasthi, M.K., Wang, Q., Chen, H., Wang, M., Ren, X., Zhao, J., Li, J., Guo, D., Li, D.-S., Awasthi, S.K., Sun, X., and Zhang, Z., 2017, Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost. Bioresource Technology, 237, 156–166. doi: 10.1016/j.biortech.2017.01.044. [60] Ribeiro, M.G.T.C., Costa, D.A., and Machado, A.A.S.C., 2010, Green Star: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chemistry Letters and Reviews, 3(2), 149–159. doi: 10.1080/17518251003782485. [61] Thermo Fisher Scientific, n.d., Oxoid™ Malt Extract. Available online at: https://www.thermofisher.com/order/catalog/product/LP0039B/tabs?defaultTab=2 (accessed 3 May 2025). [62] Carl Roth, 2024, Agua destilada (3478). Available online at: https://www.carlroth.com/medias/SDB-3478-ES-ES.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMzcwNzh8YXBwbGljYXRpb24vcGRmfGFHVmlMMmc1TWk4NU1UZ3lNamc1T1RJd01ETXdMMU5FUWw4ek5EYzRYMFZUWDBWVExuQmtaZ3w5OWRmMDY5Y2EyNzUyNDA2Nzg2MGYyN2Q2ZmExYjgwMzg3MDNhNDIyMWY3NDhhNzMxMmM4OGRlMjg3YzcwYjM2 (accessed 3 May 2025). [63] Ardent Mills, 2022, Wheat Bran Safety Data Sheet. Available online at: https://www.ardentmills.com/media/3442/ardent-mills-wheat-bran-10172022.pdf (accessed 3 May 2025). [64] Thermo Fisher Scientific, n.d., Oxoid – Product Detail. Available online at: http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=LP0039. (accessed 3 May 2025). [65] United States Environmental Protection Agency, 2003, Biosolids Technology Fact Sheet: Gravity Thickening (Washington, D.C.: U.S. EPA, EPA 832-F-03-022). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/gravity-thickening-factsheet.pdf (accessed 3 May 2025). [66] Brown, J.L., Handler, R.M., Becker, J.G., and Seagren, E.A., 2025, Environmental life cycle assessment of Class A biosolids production using conventional and low-cost, low-tech processes at small water resource recovery facilities. Applied Sciences, 15(7), 3482. doi: 10.3390/app15073482. [67] Yang, H., Guo, Y., Fang, N., and Dong, B., 2023, Life cycle assessment of sludge anaerobic digestion combined with land application treatment route: Greenhouse gas emission and reduction potential. Journal of Environmental Chemical Engineering, 11(6), 111255. doi: 10.1016/j.jece.2023.111255. [68] Hubbe, M., Nazhad, M., and Sanchez, C., 2010, Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 5(4), 2808–2854. doi: 10.15376/biores.5.4.2808-2854. [69] Bennamoun, L., Arlabosse, P., and Leonard, A., 2013, Review on fundamental aspect of application of drying process to wastewater sludge. Renewable and Sustainable Energy Reviews, 28, 29–43. doi: 10.1016/j.rser.2013.07.043. [70] Karadirek, I.E., Erkaya, O., and Ciggin, A.S., 2025, Comparative life cycle assessment of sewage sludge drying by solar and thermal drying technologies. Waste Management, 201, 114826. doi: 10.1016/j.wasman.2025.114826. [71] United States Environmental Protection Agency, 2006, Biosolids Technology Fact Sheet: Heat Drying (Washington, D.C.: U.S. EPA, EPA 832-F-06-029). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/heat-drying-factsheet.pdf (accessed 3 May 2025). [72] United States Environmental Protection Agency, 2025, Clean Air Act Text. Available online at: https://www.epa.gov/clean-air-act-overview/clean-air-act-text (accessed 3 May 2025). [73] Grgas, D., Štefanac, T., Barešić, M., Toromanović, M., Ibrahimpašić, J., Vukušić Pavičić, T., Habuda-Stanić, M., Herceg, Z., and Landeka Dragičević, T., 2022, Co-composting of sewage sludge, green waste, and food waste. Journal of Sustainable Development of Energy, Water and Environment Systems. doi: 10.13044/j.sdewes.d10.0415. [74] Sánchez, Ó.J., Ospina, D.A., and Montoya, S., 2017, Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136–153. doi: 10.1016/j.wasman.2017.08.012. [75] Perdomo Rivera, C.O., 2014, Diagnóstico del sistema de “lodos activados” de la planta de tratamiento de aguas residuales Funza, Cundinamarca, Colombia [Specialization thesis, Universidad de Los Andes] (Bogotá: Universidad de Los Andes). Available online at: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/967d59ef-da81-4b4e-a826-ded8a8e2b387/content/ (accessed 10 May 2025). [76] Vásquez-Alemán, J.P., and Vargas-Martínez, G., 2018, Aprovechamiento de lodos de la planta de tratamiento de aguas residuales del municipio de Funza como insumo de cultivo y mejoramiento del suelo [Undergraduate thesis, Universidad Católica de Colombia] (Bogotá: Universidad Católica de Colombia). Available online at: https://repository.ucatolica.edu.co/server/api/core/bitstreams/0b4e8d61-3b56-4245-b62b-160151992fad/content (accessed 10 May 2025). [77] Salamanca Rojas, N., 2019, Determinación del estado de cumplimiento de la norma para vertimientos realizados al alcantarillado público de los municipios de Mosquera y Funza [Undergraduate thesis, Universidad de Cundinamarca] (Cundinamarca: Universidad de Cundinamarca). Available online at: https://repositorio.ucundinamarca.edu.co/server/api/core/bitstreams/7747af2b-053b-427c-bba8-6f1e13d9639d/content (accessed 10 May 2025). [78] Geng, H., Xu, Y., Zheng, L., Gong, H., Dai, L., and Dai, X., 2020, An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, 266(2), 115375. doi: 10.1016/j.envpol.2020.115375. [79] Cristancho-Torres, A.C., 2022, Diseño de un proceso para la producción de abono orgánico a partir de lodos residuales generados en la PTAR del municipio de Funza, Cundinamarca [Undergraduate thesis, Fundación Universidad de América] (Bogotá: Universidad de América). Available online at: https://repository.uamerica.edu.co/items/5a0ddb61-1d6d-4534-a2b9-91ccbd3114e7 (accessed 10 May 2025). [80] Rigby, H., Clarke, B.O., Pritchard, D.L., Meehan, B., Beshah, F., Smith, S.R., and Porter, N.A., 2016, A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of The Total Environment, 541, 1310–1338. doi: 10.1016/j.scitotenv.2015.08.089. [81] Rouch, D.A., Fleming, V.A., Pai, S., Deighton, M., Blackbeard, J., and Smith, S.R., 2011, Nitrogen release from air-dried biosolids for fertilizer value. Soil Use and Management. 