Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
This paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced an...
- Autores:
-
Benincasa, Tommaso
Donado Escobar, L. D.
Moroşanu, C.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/3619
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/3619
https://doi.org/10.1080/00207179.2015.1137634
https://repositorio.unbosque.edu.co
- Palabra clave:
- Boundary value problems for nonlinear parabolic PDE
Dynamic boundary conditions
Pontryagin's maximum principle
Fractional steps method
Phase changes
- Rights
- openAccess
- License
- Acceso abierto
id |
UNBOSQUE2_9d6668c8f974618683c36282f1e53a0d |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/3619 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
dc.title.translated.spa.fl_str_mv |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
title |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
spellingShingle |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions Boundary value problems for nonlinear parabolic PDE Dynamic boundary conditions Pontryagin's maximum principle Fractional steps method Phase changes |
title_short |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
title_full |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
title_fullStr |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
title_full_unstemmed |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
title_sort |
Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions |
dc.creator.fl_str_mv |
Benincasa, Tommaso Donado Escobar, L. D. Moroşanu, C. |
dc.contributor.author.none.fl_str_mv |
Benincasa, Tommaso Donado Escobar, L. D. Moroşanu, C. |
dc.contributor.orcid.none.fl_str_mv |
Benincasa, Tommaso [0000-0002-3159-1515] |
dc.subject.keywords.spa.fl_str_mv |
Boundary value problems for nonlinear parabolic PDE Dynamic boundary conditions Pontryagin's maximum principle Fractional steps method Phase changes |
topic |
Boundary value problems for nonlinear parabolic PDE Dynamic boundary conditions Pontryagin's maximum principle Fractional steps method Phase changes |
description |
This paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced and results for the existence of an optimal control for problems (P) and (Pϵ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pϵ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pϵ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-07-30T15:49:19Z |
dc.date.available.none.fl_str_mv |
2020-07-30T15:49:19Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1366-5820 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/3619 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/00207179.2015.1137634 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
identifier_str_mv |
1366-5820 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
url |
http://hdl.handle.net/20.500.12495/3619 https://doi.org/10.1080/00207179.2015.1137634 https://repositorio.unbosque.edu.co |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
International Journal of Control, 1366-5820, Vol 89, Nro 8, 2016, p 1523-1532 |
dc.relation.uri.none.fl_str_mv |
https://www-tandfonline-com.ezproxy.unbosque.edu.co/doi/full/10.1080/00207179.2015.1137634 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
dc.rights.creativecommons.none.fl_str_mv |
2016-02-12 |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 2016-02-12 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis |
dc.publisher.journal.spa.fl_str_mv |
International Journal of Control |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/626f1f74-9533-444a-bca2-14df3cabafa9/download https://repositorio.unbosque.edu.co/bitstreams/94f13832-1afc-4db5-b8e6-a8e968d60828/download https://repositorio.unbosque.edu.co/bitstreams/8e3b358f-2708-4aa5-ae51-1e6308e89550/download https://repositorio.unbosque.edu.co/bitstreams/38c6b681-a3b1-4e7c-ac7d-d6b38a3e28f2/download |
bitstream.checksum.fl_str_mv |
82b325f061365c80591172bccca457a6 8a4605be74aa9ea9d79846c1fba20a33 ab6388d36fe8ee3a3748125060e2bb0c e9e0f24940cc28c9a7a438a2c4568e2f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100692933017600 |
spelling |
Benincasa, TommasoDonado Escobar, L. D.Moroşanu, C.Benincasa, Tommaso [0000-0002-3159-1515]2020-07-30T15:49:19Z2020-07-30T15:49:19Z20161366-5820http://hdl.handle.net/20.500.12495/3619https://doi.org/10.1080/00207179.2015.1137634instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coapplication/pdfspaTaylor and FrancisInternational Journal of ControlInternational Journal of Control, 1366-5820, Vol 89, Nro 8, 2016, p 1523-1532https://www-tandfonline-com.ezproxy.unbosque.edu.co/doi/full/10.1080/00207179.2015.1137634Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsDistributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Boundary value problems for nonlinear parabolic PDEDynamic boundary conditionsPontryagin's maximum principleFractional steps methodPhase changesThis paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced and results for the existence of an optimal control for problems (P) and (Pϵ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pϵ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pϵ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2016-02-12ORIGINALBenincasa, T..pdfBenincasa, T..pdfapplication/pdf649707https://repositorio.unbosque.edu.co/bitstreams/626f1f74-9533-444a-bca2-14df3cabafa9/download82b325f061365c80591172bccca457a6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/94f13832-1afc-4db5-b8e6-a8e968d60828/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILBenincasa, T..pdf.jpgBenincasa, T..pdf.jpgIM Thumbnailimage/jpeg7367https://repositorio.unbosque.edu.co/bitstreams/8e3b358f-2708-4aa5-ae51-1e6308e89550/downloadab6388d36fe8ee3a3748125060e2bb0cMD53TEXTBenincasa, T..pdf.txtBenincasa, T..pdf.txtExtracted texttext/plain43671https://repositorio.unbosque.edu.co/bitstreams/38c6b681-a3b1-4e7c-ac7d-d6b38a3e28f2/downloade9e0f24940cc28c9a7a438a2c4568e2fMD5420.500.12495/3619oai:repositorio.unbosque.edu.co:20.500.12495/36192024-02-06 22:37:03.729restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |