Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions

This paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced an...

Full description

Autores:
Benincasa, Tommaso
Donado Escobar, L. D.
Moroşanu, C.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/3619
Acceso en línea:
http://hdl.handle.net/20.500.12495/3619
https://doi.org/10.1080/00207179.2015.1137634
https://repositorio.unbosque.edu.co
Palabra clave:
Boundary value problems for nonlinear parabolic PDE
Dynamic boundary conditions
Pontryagin's maximum principle
Fractional steps method
Phase changes
Rights
openAccess
License
Acceso abierto
id UNBOSQUE2_9d6668c8f974618683c36282f1e53a0d
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/3619
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
dc.title.translated.spa.fl_str_mv Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
title Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
spellingShingle Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
Boundary value problems for nonlinear parabolic PDE
Dynamic boundary conditions
Pontryagin's maximum principle
Fractional steps method
Phase changes
title_short Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
title_full Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
title_fullStr Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
title_full_unstemmed Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
title_sort Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditions
dc.creator.fl_str_mv Benincasa, Tommaso
Donado Escobar, L. D.
Moroşanu, C.
dc.contributor.author.none.fl_str_mv Benincasa, Tommaso
Donado Escobar, L. D.
Moroşanu, C.
dc.contributor.orcid.none.fl_str_mv Benincasa, Tommaso [0000-0002-3159-1515]
dc.subject.keywords.spa.fl_str_mv Boundary value problems for nonlinear parabolic PDE
Dynamic boundary conditions
Pontryagin's maximum principle
Fractional steps method
Phase changes
topic Boundary value problems for nonlinear parabolic PDE
Dynamic boundary conditions
Pontryagin's maximum principle
Fractional steps method
Phase changes
description This paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced and results for the existence of an optimal control for problems (P) and (Pϵ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pϵ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pϵ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-07-30T15:49:19Z
dc.date.available.none.fl_str_mv 2020-07-30T15:49:19Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1366-5820
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/3619
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/00207179.2015.1137634
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv https://repositorio.unbosque.edu.co
identifier_str_mv 1366-5820
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
url http://hdl.handle.net/20.500.12495/3619
https://doi.org/10.1080/00207179.2015.1137634
https://repositorio.unbosque.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv International Journal of Control, 1366-5820, Vol 89, Nro 8, 2016, p 1523-1532
dc.relation.uri.none.fl_str_mv https://www-tandfonline-com.ezproxy.unbosque.edu.co/doi/full/10.1080/00207179.2015.1137634
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Acceso abierto
dc.rights.creativecommons.none.fl_str_mv 2016-02-12
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
2016-02-12
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis
dc.publisher.journal.spa.fl_str_mv International Journal of Control
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/626f1f74-9533-444a-bca2-14df3cabafa9/download
https://repositorio.unbosque.edu.co/bitstreams/94f13832-1afc-4db5-b8e6-a8e968d60828/download
https://repositorio.unbosque.edu.co/bitstreams/8e3b358f-2708-4aa5-ae51-1e6308e89550/download
https://repositorio.unbosque.edu.co/bitstreams/38c6b681-a3b1-4e7c-ac7d-d6b38a3e28f2/download
bitstream.checksum.fl_str_mv 82b325f061365c80591172bccca457a6
8a4605be74aa9ea9d79846c1fba20a33
ab6388d36fe8ee3a3748125060e2bb0c
e9e0f24940cc28c9a7a438a2c4568e2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100692933017600
spelling Benincasa, TommasoDonado Escobar, L. D.Moroşanu, C.Benincasa, Tommaso [0000-0002-3159-1515]2020-07-30T15:49:19Z2020-07-30T15:49:19Z20161366-5820http://hdl.handle.net/20.500.12495/3619https://doi.org/10.1080/00207179.2015.1137634instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coapplication/pdfspaTaylor and FrancisInternational Journal of ControlInternational Journal of Control, 1366-5820, Vol 89, Nro 8, 2016, p 1523-1532https://www-tandfonline-com.ezproxy.unbosque.edu.co/doi/full/10.1080/00207179.2015.1137634Distributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsDistributed and boundary optimal control of the Allen–Cahn equation with regular potential and dynamic boundary conditionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Boundary value problems for nonlinear parabolic PDEDynamic boundary conditionsPontryagin's maximum principleFractional steps methodPhase changesThis paper is concerned with an optimal control problem (P) (both distributed control as well as boundary control) for the nonlinear phase-field (Allen–Cahn) equation, involving a regular potential and dynamic boundary condition. A family of approximate optimal control problems (Pϵ) is introduced and results for the existence of an optimal control for problems (P) and (Pϵ) are proven. Furthermore, the convergence result of the optimal solution of problem (Pϵ) to the optimal solution of problem (P) is proved. Besides the existence of an optimal control in problem (Pϵ), necessary optimality conditions (Pontryagin's principle) as well as a conceptual gradient-type algorithm to approximate the optimal control, were established in the end.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2016-02-12ORIGINALBenincasa, T..pdfBenincasa, T..pdfapplication/pdf649707https://repositorio.unbosque.edu.co/bitstreams/626f1f74-9533-444a-bca2-14df3cabafa9/download82b325f061365c80591172bccca457a6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/94f13832-1afc-4db5-b8e6-a8e968d60828/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILBenincasa, T..pdf.jpgBenincasa, T..pdf.jpgIM Thumbnailimage/jpeg7367https://repositorio.unbosque.edu.co/bitstreams/8e3b358f-2708-4aa5-ae51-1e6308e89550/downloadab6388d36fe8ee3a3748125060e2bb0cMD53TEXTBenincasa, T..pdf.txtBenincasa, T..pdf.txtExtracted texttext/plain43671https://repositorio.unbosque.edu.co/bitstreams/38c6b681-a3b1-4e7c-ac7d-d6b38a3e28f2/downloade9e0f24940cc28c9a7a438a2c4568e2fMD5420.500.12495/3619oai:repositorio.unbosque.edu.co:20.500.12495/36192024-02-06 22:37:03.729restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=