27(3), 294-304. doi: 10.1111/j.1475-2743.2011.00338.x. [82] United States Environmental Protection Agency, 2000, Guide to Field Storage of Biosolids (Washington, D.C.: U.S. EPA, EPA 832-B-00-007). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/guide-field-storage-biosolids.pdf (accessed 10 May 2025). [83] Sharma, D., Garlapati, V.K., and Goel, G., 2016, Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered, 7(2), 88–97. doi: 10.1080/21655979.2016.1160190. [84] Irbe, I., Elisashvili, V., Asatiani, M.D., Janberga, A., Andersone, I., Andersons, B., Biziks, V., and Grinins, J., 2014, Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. International Biodeterioration & Biodegradation, 86, 71–78. doi: 10.1016/j.ibiod.2013.06.027. [85] Sundberg, C., and Jönsson, H., 2008, Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Management, 28(3), 518–526. doi: 10.1016/j.wasman.2007.01.011. [86] Gong, X., Li, S., Sun, X., Zhang, L., Zhang, T., and Wei, L., 2016, Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium. Environmental Technology, 38(7), 872–879. doi: 10.1080/09593330.2016.1214622. [87] Hossain Molla, A., Fakhru’l-Razi, A., and Zahangir Alam, M., 2004, Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique. Water Research, 38(19), 4143–4152. doi: 10.1016/j.watres.2004.08.002. [88] Anishla, T., Wong, J., and Selvam, A., 2024, Enhancing nitrogen content of compost through addition of oil residues as co-substrates during food waste composting. African Journal of Biological Sciences, 6(3). doi: 10.33472/AFJBS.6.Si3.2024.365-379. [89] Ramezan, D., Alizade Jahan Abadi, B., Samzade Kermani, A., Pirnia, M., and Farrokhzad, Y., 2021, Cultivation of Turkey tail mushroom (Trametes versicolor) on lignocellulosic wastes and evaluation of substrate bioconversion. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 91, 777-787 doi: 10.1007/s40011-021-01269-4. [90] Desisa, B., Muleta, D., Jida, M., Dejene, T., Goshu, A., Negi, T., and Martin-Pinto, P., 2024, Domestication of wild-growing Turkey tail mushroom (Trametes versicolor) from Ethiopian forests on augmented agro-industrial byproducts. Mycological Progress, 23(62). doi: 10.1007/s11557-024-01993-x. [91] del Cerro, C., Erickson, E., Dong, T., Wong, A.R., Eder, E.K., Purvine, S.O., Mitchell, H.D., Weitz, K.K., Markillie, L.M., Burnet, M.C., Hoyt, D.W., Chu, R.K., Cheng, J.-F., Ramirez, K.J., Katahira, R., Xiong, W., Himmel, M.E., Subramanian, V., Linger, J.G., and Salvachúa, D., 2021, Intracellular pathways for lignin catabolism in white-rot fungi. Proceedings of the National Academy of Sciences, 118(9), Article e2017381118. doi: 10.1073/pnas.2017381118. [92] Jin, G., Zhao, Y., Xin, S., Li, T., and Xu, Y., 2024, Solid-state fermentation engineering of traditional Chinese fermented food. Foods, 13(18), 3003. doi: 10.3390/foods13183003. [93] Ahmad, A.M., Ugya, A.Y., and Isah, H.A., 2019, Mineralization and mobilization of biosolids phosphorus in soil: A concise review. Journal of Applied Biology & Biotechnology, 7(5), 98–106. doi: 10.7324/jabb.2019.70516. [94] Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P., and Lumyong, S., 2020, Bioprocess for production, characteristics, and biotechnological applications of fungal phytases. Frontiers in Microbiology, 11. doi: 10.3389/fmicb.2020.00188. [95] Boardman, K., Sun, X., Yao, D., Chen, C., van Lierop, L., and Hu, B., 2025, Increasing the nutritional value of camelina meal via Trametes versicolor solid-state fermentation with various co-substrates. Fermentation, 11(2), 77. doi: 10.3390/fermentation11020077. [96] Li, C., Stump, M., Wu, W., and Li, Y., 2023, Exploring the chemical composition, antioxidant potential, and bread quality effects of the nutritional powerhouse: Wheat bran – A mini-review. Journal of Agriculture and Food Research, Article 100898. doi: 10.1016/j.jafr.2023.100898. [97] Ministerio de Salud y Protección Social, 2013, Resolución 4506 de 2013: Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones (Bogotá: Diario Oficial No. 48.960, 31 de octubre). Available online at: https://www.suin-juriscol.gov.co/viewDocument.asp?id=30042077 (accessed 10 May 2025). [98] Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., and Mechichi, T., 2012, Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677–682. doi: 10.1016/j.chemosphere.2012.03.053. [99] Reimer, M., Kopp, C., Hartmann, T., Zimmermann, H., Ruser, R., Schulz, R., Müller, T., and Möller, K., 2023, Assessing long-term effects of compost fertilization on soil fertility and nitrogen mineralization rate. Journal of Plant Nutrition and Soil Science, 186(2), 217-233 doi: 10.1002/jpln.202200270. [100] Maheswari, M., Murthy, A.N.G., and Shanker, A.K., 2017, Nitrogen nutrition in crops and its importance in crop quality. In: Y.P. Abrol and A. Singh (Eds) The Indian Nitrogen Assessment (San Diego: Elsevier), pp. 175–186. [101] Brust, G.E., 2019, Management strategies for organic vegetable fertility. In: C.M. Williams and J.E. Cooper (Eds) Safety and Practice for Organic Food (San Diego: Elsevier), pp. 193–212. [102] Ye, P., Fang, L., Song, D., Zhang, M., Li, R., Awasthi, M.K., Zhang, Z., Xiao, R., and Chen, X., 2022, Insights into carbon loss reduction during aerobic composting of organic solid waste: A meta-analysis and comprehensive literature review. Science of The Total Environment, 862, 160787. doi: 10.1016/j.scitotenv.2022.160787. [103] Sun, Z., Liu, Q., Li, Y., Mazarji, M., Feng, L., and Pan, J., 2024, Deciphering the impact of lignin on anaerobic digestion: Focus on inhibition mechanisms and methods for alleviating inhibition. ACS Omega. 9, 44033–44041. doi: 10.1021/acsomega.4c04375. [104] Angeles-de Paz, G., León-Morcillo, R., Guzmán, S., Robledo-Mahón, T., Pozo, C., Calvo, C., and Aranda, E., 2023, Pharmaceutical active compounds in sewage sludge: Degradation improvement and conversion into an organic amendment by bioaugmentation-composting processes. Waste Management, 168, 167–178. doi: 10.1016/j.wasman.2023.05.055. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Ambiental |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/12afd65b-2fee-4513-8dd8-695d08f7d597/download https://repositorio.unbosque.edu.co/bitstreams/a452c7d3-a29b-49ee-91ae-ee7b801f4afe/download https://repositorio.unbosque.edu.co/bitstreams/3cb5a950-053e-4215-b78e-2fe66e421ad8/download https://repositorio.unbosque.edu.co/bitstreams/db360cae-93bf-4348-a576-8a190378cef5/download https://repositorio.unbosque.edu.co/bitstreams/c58566c5-dd67-4832-9925-2a17aa036ed5/download https://repositorio.unbosque.edu.co/bitstreams/445afc25-0e57-4909-a04c-52e6043f30cb/download https://repositorio.unbosque.edu.co/bitstreams/1fc4d0a8-ba0f-4b63-9ed7-0b518b13d38f/download https://repositorio.unbosque.edu.co/bitstreams/5641efaa-9617-4c0f-becb-42f4ac9675cf/download https://repositorio.unbosque.edu.co/bitstreams/075b5505-70ac-4d30-8934-79876fc219ee/download https://repositorio.unbosque.edu.co/bitstreams/755fe5a9-caf8-4468-b613-9dfcd416e883/download |
bitstream.checksum.fl_str_mv |
2300adb53a5734f436c6ffd4c6b95f5a 59bb5b88cf2e6279e7f3d6811a0c4ad2 17cc15b951e7cc6b3728a574117320f9 4d16c7e590081c0b1a7ef5277a88004f f1c705576e6e06093330e17480775703 3b6ce8e9e36c89875e8cf39962fe8920 1baa7b12bff6d11228f2625e38404f21 dfbe07bac9ecaf8c72839ebd528dbacf 4faa121dda25b607dafd40431622daab eeb4b4f89dcf6a25303e91f93cf293f2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1836751968269238272 |
spelling |
Figueroa del Castillo, LilianaFung, Yih WenBoada Hurtado, Luisa FernandaBaquero Cardona, MariapazBaquero Cardona, Mariapaz [0009-0009-8713-3167]2025-06-05T14:17:38Z2025-06-05T14:17:38Z2025-05https://hdl.handle.net/20.500.12495/14558instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa valorización de biosólidos, provenientes de plantas de tratamiento de aguas residuales domésticas, puede promover el mejoramiento de las condiciones de fertilidad del suelo. Sin embargo, la presencia de contaminantes emergentes, sustancias con riesgos poco identificados o regulados, limita su aplicación directa. Si bien Trametes versicolor, hongo ligninolítico, ha sido ampliamente investigado como herramienta de biorremediación, aún se desconoce su impacto en la calidad nutricional resultante. Este estudio tuvo como objetivo evaluar el potencial de valorización de biosólidos con T. versicolor frente a sus condiciones nutricionales, bajo una óptica de viabilidad como estrategia sostenible frente a métodos tradicionales de estabilización. Se diseñaron 4 tratamientos in vitro, utilizando biosólidos no estériles con y sin adición de salvado de trigo y T. versicolor. Durante 40 días, se monitorearon parámetros físicos, químicos y nutricionales, acompañados de un bioensayo de fitotoxicidad en semillas de tomate (Solanum lycospersicum) y un análisis comparativo de sostenibilidad basado en revisión de literatura y estimación del acercamiento verde. Se estableció, de acuerdo con los resultados y la NTC 5167:2022, que los tratamientos con T. versicolor retuvieron mayor contenido de materia orgánica (-55,05%), incrementaron las concentraciones de fosfatos (1768,55%) y potasio (681,87%) y alcanzaron índices de germinación superiores al 80%. Asimismo, obtuvieron el mayor acercamiento verde (61%) y la segunda mayor remoción de contaminantes emergentes (67,9%) de acuerdo con la revisión bibliográfica. En conjunto, se validó parcialmente la hipótesis de que T. versicolor puede ser una alternativa eficaz para la valorización sostenible de biosólidos en línea con la química verde.Grupo de investigación de Fisiología de Hongos de la Universidad Nacional de ColombiaIngeniero AmbientalPregradoThe valorization of biosolids from domestic wastewater treatment plants can promote the improvement of soil fertility conditions. However, the presence of emerging contaminants—substances with poorly identified or regulated risks—limits their direct application. Although Trametes versicolor, a ligninolytic fungus, has been widely investigated as a bioremediation tool, its impact on the resulting nutritional quality remains unknown. This study aimed to evaluate the valorization potential of biosolids with T. versicolor regarding their nutritional conditions, from a viability perspective as a sustainable strategy compared to traditional stabilization methods. Four in vitro treatments were designed using non-sterile biosolids with and without the addition of wheat bran and T. versicolor. Over 40 days, physical, chemical, and nutritional parameters were monitored, accompanied by a phytotoxicity bioassay on tomato seeds (Solanum lycopersicum) and a comparative sustainability analysis based on literature review and estimation of the green approach. It was established, according to the results and the NTC 5167:2022 standard, that the treatments with T. versicolor retained higher organic matter content (-55.05%), increased phosphate (1768.55%) and potassium (681.87%) concentrations, and achieved germination indices above 80%. Likewise, they obtained the highest green approach (61%) and the second highest removal of emerging contaminants (67.9%) according to the literature review. Taken together, the hypothesis that T. versicolor can be an effective alternative for the sustainable valorization of biosolids in line with green chemistry was partially validated.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Química verdeSostenibilidadMicorremediaciónPlanta de tratamiento de aguas residualesTrametes versicolor628Green chemistrySustainabilityMycoremediationWaste water treatment plantTrametes versicolorAnálisis de una propuesta de tratamiento biológico de biosólidos como un aporte sostenible a la valorización de residuos: Caso de estudio de una PTAR en Funza-Cundinamarca, ColombiaAnalysis of a proposal for the biological treatment of biosolids as a sustainable contribution to waste valorization: Case study of a WWTP in Funza-Cundinamarca, ColombiaIngeniería AmbientalUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] Yang, S., Zhao, W., Liu, Y., Cherubini, F., Fu, B., and Pereira, P., 2020, Prioritizing sustainable development goals and linking them to ecosystem services: A global expert's knowledge evaluation. Geography and Sustainability, 1(4), 321–330. doi: 10.1016/j.geosus.2020.09.004.[2] Marchuk, S., Tait, S., Sinha, P., Harris, P., Antille, D.L., and McCabe, B.K., 2023, Biosolids-derived fertilisers: A review of challenges and opportunities. Science of The Total Environment, 875, 162555. doi: 10.1016/j.scitotenv.2023.162555.[3] Presidencia de la República, 2014, Decreto 1287 de 2014: Por el cual se establecen criterios para el uso de los biosólidos generados en plantas de tratamiento de aguas residuales municipales (Bogotá, Colombia: Diario Oficial No. 49208, 10 de julio). Available online at: https://www.suin-juriscol.gov.co/viewDocument.asp?ruta=Decretos/1259502 (accessed 30 February 2025).[4] Mohajerani, A., Lound, S., Liassos, G., Kurmus, H., Ukwatta, A., and Nazari, M., 2017, Physical, mechanical and chemical properties of biosolids and raw brown coal fly ash, and their combination for road structural fill applications. Journal of Cleaner Production, 166, 1–11. doi: 10.1016/j.jclepro.2017.07.250.[5] Bora, A.P., Gupta, D.P., and Durbha, K.S., 2020, Sewage sludge to bio-fuel: A review on the sustainable approach of transforming sewage waste to alternative fuel. Fuel, 259, 116262. doi: 10.1016/j.fuel.2019.116262.[6] Tezel, U., Tandukar, M., and Pavlostathis, S.G., 2011, Anaerobic Biotreatment of Municipal Sewage Sludge. In: M. Moo-Young (Ed.) Comprehensive Biotechnology, Second Edition, Vol. 6 (Amsterdam: Elsevier), pp. 447–461.[7] Kim, K.R., and Owens, G., 2011, Potential for Enhanced Phytoremediation of Landfills Using Biosolids – A Review. In: M. Moo-Young (Ed.) Comprehensive Biotechnology, Third Edition, Vol. 6 (Amsterdam: Elsevier), pp. 276–284.[8] Poornima, R., Suganya, K., and Sebastian, S.P., 2022, Biosolids towards Back-To-Earth alternative concept (BEA) for environmental sustainability: a review. Environmental Science and Pollution Research, 29, 3246–3287. doi: 10.1007/s11356-021-16639-8.[9] Wang, J., Xu, S., Zhao, K., Song, G., Zhao, S., and Liu, R., 2023, Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review. Science of The Total Environment, 877, 162772. doi: 10.1016/J.SCITOTENV.2023.162772.[10] Pan, B., Tian, H., Pan, B., Zhong, T., Xin, M., Ding, J., Wei, J., Huang, H.-J., Tang, J.-Q., Zhang, F., Feng, N.-X. and Mo, C.-H., 2024, Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. Science of The Total Environment, 957, 177758. doi: 10.1016/j.scitotenv.2024.177758.[11] Vaithyanathan, V.K., and Cabana, H., 2021, Integrated Biotechnology Management of Biosolids: Sustainable Ways to Produce Value-Added Products. Frontiers in Water, 3. doi: 10.3389/frwa.2021.729679.[12] Manjarrés-Hernández, E.H., Castellanos-Rozo, J.M., Galvis-López, J.A., and Merchán-Castellanos, N. A., 2021, Uso de biosólidos en Colombia: métodos de estabilización y aplicaciones a nivel agrícola. I3+, 4(1), 9–27. doi: 10.24267/23462329.792.[13] Kosma, C.I., Kapsi, M.G., Konstas, P.-S.G., Trantopoulos, E.P., Boti, V.I., Konstantinou, I.K., and Albanis, T.A., 2020, Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environmental Research, 191, 110152. doi: 10.1016/j.envres.2020.110152.[14] Kinney, C.A., and Heuvel, B.V., 2020, Translocation of pharmaceuticals and personal care products after land application of biosolids. Current Opinion in Environmental Science & Health, 14, 23–30. doi: 10.1016/j.coesh.2019.11.004.[15] Sidhu, H., Bae, H.S., Ogram, A., O’Connor, G., and Yu, F., 2021, Azithromycin and Ciprofloxacin Can Promote Antibiotic Resistance in Biosolids and Biosolids-Amended Soils. Applied and Environmental Microbiology, 87(16). doi: 10.1128/aem.00373-21.[16] Ellen MacArthur Foundation, 2013, Towards the circular economy: Economic and business rationale for an accelerated transition (Cowes, UK: Ellen MacArthur Foundation). Available online at: https://www.ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed 30 February 2025).[17] United Nations Economic Commission for Latin America and the Caribbean (CEPAL), 2022, Oportunidades de la economía circular en el tratamiento de aguas residuales en América Latina y el Caribe (Santiago: CEPAL). Available online at: https://repositorio.cepal.org/entities/publication/28d129e6-2774-4544-9437-fe8e5622aa50 (accessed 30 February 2025).[18] Anastas, P.T., and Warner, J.C., 1998, Green Chemistry: Theory and Practice. (Oxford:University Press).[19] Manahan, S.E., 2008, Fundamentals of Environmental Chemistry (Boca Raton: CRC Press).[20] Torres, P., Pérez, A., Escobar, J.C., Uribe, I.E., and Imery, R., 2007, Compostaje de biosólidos de plantas de tratamiento de aguas residuales. Engenharia Agrícola, 27(1), 267–275. doi: 10.1590/s0100-69162007000100021.[21] Darshan, K., Sagar, S.P., Vajramma, B., Shreedevasena, S., Ashajyothi, M., Asaiya, A.J.K., and Mishra, S.N., 2024, Medicinal potential of Turkey tail mushroom (Trametes versicolor): A comprehensive review. South African Journal of Botany, 172, 254–266. doi: 10.1016/j.sajb.2024.07.013.[22] Rodríguez-Rodríguez, C.E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., and Vicent, T., 2011, Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresource Technology, 102(10), 5602–5608. doi: 10.1016/j.biortech.2011.02.029.[23] Mir-Tutusaus, J.A., Parladé, E., Llorca, M., Villagrasa, M., Barceló, D., Rodríguez-Mozaz, S., Martínez-Alonso, M., Gaju, N., Caminal, G., and Sarrà, M., 2017, Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Research, 116, 65–75. doi: 10.1016/j.watres.2017.03.005.[24] Tormo-Budowski, R., Cambronero-Heinrichs, J.C., Durán, J.E., Masís-Mora, M., Ramírez-Morales, D., Quirós-Fournier, J.P., and Rodríguez-Rodríguez, C. E., 2021, Removal of pharmaceuticals and ecotoxicological changes in wastewater using Trametes versicolor: A comparison of fungal stirred tank and trickle-bed bioreactors. Chemical Engineering Journal, 410, 128210. doi: 10.1016/j.cej.2020.128210.[25] Saibi, S., Haroune, L., Savary, O., Bellenger, J.P., and Cabana, H., 2022, Impact of pharmaceutical compounds in the bioremediation of municipal biosolids by the white-rot fungus Trametes hirsuta. Frontiers in Fungal Biology, 3. doi: 10.3389/ffunb.2022.896043.[26] Pariente, M.I., Segura, Y., Álvarez-Torrellas, S., Casas, J.A., de Pedro, Z.M., Diaz, E., García, J., López-Muñoz, M.J., Marugán, J., Mohedano, A.F., Molina, R., Munoz, M., Pablos, C., Perdigón-Melón, J.A., Petre, A.L., Rodríguez, J.J., Tobajas, M., and Martínez, F., 2022, Critical review of technologies for the on-site treatment of hospital wastewater: From conventional to combined advanced processes. Journal of Environmental Management, 320, 115769. doi: 10.1016/j.jenvman.2022.115769.[27] Rodríguez-Rodríguez, C.E., Jelić, A., Llorca, M., Farré, M., Caminal, G., Petrović, M., Barceló, D., and Vicent, T., 2012, Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities. Bioresource Technology, 46, 12012–12020. doi: 10.1021/es301788n.[28] Rodríguez-Rodríguez, C.E., Marco-Urrea, E., and Caminal, G., 2010, Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresource Technology, 101(7), 2259–2266. doi: 10.1016/j.biortech.2009.11.089.[29] Vélez, J.A., 2007, Los biosólidos: ¿una solución o un problema?. Producción + Limpia, 2(2), 57–71.[30] Bedoya-Urrego., K., Acevedo-Ruiz, J.M., Peláez-Jaramillo, C.A., and Agudelo-López, S., 2013, Caracterización de biosólidos generados en la planta de tratamiento de agua residual San Fernando, Itagüí (Antioquia, Colombia). Revista de Salud Pública, 15(5), 778–790.[31] Autoridad Nacional de Licencias Ambientales (ANLA), 2024, Acta Reunión y Seguimiento Ambiental (Acta No. 288/2024) (Bogotá: ANLA). Available online at: https://www.anla.gov.co/images/documentos/actas/2024-07-19-anla-acta-288-24052024.pdf (accessed 30 February 2025).[32] Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), n.d., Erosión. Available online at: http://www.siac.gov.co/erosion (accessed 30 February 2025).[33] De la Cuesta, I., 2023, Productos fertilizantes en Colombia (Bogotá: Oficina Económica y Comercial de España en Colombia). Available online at: https://www.icex.es/content/dam/es/icex/oficinas/020/documentos/2023/09/anexos/FS_Productos%20fertilizantes%20en%20Colombia%202023_REV.pdf (accessed 30 February 2025).[34] ICONTEC, 2022, Norma Técnica Colombiana NTC 5167: Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo (Bogotá: Instituto Colombiano de Normas Técnicas y Certificación - ICONTEC).[35] Food and Agriculture Organization of the United Nations (FAO), 2018, Protocolo de Monitoreo de Biosólidos (Lima: FAO Perú). Available online at: https://faolex.fao.org/docs/pdf/per177818anx.pdf (accessed 30 February 2025).[36] Dalecka, B., Strods, M., Juhna, T., and Rajarao, G.K., 2020, Removal of total phosphorus, ammonia nitrogen and organic carbon from non-sterile municipal wastewater with Trametes versicolor and Aspergillus luchuensis. Microbiological Research, 241, 126586. doi: 10.1016/j.micres.2020.126586.[37] Vaithyanathan, V.K., Cabana, H., Vaidyanathan, V.K., 2021, Remediation of trace organic contaminants from biosolids: Influence of various pre-treatment strategies prior to Bacillus subtilis aerobic digestion. Chemical Engineering Journal, 419, 129966. doi: 10.1016/j.jhazmat.2020.123872.[38] Rodríguez-Rodríguez, C.E., Lucas, D., Barón, E., Gago-Ferrero, P., Molins-Delgado, D., Rodríguez-Mozaz, S., Eljarrat, E., Díaz-Cruz, M.S., Barceló, D., Caminal, G., and Vicent, T., 2014, Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge. Bioresource Technology, 168, 180–189. doi: 10.1016/j.cej.2021.129966.[39] Hanna Instruments México, 2018, Preparación de una muestra de suelo para medir pH y CE. Available online at: https://www.youtube.com/watch?v=84WwlO6zHs4 (accessed 30 February 2025).[40] Ortiz, G., Quintero-Lizaola, P.L., Espinoza-Hernández, R., Benedicto-Valdés, G.S., and Sánchez-Colín, M.J., 2012, Respiración de CO₂ como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamericana, 30(4), 355–362.[41] Llorens-Blanch, G., Parladé, E., Martinez-Alonso, M., Gaju, N., Caminal, G., and Blánquez, P., 2018, A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge: Drug content and microbial evaluation. Waste Management, 72, 206–217. doi: 10.1016/j.wasman.2017.10.048.[42] Carballa, M., Omil, F., Ternes, T., and Lema, J.M., 2007, Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41(10), 2139–2150. doi: 10.1016/j.watres.2007.02.012.[43] Phan, H.V., Wickham, R., Xie, S., McDonald, J.A., Khan, S.J., Ngo, H.H., Guo, W., and Nghiem, L.D., 2018, The fate of trace organic contaminants during anaerobic digestion of primary sludge: A pilot scale study. Bioresource Technology, 256, 384–390. doi: 10.1016/j.biortech.2018.02.040.[44] Samaras, V.G., Stasinakis, A.S., Thomaidis, N.S., Mamais, D., and Lekkas, T.D., 2014, Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge. Bioresource Technology, 162, 365–372. doi:10.1016/j.biortech.2014.03.154.[45] Gallardo-Altamirano, M.J., Maza-Márquez, P., Montemurro, N., Pérez, S., Rodelas, B., Osorio, F., and Pozo, C., 2021, Insights into the removal of pharmaceutically active compounds from sewage sludge by two-stage mesophilic anaerobic digestion. Science of The Total Environment, 789, 147869. doi: 10.1016/j.scitotenv.2021.147869.[46] Narumiya, M., Nakada, N., Yamashita, N., and Tanaka, H., 2013, Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion. Journal of Hazardous Materials, 260, 305–312. doi: 10.1016/j.jhazmat.2013.05.032.[47] vom Eyser, C., Palmu, K., Schmidt, T.C., and Tuerk, J., 2015, Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization. Science of The Total Environment, 537, 180–186. doi: 10.1016/j.scitotenv.2015.08.021.[48] Varjúová, D., Staňová, A.V., Grabicová, K., et al., 2025, Thermal methods of sludge processing—are they suitable for pharmaceuticals and illicit drugs removal from sewage sludge?. Biomass Conversion and Biorefinery, 15, 5247–5256. doi: 10.1007/s13399-024-05409-4.[49] Martín, J., Camacho-Muñoz, M.D., Santos, J.L., Aparicio, I., and Alonso, E., 2012, Distribution and temporal evolution of pharmaceutically active compounds alongside sewage sludge treatment. Risk assessment of sludge application onto soils. Journal of Environmental Management, 102, 18–25. doi: 10.1016/j.jenvman.2012.02.020.[50] Gros, M., Ahrens, L., Levén, L., Koch, A., Dalahmeh, S., Ljung, E., Lundin, G., Jönsson, H., Eveborn, D., and Wiberg, K., 2020, Pharmaceuticals in source separated sanitation systems: Fecal sludge and blackwater treatment. Science of The Total Environment, 703, 135530. doi: 10.1016/j.scitotenv.2019.135530.[51] Angeles-De Paz, G., Cubero-Cardoso, J., Pozo, C., Calvo, C., Aranda, E., and Robledo-Mahón, T., 2025, Optimizing bioaugmentation for pharmaceutical stabilization of sewage sludge: A study on short-term composting under real conditions. Journal of Fungi, 11(1), 67. doi: 10.3390/jof11010067.[52] Aboulfotoh, A.M., Fouad, H.A., Bakry, A.Y., and El-hefny, R., 2022, Viscosity and total organic carbon removal in high-solid anaerobic digestion of sewage sludge. Engineering Research Journal – Faculty of Engineering (Shoubra), 51(3), 60–66. doi: 10.21608/erjsh.2022.249387.[53] Bauer, A., Mayr, H., Hopfner-Sixt, K., and Amon, T., 2009, Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. Journal of Biotechnology, 142(1), 56–63. doi: 10.1016/j.jbiotec.2009.01.016.[54] Szaja, A., Montusiewicz, A., and Lebiocka, M., 2023, Variability of micro- and macro-elements in anaerobic co-digestion of municipal sewage sludge and food industrial by-products. International Journal of Environmental Research and Public Health, 20(7), 5405. doi: 10.3390/ijerph20075405.[55] Guo, Y., Guo, Y., Gong, H., Fang, N., Tan, Y., Zhou, W., Huang, J., Dai, L., and Dai, X., 2021, Variations of heavy metals, nutrients, POPs and particle size distribution during “sludge anaerobic digestion–solar drying–land utilization process”: Case study in China. Science of The Total Environment, 801, 149609. doi: 10.1016/j.scitotenv.2021.149609.[56] Giraldo, Ó., and Lozano de Yunda, A., 2006, Efecto del secado de los biosólidos de la planta de tratamiento de aguas residuales El Salitre (Bogotá) sobre su contenido de nutrientes, metales pesados y patógenos. Agronomía Colombiana, 24(2), 348–354.[57] Toledo, M., Márquez, P., Siles, J.A., Chica, A.F., and Martín, M.A., 2019, Co-composting of sewage sludge and eggplant waste at full scale: Feasibility study to valorize eggplant waste and minimize the odoriferous impact of sewage sludge. Journal of Environmental Management, 247, 205–213. doi: 10.1016/j.jenvman.2019.06.076.[58] Torres, P., Pérez, A., Escobar, J.C., and Uribe, I.E., 2007, Compostaje de biosólidos de plantas de tratamiento de aguas residuales. Engenharia Agrícola, 27(1). doi: 10.1590/S0100-69162007000100021.[59] Awasthi, M.K., Wang, Q., Chen, H., Wang, M., Ren, X., Zhao, J., Li, J., Guo, D., Li, D.-S., Awasthi, S.K., Sun, X., and Zhang, Z., 2017, Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost. Bioresource Technology, 237, 156–166. doi: 10.1016/j.biortech.2017.01.044.[60] Ribeiro, M.G.T.C., Costa, D.A., and Machado, A.A.S.C., 2010, Green Star: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chemistry Letters and Reviews, 3(2), 149–159. doi: 10.1080/17518251003782485.[61] Thermo Fisher Scientific, n.d., Oxoid™ Malt Extract. Available online at: https://www.thermofisher.com/order/catalog/product/LP0039B/tabs?defaultTab=2 (accessed 3 May 2025).[62] Carl Roth, 2024, Agua destilada (3478). Available online at: https://www.carlroth.com/medias/SDB-3478-ES-ES.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyMzcwNzh8YXBwbGljYXRpb24vcGRmfGFHVmlMMmc1TWk4NU1UZ3lNamc1T1RJd01ETXdMMU5FUWw4ek5EYzRYMFZUWDBWVExuQmtaZ3w5OWRmMDY5Y2EyNzUyNDA2Nzg2MGYyN2Q2ZmExYjgwMzg3MDNhNDIyMWY3NDhhNzMxMmM4OGRlMjg3YzcwYjM2 (accessed 3 May 2025).[63] Ardent Mills, 2022, Wheat Bran Safety Data Sheet. Available online at: https://www.ardentmills.com/media/3442/ardent-mills-wheat-bran-10172022.pdf (accessed 3 May 2025).[64] Thermo Fisher Scientific, n.d., Oxoid – Product Detail. Available online at: http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?pr=LP0039. (accessed 3 May 2025).[65] United States Environmental Protection Agency, 2003, Biosolids Technology Fact Sheet: Gravity Thickening (Washington, D.C.: U.S. EPA, EPA 832-F-03-022). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/gravity-thickening-factsheet.pdf (accessed 3 May 2025).[66] Brown, J.L., Handler, R.M., Becker, J.G., and Seagren, E.A., 2025, Environmental life cycle assessment of Class A biosolids production using conventional and low-cost, low-tech processes at small water resource recovery facilities. Applied Sciences, 15(7), 3482. doi: 10.3390/app15073482.[67] Yang, H., Guo, Y., Fang, N., and Dong, B., 2023, Life cycle assessment of sludge anaerobic digestion combined with land application treatment route: Greenhouse gas emission and reduction potential. Journal of Environmental Chemical Engineering, 11(6), 111255. doi: 10.1016/j.jece.2023.111255.[68] Hubbe, M., Nazhad, M., and Sanchez, C., 2010, Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. BioResources, 5(4), 2808–2854. doi: 10.15376/biores.5.4.2808-2854.[69] Bennamoun, L., Arlabosse, P., and Leonard, A., 2013, Review on fundamental aspect of application of drying process to wastewater sludge. Renewable and Sustainable Energy Reviews, 28, 29–43. doi: 10.1016/j.rser.2013.07.043.[70] Karadirek, I.E., Erkaya, O., and Ciggin, A.S., 2025, Comparative life cycle assessment of sewage sludge drying by solar and thermal drying technologies. Waste Management, 201, 114826. doi: 10.1016/j.wasman.2025.114826.[71] United States Environmental Protection Agency, 2006, Biosolids Technology Fact Sheet: Heat Drying (Washington, D.C.: U.S. EPA, EPA 832-F-06-029). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/heat-drying-factsheet.pdf (accessed 3 May 2025).[72] United States Environmental Protection Agency, 2025, Clean Air Act Text. Available online at: https://www.epa.gov/clean-air-act-overview/clean-air-act-text (accessed 3 May 2025).[73] Grgas, D., Štefanac, T., Barešić, M., Toromanović, M., Ibrahimpašić, J., Vukušić Pavičić, T., Habuda-Stanić, M., Herceg, Z., and Landeka Dragičević, T., 2022, Co-composting of sewage sludge, green waste, and food waste. Journal of Sustainable Development of Energy, Water and Environment Systems. doi: 10.13044/j.sdewes.d10.0415.[74] Sánchez, Ó.J., Ospina, D.A., and Montoya, S., 2017, Compost supplementation with nutrients and microorganisms in composting process. Waste Management, 69, 136–153. doi: 10.1016/j.wasman.2017.08.012.[75] Perdomo Rivera, C.O., 2014, Diagnóstico del sistema de “lodos activados” de la planta de tratamiento de aguas residuales Funza, Cundinamarca, Colombia [Specialization thesis, Universidad de Los Andes] (Bogotá: Universidad de Los Andes). Available online at: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/967d59ef-da81-4b4e-a826-ded8a8e2b387/content/ (accessed 10 May 2025).[76] Vásquez-Alemán, J.P., and Vargas-Martínez, G., 2018, Aprovechamiento de lodos de la planta de tratamiento de aguas residuales del municipio de Funza como insumo de cultivo y mejoramiento del suelo [Undergraduate thesis, Universidad Católica de Colombia] (Bogotá: Universidad Católica de Colombia). Available online at: https://repository.ucatolica.edu.co/server/api/core/bitstreams/0b4e8d61-3b56-4245-b62b-160151992fad/content (accessed 10 May 2025).[77] Salamanca Rojas, N., 2019, Determinación del estado de cumplimiento de la norma para vertimientos realizados al alcantarillado público de los municipios de Mosquera y Funza [Undergraduate thesis, Universidad de Cundinamarca] (Cundinamarca: Universidad de Cundinamarca). Available online at: https://repositorio.ucundinamarca.edu.co/server/api/core/bitstreams/7747af2b-053b-427c-bba8-6f1e13d9639d/content (accessed 10 May 2025).[78] Geng, H., Xu, Y., Zheng, L., Gong, H., Dai, L., and Dai, X., 2020, An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, 266(2), 115375. doi: 10.1016/j.envpol.2020.115375.[79] Cristancho-Torres, A.C., 2022, Diseño de un proceso para la producción de abono orgánico a partir de lodos residuales generados en la PTAR del municipio de Funza, Cundinamarca [Undergraduate thesis, Fundación Universidad de América] (Bogotá: Universidad de América). Available online at: https://repository.uamerica.edu.co/items/5a0ddb61-1d6d-4534-a2b9-91ccbd3114e7 (accessed 10 May 2025).[80] Rigby, H., Clarke, B.O., Pritchard, D.L., Meehan, B., Beshah, F., Smith, S.R., and Porter, N.A., 2016, A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of The Total Environment, 541, 1310–1338. doi: 10.1016/j.scitotenv.2015.08.089.[81] Rouch, D.A., Fleming, V.A., Pai, S., Deighton, M., Blackbeard, J., and Smith, S.R., 2011, Nitrogen release from air-dried biosolids for fertilizer value. Soil Use and Management. 27(3), 294-304. doi: 10.1111/j.1475-2743.2011.00338.x.[82] United States Environmental Protection Agency, 2000, Guide to Field Storage of Biosolids (Washington, D.C.: U.S. EPA, EPA 832-B-00-007). Available online at: https://www.epa.gov/sites/default/files/2018-11/documents/guide-field-storage-biosolids.pdf (accessed 10 May 2025).[83] Sharma, D., Garlapati, V.K., and Goel, G., 2016, Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered, 7(2), 88–97. doi: 10.1080/21655979.2016.1160190.[84] Irbe, I., Elisashvili, V., Asatiani, M.D., Janberga, A., Andersone, I., Andersons, B., Biziks, V., and Grinins, J., 2014, Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. International Biodeterioration & Biodegradation, 86, 71–78. doi: 10.1016/j.ibiod.2013.06.027.[85] Sundberg, C., and Jönsson, H., 2008, Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Management, 28(3), 518–526. doi: 10.1016/j.wasman.2007.01.011.[86] Gong, X., Li, S., Sun, X., Zhang, L., Zhang, T., and Wei, L., 2016, Maturation of green waste compost as affected by inoculation with the white-rot fungi Trametes versicolor and Phanerochaete chrysosporium. Environmental Technology, 38(7), 872–879. doi: 10.1080/09593330.2016.1214622.[87] Hossain Molla, A., Fakhru’l-Razi, A., and Zahangir Alam, M., 2004, Evaluation of solid-state bioconversion of domestic wastewater sludge as a promising environmental-friendly disposal technique. Water Research, 38(19), 4143–4152. doi: 10.1016/j.watres.2004.08.002.[88] Anishla, T., Wong, J., and Selvam, A., 2024, Enhancing nitrogen content of compost through addition of oil residues as co-substrates during food waste composting. African Journal of Biological Sciences, 6(3). doi: 10.33472/AFJBS.6.Si3.2024.365-379.[89] Ramezan, D., Alizade Jahan Abadi, B., Samzade Kermani, A., Pirnia, M., and Farrokhzad, Y., 2021, Cultivation of Turkey tail mushroom (Trametes versicolor) on lignocellulosic wastes and evaluation of substrate bioconversion. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 91, 777-787 doi: 10.1007/s40011-021-01269-4.[90] Desisa, B., Muleta, D., Jida, M., Dejene, T., Goshu, A., Negi, T., and Martin-Pinto, P., 2024, Domestication of wild-growing Turkey tail mushroom (Trametes versicolor) from Ethiopian forests on augmented agro-industrial byproducts. Mycological Progress, 23(62). doi: 10.1007/s11557-024-01993-x.[91] del Cerro, C., Erickson, E., Dong, T., Wong, A.R., Eder, E.K., Purvine, S.O., Mitchell, H.D., Weitz, K.K., Markillie, L.M., Burnet, M.C., Hoyt, D.W., Chu, R.K., Cheng, J.-F., Ramirez, K.J., Katahira, R., Xiong, W., Himmel, M.E., Subramanian, V., Linger, J.G., and Salvachúa, D., 2021, Intracellular pathways for lignin catabolism in white-rot fungi. Proceedings of the National Academy of Sciences, 118(9), Article e2017381118. doi: 10.1073/pnas.2017381118.[92] Jin, G., Zhao, Y., Xin, S., Li, T., and Xu, Y., 2024, Solid-state fermentation engineering of traditional Chinese fermented food. Foods, 13(18), 3003. doi: 10.3390/foods13183003.[93] Ahmad, A.M., Ugya, A.Y., and Isah, H.A., 2019, Mineralization and mobilization of biosolids phosphorus in soil: A concise review. Journal of Applied Biology & Biotechnology, 7(5), 98–106. doi: 10.7324/jabb.2019.70516.[94] Jatuwong, K., Suwannarach, N., Kumla, J., Penkhrue, W., Kakumyan, P., and Lumyong, S., 2020, Bioprocess for production, characteristics, and biotechnological applications of fungal phytases. Frontiers in Microbiology, 11. doi: 10.3389/fmicb.2020.00188.[95] Boardman, K., Sun, X., Yao, D., Chen, C., van Lierop, L., and Hu, B., 2025, Increasing the nutritional value of camelina meal via Trametes versicolor solid-state fermentation with various co-substrates. Fermentation, 11(2), 77. doi: 10.3390/fermentation11020077.[96] Li, C., Stump, M., Wu, W., and Li, Y., 2023, Exploring the chemical composition, antioxidant potential, and bread quality effects of the nutritional powerhouse: Wheat bran – A mini-review. Journal of Agriculture and Food Research, Article 100898. doi: 10.1016/j.jafr.2023.100898.[97] Ministerio de Salud y Protección Social, 2013, Resolución 4506 de 2013: Por la cual se establecen los niveles máximos de contaminantes en los alimentos destinados al consumo humano y se dictan otras disposiciones (Bogotá: Diario Oficial No. 48.960, 31 de octubre). Available online at: https://www.suin-juriscol.gov.co/viewDocument.asp?id=30042077 (accessed 10 May 2025).[98] Hachicha, R., Rekik, O., Hachicha, S., Ferchichi, M., Woodward, S., Moncef, N., Cegarra, J., and Mechichi, T., 2012, Co-composting of spent coffee ground with olive mill wastewater sludge and poultry manure and effect of Trametes versicolor inoculation on the compost maturity. Chemosphere, 88(6), 677–682. doi: 10.1016/j.chemosphere.2012.03.053.[99] Reimer, M., Kopp, C., Hartmann, T., Zimmermann, H., Ruser, R., Schulz, R., Müller, T., and Möller, K., 2023, Assessing long-term effects of compost fertilization on soil fertility and nitrogen mineralization rate. Journal of Plant Nutrition and Soil Science, 186(2), 217-233 doi: 10.1002/jpln.202200270.[100] Maheswari, M., Murthy, A.N.G., and Shanker, A.K., 2017, Nitrogen nutrition in crops and its importance in crop quality. In: Y.P. Abrol and A. Singh (Eds) The Indian Nitrogen Assessment (San Diego: Elsevier), pp. 175–186.[101] Brust, G.E., 2019, Management strategies for organic vegetable fertility. In: C.M. Williams and J.E. Cooper (Eds) Safety and Practice for Organic Food (San Diego: Elsevier), pp. 193–212.[102] Ye, P., Fang, L., Song, D., Zhang, M., Li, R., Awasthi, M.K., Zhang, Z., Xiao, R., and Chen, X., 2022, Insights into carbon loss reduction during aerobic composting of organic solid waste: A meta-analysis and comprehensive literature review. Science of The Total Environment, 862, 160787. doi: 10.1016/j.scitotenv.2022.160787.[103] Sun, Z., Liu, Q., Li, Y., Mazarji, M., Feng, L., and Pan, J., 2024, Deciphering the impact of lignin on anaerobic digestion: Focus on inhibition mechanisms and methods for alleviating inhibition. ACS Omega. 9, 44033–44041. doi: 10.1021/acsomega.4c04375.[104] Angeles-de Paz, G., León-Morcillo, R., Guzmán, S., Robledo-Mahón, T., Pozo, C., Calvo, C., and Aranda, E., 2023, Pharmaceutical active compounds in sewage sludge: Degradation improvement and conversion into an organic amendment by bioaugmentation-composting processes. Waste Management, 168, 167–178. doi: 10.1016/j.wasman.2023.05.055.spaORIGINALAnexo 2 Tablas auxiliares.pdfAnexo 2 Tablas auxiliares.pdfapplication/pdf115577https://repositorio.unbosque.edu.co/bitstreams/12afd65b-2fee-4513-8dd8-695d08f7d597/download2300adb53a5734f436c6ffd4c6b95f5aMD515Trabajo de grado.pdfTrabajo de grado.pdfapplication/pdf7046885https://repositorio.unbosque.edu.co/bitstreams/a452c7d3-a29b-49ee-91ae-ee7b801f4afe/download59bb5b88cf2e6279e7f3d6811a0c4ad2MD516LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/3cb5a950-053e-4215-b78e-2fe66e421ad8/download17cc15b951e7cc6b3728a574117320f9MD56Carta de autorizacion.pdfapplication/pdf267794https://repositorio.unbosque.edu.co/bitstreams/db360cae-93bf-4348-a576-8a190378cef5/download4d16c7e590081c0b1a7ef5277a88004fMD518Anexo 1 acta de aprobacion.pdfapplication/pdf699350https://repositorio.unbosque.edu.co/bitstreams/c58566c5-dd67-4832-9925-2a17aa036ed5/downloadf1c705576e6e06093330e17480775703MD519CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/445afc25-0e57-4909-a04c-52e6043f30cb/download3b6ce8e9e36c89875e8cf39962fe8920MD517TEXTAnexo 2 Tablas auxiliares.pdf.txtAnexo 2 Tablas auxiliares.pdf.txtExtracted texttext/plain17700https://repositorio.unbosque.edu.co/bitstreams/1fc4d0a8-ba0f-4b63-9ed7-0b518b13d38f/download1baa7b12bff6d11228f2625e38404f21MD520Trabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain93644https://repositorio.unbosque.edu.co/bitstreams/5641efaa-9617-4c0f-becb-42f4ac9675cf/downloaddfbe07bac9ecaf8c72839ebd528dbacfMD522THUMBNAILAnexo 2 Tablas auxiliares.pdf.jpgAnexo 2 Tablas auxiliares.pdf.jpgGenerated Thumbnailimage/jpeg5494https://repositorio.unbosque.edu.co/bitstreams/075b5505-70ac-4d30-8934-79876fc219ee/download4faa121dda25b607dafd40431622daabMD521Trabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5602https://repositorio.unbosque.edu.co/bitstreams/755fe5a9-caf8-4468-b613-9dfcd416e883/downloadeeb4b4f89dcf6a25303e91f93cf293f2MD52320.500.12495/14558oai:repositorio.unbosque.edu.co:20.500.12495/145582025-06-06 05:00:14.74http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2030-06-04https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |