Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática

Los fármacos antineoplásicos son compuestos utilizados en diversos procedimientos terapéuticos, siendo la quimioterapia uno de los tratamientos primarios para el cáncer. Sin embargo, el creciente uso de estos medicamentos ha generado preocupaciones ambientales, ya que pueden ingresar al medio ambien...

Full description

Autores:
Cruz Ramírez, Diana Vanessa
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13268
Acceso en línea:
https://hdl.handle.net/20.500.12495/13268
Palabra clave:
Fármacos antineoplásicos
Cáncer
Técnica analítica
Aguas residuales
Medio ambiente
Toxicidad
615.19
Antineoplastic drugs
Cancer
Analytical technique
Wastewater
Environmental
Toxicity
Rights
License
Acceso abierto
id UNBOSQUE2_8c8347a7b797ad00c064317409540beb
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13268
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
dc.title.translated.none.fl_str_mv Antineoplastic drugs and their toxic effects on human health and aquatic organisms: systematic review
title Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
spellingShingle Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
Fármacos antineoplásicos
Cáncer
Técnica analítica
Aguas residuales
Medio ambiente
Toxicidad
615.19
Antineoplastic drugs
Cancer
Analytical technique
Wastewater
Environmental
Toxicity
title_short Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
title_full Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
title_fullStr Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
title_full_unstemmed Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
title_sort Fármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemática
dc.creator.fl_str_mv Cruz Ramírez, Diana Vanessa
dc.contributor.advisor.none.fl_str_mv Becerra Figueroa , Liliana Marcela
dc.contributor.author.none.fl_str_mv Cruz Ramírez, Diana Vanessa
dc.subject.none.fl_str_mv Fármacos antineoplásicos
Cáncer
Técnica analítica
Aguas residuales
Medio ambiente
Toxicidad
topic Fármacos antineoplásicos
Cáncer
Técnica analítica
Aguas residuales
Medio ambiente
Toxicidad
615.19
Antineoplastic drugs
Cancer
Analytical technique
Wastewater
Environmental
Toxicity
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Antineoplastic drugs
Cancer
Analytical technique
Wastewater
Environmental
Toxicity
description Los fármacos antineoplásicos son compuestos utilizados en diversos procedimientos terapéuticos, siendo la quimioterapia uno de los tratamientos primarios para el cáncer. Sin embargo, el creciente uso de estos medicamentos ha generado preocupaciones ambientales, ya que pueden ingresar al medio ambiente a través de las aguas residuales de los hospitales. Asimismo, la detección de contaminantes anticancerígenos a concentraciones traza (ng/L) representa un desafío analítico debido a la falta de pruebas específicas y métodos estandarizados. Las técnicas más comúnmente utilizadas para el análisis son LC-MS/MS y HPLC-QqQ-MS. Entre los agentes citotóxicos de amplio espectro como la ciclofosfamida y la ifosfamida, clasificados, según la Directiva 93/67/EEC, como no tóxicos para ciertas especies acuáticas en pruebas agudas, pueden requerir activación enzimática para manifestar su toxicidad. Por un lado, el 5-fluorouracilo es altamente tóxico para varias especies acuáticas, incluidas bacterias, crustáceos y algas, con concentraciones efectivas medias (EC50) inferiores a 1 mg/L. Por el otro lado, el cisplatino representa un riesgo significativo debido a su capacidad para causar daño en el ADN y afectar el desarrollo celular, mientras que el tamoxifeno destaca por su potencial para inducir estrés oxidativo y bioacumularse en tejidos críticos como el hígado.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-20T15:54:19Z
dc.date.available.none.fl_str_mv 2024-11-20T15:54:19Z
dc.date.issued.none.fl_str_mv 2024-10
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13268
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13268
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv A. for R. on Cancer, “Cancer today,” Disponible en linea: https://gco.iarc.fr/today/fact-sheets-cancers (Consultado 10 de julio de 2024)
R. Singh, A. Malhotra, and R. Bansal, Synthetic cytotoxic drugs as cancer chemotherapeutic agents. Elsevier Inc.,2023. pp. 3-6.
M. Mišík, M. Filipic, A. Nersesyan, M. Kundi, M. Isidori, and S. Knasmueller, “Environmental risk 949 assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate),” Water Res., vol. 164, 2019. p.p 3-7.
M. Jureczko and J. Kalka, “Cytostatic pharmaceuticals as water contaminants,” Eur. J. Pharmacol., vol. 866, no. November 2019, p. 172816, 2020. p.p 1-7
S. N. Mahnik, B. Rizovski, M. Fuerhacker, and R. M. Mader, “Determination of 5-fluorouracil in hospital effluents,” Anal. Bioanal. Chem., vol. 380, no. 1, pp. 31–35, 2004. p.p 3-4.
M. Cevik et al., “Evaluation of Cytotoxicity and Mutagenicity of Wastewater from Istanbul: Data from Hospitals and Advanced Wastewater Treatment Plant,” Bull. Environ. Contam. Toxicol., 2020, vol. 104, no. 6, pp. 852–857.
S. N. Mahnik, K. Lenz, N. Weissenbacher, R. M. Mader, and M. Fuerhacker, “Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system,”, 2007.Chemosphere, vol. 66, no. 1, pp. 30–37
N. Negreira, M. L. de Alda, and D. Barceló, “Cytostatic drugs and metabolites in municipal and hospital 962 wastewaters in Spain: Filtration, occurrence, and environmental risk,” Sci. Total Environ., 2014, vol. 497–498, pp. 68–77
A. M. Wormington, M. De María, H. G. Kurita, J. H. Bisesi, N. D. Denslow, and C. J. Martyniuk, 965 “Antineoplastic Agents: Environmental Prevalence and Adverse Outcomes in Aquatic Organisms,” Environ. Toxicol. Chem., 2020. vol. 39, no. 5, pp. 967–985.
J. P. Besse, J. F. Latour, and J. Garric, “Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?,” Environ. Int., 2012, vol. 39, no. 1, pp. 73–86.
B. de H. Aurélien, B. Sylvie, D. Alain, G. Jérôme, and P. Yves, “Ecotoxicological risk assessment linked to the discharge by hospitals of bio-accumulative pharmaceuticals into aquatic media: The case of mitotane,” Chemosphere, 2013, vol. 93, no. 10, pp. 2365–2372
R. Kovács et al., “Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study,” Water Res. 2015, vol. 77, pp. 201–212.
K. Fent, A. A. Weston, and D. Caminada, “Ecotoxicology of human pharmaceuticals,” Aquat. Toxicol. 2006, vol. 76, no. 2, pp. 122–159.
K. Samal, S. Mahapatra, and M. Hibzur Ali, “Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health,” Energy Nexus. 2022, vol. 6, no. April, p. 100076, pp. 3-6
N. Negreira, M. López de Alda, and D. Barceló, “Study of the stability of 26 cytostatic drugs and metabolites in wastewater under different conditions,” Sci. Total Environ. 2014, vol. 482–483, no. 1, pp. 389–398.
M. S. Chandraprasad, A. Dey, and M. K. Swamy, Introduction to cancer and treatment approaches. Elsevier Inc.,2021, pp. 4-6.
C. G. Olvera-Néstor, E. Morales-Avila, L. M. Gómez-Olivan, M. Galár-Martínez, S. García-Medina, and N. Neri-Cruz, “Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents,” Bull. Environ. Contam. Toxicol. 2016, vol. 96, no. 3, pp. 326–332.
M. Isidori et al., “Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain,” Environ. Pollut. 2016, vol. 219, pp. 275–287
L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples,” Anal. Bioanal. Chem. 2013, vol. 405, no. 18, pp. 5937–5952.
M. de Oliveira Klein et al., “Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology,” Environ. Pollut. 2021, vol. 268, pp. 2-5.
T. I. A. Gouveia, A. M. T. Silva, M. G. Freire, A. C. A. Sousa, A. Alves, and M. S. F. Santos, “Multi-target analysis of cytostatics in hospital effluents over a 9-month period,” J. Hazard. Mater. 2023, vol. 448. pp.2-6
M. A. Vaudreuil, S. Vo Duy, G. Munoz, A. Furtos, and S. Sauvé, “A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS,” Talanta 2020, vol. 220. pp. 5-6
J. Yin, B. Shao, J. Zhang, and K. Li, “A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China,” Bull. Environ. Contam. Toxicol. 2010, vol. 84, no. 1, pp. 39–45.
A. Tauxe-Wuersch, L. F. De Alencastro, D. Grandjean, and J. Tarradellas, “Trace determination of tamoxifen and 5-fluorouracil in hospital and urban wastewaters,” Int. J. Environ. Anal. Chem. 2006, vol. 86, no. 7, pp. 473–485
K. Lenz et al., “Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge,” Sci. Total Environ. 2005, vol. 345, no. 1–3, pp. 141–152.
N. Vyas, A. Turner, and G. Sewell, “Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters,” Sci. Total Environ. 2014, vol. 493, pp. 324–329.
M. B. Vandegehuchte and C. R. Janssen, “Epigenetics and its implications for ecotoxicology,” Ecotoxicology, 2011, vol. 20, no. 3, pp. 607–624.
F. Ribeiro, L. Costa-Lotufo, S. Loureiro, and M. D. Pavlaki, “Environmental Hazard of Anticancer Drugs: State of the Art and Future Perspective for Marine Organisms,” Environ. Toxicol. Chem. 2022, vol. 41, no. 8, pp. 1793–1807
L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment,” Environ. Pollut.2014, vol. 193, pp. 216–223.
C. Nassour, S. Nabhani-Gebara, S. J. Barton, and J. Barker, “Determination of Anticancer Drugs in the Aquatic Environment by SPE–LC–MS/MS—A Lebanese Case Study,” Water (Switzerland), 2023, vol. 15, no. 8, pp.2-5.
M. de O. Klein, L. F. V. Francisco, I. N. F. Gomes, S. V. Serrano, R. M. Reis, and H. C. S. Silveira, “Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 2023, vol. 892, pp. 2-4
T. Kosjek, N. Negreira, E. Heath, M. L. de Alda, and D. Barceló, “Biodegradability of the anticancer drug etoposide and identification of the transformation products,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14706–14717.
L. Ferrando-Climent, M. J. Reid, S. Rodriguez-Mozaz, D. Barceló, and K. V. Thomas, “Identification of markers of cancer in urban sewage through the use of a suspect screening approach,” J. Pharm. Biomed. Anal. 2016, vol. 129, pp. 571–580.
N. Negreira, N. Mastroianni, M. López De Alda, and D. Barceló, “Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution,” Talanta, 2013, vol. 116, pp. 290–299.
M. Kundi, A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, and M. Isidori, “Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14771–14779.
S. Santana-Viera, P. Hernández-Arencibia, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Simultaneous and systematic analysis of cytostatic drugs in wastewater samples by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, vol. 1110–1111, pp. 124–132.
M. B. Cristóvão, A. Bento-Silva, M. R. Bronze, J. G. Crespo, and V. J. Pereira, “Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling,” Sci. Total Environ. 2021, vol. 786, p. 147477.
D. A. Skoog, F. James Holler, and S. R. Crouch, “Douglas A. Skoog & F. James Holler & Timothy A. Nieman - Principios de análisis instrumental (5ed, McGrawHill).pdf.” pp. 1–856, 2001.
P. Škvára, S. Santana-Viera, S. Montesdeoca-Esponda, E. Mordačíková, J. J. Santana-Rodríguez, and A. Vojs Staňová, “Determination of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine in hospital wastewater by liquid chromatography–mass spectrometry,” J. Sep. Sci. 2020, vol. 43, no. 15, pp. 3074–3082.
Y. Ghafuria, M. Yunesian, R. Nabizadeh, A. Mesdaghinia, M. H. Dehghani, and M. Alimohammadi, “Environmental risk assessment of platinum cytotoxic drugs: a focus on toxicity characterization of hospital effluents,” Int. J. Environ. Sci. Technol. 2018, vol. 15, no. 9, pp. 1983–1990.
M. Alzola-Andrés, S. Domingo-Echaburu, Y. Segura, Y. Valcárcel, G. Orive, and U. Lertxundi, “Pharmaceuticals in hospital wastewaters: an analysis of the UBA’s pharmaceutical database,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 44, pp. 99345–99361.
M. Mišík, C. Pichler, B. Rainer, M. Filipic, A. Nersesyan, and S. Knasmueller, “Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact on the environment,” Environ. Res. 2014, vol. 135, pp. 196–203.
C. Russo, M. Lavorgna, M. Česen, T. Kosjek, E. Heath, and M. Isidori, “Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples,” Environ. Pollut. 2018, vol. 233, pp. 356–363.
M. Jureczko and W. Przystaś, “Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment,” Ecotoxicol. Environ. Saf. 2019, vol. 172, pp. 210–215.
A. C. Johnson, M. D. Jürgens, R. J. Williams, K. Kümmerer, A. Kortenkamp, and J. P. Sumpter, “Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study,” J. Hydrol. 2008, vol. 348, no. 1–2, pp. 167–175.
G. V. Aguirre-Martínez, C. Okello, M. J. Salamanca, C. Garrido, T. A. Del Valls, and M. L. Martín-Díaz, “Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment?,” Environ. Res. 2016, vol. 144, pp. 43–59.
R. Zounkova, L. Kovalova, L. Blaha, and W. Dott, “Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites,” Chemosphere, 2010, vol. 81, no. 2, pp. 253–260.
C. Mesak et al., “Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible?,” Environ. Sci.Pollut. Res. 2019, vol. 26, no. 6, pp. 6234–6243.
E. Ivantsova, M. Huang, A. S. Wengrovitz, C. L. Souders, and C. J. Martyniuk, “Molecular and behavioral assessment in larval zebrafish (Danio rerio) following exposure to environmentally relevant levels of the antineoplastic cyclophosphamide,” Environ. Toxicol. Pharmacol. 2022, vol. 90, p. 103809.
F. Orias, L. Simon, G. Mialdea, A. Clair, V. Brosselin, and Y. Perrodin, “Bioconcentration of 15N-tamoxifen at environmental concentration in liver, gonad and muscle of Danio rerio,” Ecotoxicol. Environ. Saf. 2015, vol. 120, pp. 457–462.
Q. Yu et al., “Tamoxifen-induced hepatotoxicity via lipid accumulation and inflammation in zebrafish,” Chemosphere, 2020, vol. 239, pp. 1–10..
F. Orias et al., “Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems,” Chemosphere, 2015, vol. 128, pp. 79–84.
C. Venâncio, B. Monteiro, I. Lopes, and A. C. A. Sousa, “Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 20, pp. 58841–58854.
M. Mišík, M. Filipic, A. Nersesyan, K. Mišíková, S. Knasmueller, and M. Kundi, “Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14762–14770.
M. Kračun-Kolarević et al., “Effects of 5-Fluorouracil, Etoposide and CdCl2 in Aquatic Oligochaeta Limnodrilus udekemianus Claparede (Tubificidae) Measured by Comet Assay,” Water. Air. Soil Pollut. 2015, vol. 226, no. 8.
L. C. Mello, T. G. da Fonseca, and A. Denis Moledode de Souza, “Ecotoxicological assessment of chemotherapeutic agents using toxicity tests with embryos of Mellita quinquiesperforata,” Mar. Pollut. Bull. 2020, vol. 159, no. May, p. 111493.
C. Trombini, T. Garcia da Fonseca, M. Morais, T. L. Rocha, J. Blasco, and M. J. Bebianno, “Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis,” Mar. Environ. Res. 2016, vol. 119, pp. 12–21
A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, V. Fiumano, and M. Isidori, “Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans,” Chemosphere, 2024, vol. 115, no. 1, pp. 59–66.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/75201f33-c78b-4905-af45-91f2db5996a4/download
https://repositorio.unbosque.edu.co/bitstreams/ce9fe49c-7020-480f-a4a9-ae426a56a409/download
https://repositorio.unbosque.edu.co/bitstreams/f901de35-a8b1-4057-8179-7f8145e55994/download
https://repositorio.unbosque.edu.co/bitstreams/ebcde7ef-1910-4c20-8270-504fbf7f53ad/download
https://repositorio.unbosque.edu.co/bitstreams/bd3eb850-75f1-46d0-9465-c3cb2dc6f2b7/download
https://repositorio.unbosque.edu.co/bitstreams/58df7300-d20e-4331-857d-67d345579e25/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
adfac439c6a3d8664b5db85bf8fb5ffd
44876a3d81463606a7906f648c2fe376
76c3f6f3d00be65171a466eb8187af6a
4de52afb12c3a6f8b522a70ad81b2777
514371658724d4d4724d74834cfce00e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164523185405952
spelling Becerra Figueroa , Liliana MarcelaCruz Ramírez, Diana Vanessa2024-11-20T15:54:19Z2024-11-20T15:54:19Z2024-10https://hdl.handle.net/20.500.12495/13268Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLos fármacos antineoplásicos son compuestos utilizados en diversos procedimientos terapéuticos, siendo la quimioterapia uno de los tratamientos primarios para el cáncer. Sin embargo, el creciente uso de estos medicamentos ha generado preocupaciones ambientales, ya que pueden ingresar al medio ambiente a través de las aguas residuales de los hospitales. Asimismo, la detección de contaminantes anticancerígenos a concentraciones traza (ng/L) representa un desafío analítico debido a la falta de pruebas específicas y métodos estandarizados. Las técnicas más comúnmente utilizadas para el análisis son LC-MS/MS y HPLC-QqQ-MS. Entre los agentes citotóxicos de amplio espectro como la ciclofosfamida y la ifosfamida, clasificados, según la Directiva 93/67/EEC, como no tóxicos para ciertas especies acuáticas en pruebas agudas, pueden requerir activación enzimática para manifestar su toxicidad. Por un lado, el 5-fluorouracilo es altamente tóxico para varias especies acuáticas, incluidas bacterias, crustáceos y algas, con concentraciones efectivas medias (EC50) inferiores a 1 mg/L. Por el otro lado, el cisplatino representa un riesgo significativo debido a su capacidad para causar daño en el ADN y afectar el desarrollo celular, mientras que el tamoxifeno destaca por su potencial para inducir estrés oxidativo y bioacumularse en tejidos críticos como el hígado.PregradoQuímico FarmacéuticoAntineoplastic drugs are compounds used in various therapeutic procedures, with chemotherapy being one of the primary treatments for cancer. However, the increasing use of these drugs has raised environmental concerns, as they can enter the environment through hospital wastewater. Furthermore, the detection of anticancer contaminants at trace concentrations (ng/L) represents an analytical challenge due to the lack of specific tests and standardized methods. The most commonly used techniques for analysis are LC-MS/MS and HPLC-QqQ-MS. Among broad-spectrum cytotoxic agents such as cyclophosphamide and ifosfamide, classified, according to Directive 93/67/EEC, as non-toxic for certain aquatic species in acute tests, they may require enzymatic activation to manifest their toxicity. On the one hand, 5-fluorouracil is highly toxic to several aquatic species, including bacteria, crustaceans and algae, with mean effective concentrations (EC50) less than 1 mg/L. On the other hand, cisplatin represents a significant risk due to its ability to cause DNA damage and affect cellular development, while tamoxifen stands out for its potential to induce oxidative stress and bioaccumulate in critical tissues such as the liver.application/pdfFármacos antineoplásicosCáncerTécnica analíticaAguas residualesMedio ambienteToxicidad615.19Antineoplastic drugsCancerAnalytical techniqueWastewaterEnvironmentalToxicityFármacos antineoplásicos y sus efectos tóxicos en la salud humana y organismos acuáticos: revisión sistemáticaAntineoplastic drugs and their toxic effects on human health and aquatic organisms: systematic reviewQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaA. for R. on Cancer, “Cancer today,” Disponible en linea: https://gco.iarc.fr/today/fact-sheets-cancers (Consultado 10 de julio de 2024)R. Singh, A. Malhotra, and R. Bansal, Synthetic cytotoxic drugs as cancer chemotherapeutic agents. Elsevier Inc.,2023. pp. 3-6.M. Mišík, M. Filipic, A. Nersesyan, M. Kundi, M. Isidori, and S. Knasmueller, “Environmental risk 949 assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate),” Water Res., vol. 164, 2019. p.p 3-7.M. Jureczko and J. Kalka, “Cytostatic pharmaceuticals as water contaminants,” Eur. J. Pharmacol., vol. 866, no. November 2019, p. 172816, 2020. p.p 1-7S. N. Mahnik, B. Rizovski, M. Fuerhacker, and R. M. Mader, “Determination of 5-fluorouracil in hospital effluents,” Anal. Bioanal. Chem., vol. 380, no. 1, pp. 31–35, 2004. p.p 3-4.M. Cevik et al., “Evaluation of Cytotoxicity and Mutagenicity of Wastewater from Istanbul: Data from Hospitals and Advanced Wastewater Treatment Plant,” Bull. Environ. Contam. Toxicol., 2020, vol. 104, no. 6, pp. 852–857.S. N. Mahnik, K. Lenz, N. Weissenbacher, R. M. Mader, and M. Fuerhacker, “Fate of 5-fluorouracil, doxorubicin, epirubicin, and daunorubicin in hospital wastewater and their elimination by activated sludge and treatment in a membrane-bio-reactor system,”, 2007.Chemosphere, vol. 66, no. 1, pp. 30–37N. Negreira, M. L. de Alda, and D. Barceló, “Cytostatic drugs and metabolites in municipal and hospital 962 wastewaters in Spain: Filtration, occurrence, and environmental risk,” Sci. Total Environ., 2014, vol. 497–498, pp. 68–77A. M. Wormington, M. De María, H. G. Kurita, J. H. Bisesi, N. D. Denslow, and C. J. Martyniuk, 965 “Antineoplastic Agents: Environmental Prevalence and Adverse Outcomes in Aquatic Organisms,” Environ. Toxicol. Chem., 2020. vol. 39, no. 5, pp. 967–985.J. P. Besse, J. F. Latour, and J. Garric, “Anticancer drugs in surface waters. What can we say about the occurrence and environmental significance of cytotoxic, cytostatic and endocrine therapy drugs?,” Environ. Int., 2012, vol. 39, no. 1, pp. 73–86.B. de H. Aurélien, B. Sylvie, D. Alain, G. Jérôme, and P. Yves, “Ecotoxicological risk assessment linked to the discharge by hospitals of bio-accumulative pharmaceuticals into aquatic media: The case of mitotane,” Chemosphere, 2013, vol. 93, no. 10, pp. 2365–2372R. Kovács et al., “Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study,” Water Res. 2015, vol. 77, pp. 201–212.K. Fent, A. A. Weston, and D. Caminada, “Ecotoxicology of human pharmaceuticals,” Aquat. Toxicol. 2006, vol. 76, no. 2, pp. 122–159.K. Samal, S. Mahapatra, and M. Hibzur Ali, “Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health,” Energy Nexus. 2022, vol. 6, no. April, p. 100076, pp. 3-6N. Negreira, M. López de Alda, and D. Barceló, “Study of the stability of 26 cytostatic drugs and metabolites in wastewater under different conditions,” Sci. Total Environ. 2014, vol. 482–483, no. 1, pp. 389–398.M. S. Chandraprasad, A. Dey, and M. K. Swamy, Introduction to cancer and treatment approaches. Elsevier Inc.,2021, pp. 4-6.C. G. Olvera-Néstor, E. Morales-Avila, L. M. Gómez-Olivan, M. Galár-Martínez, S. García-Medina, and N. Neri-Cruz, “Biomarkers of Cytotoxic, Genotoxic and Apoptotic Effects in Cyprinus carpio Exposed to Complex Mixture of Contaminants from Hospital Effluents,” Bull. Environ. Contam. Toxicol. 2016, vol. 96, no. 3, pp. 326–332.M. Isidori et al., “Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain,” Environ. Pollut. 2016, vol. 219, pp. 275–287L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Development of a UPLC-MS/MS method for the determination of ten anticancer drugs in hospital and urban wastewaters, and its application for the screening of human metabolites assisted by information-dependent acquisition tool (IDA) in sewage samples,” Anal. Bioanal. Chem. 2013, vol. 405, no. 18, pp. 5937–5952.M. de Oliveira Klein et al., “Detection of anti-cancer drugs and metabolites in the effluents from a large Brazilian cancer hospital and an evaluation of ecotoxicology,” Environ. Pollut. 2021, vol. 268, pp. 2-5.T. I. A. Gouveia, A. M. T. Silva, M. G. Freire, A. C. A. Sousa, A. Alves, and M. S. F. Santos, “Multi-target analysis of cytostatics in hospital effluents over a 9-month period,” J. Hazard. Mater. 2023, vol. 448. pp.2-6M. A. Vaudreuil, S. Vo Duy, G. Munoz, A. Furtos, and S. Sauvé, “A framework for the analysis of polar anticancer drugs in wastewater: On-line extraction coupled to HILIC or reverse phase LC-MS/MS,” Talanta 2020, vol. 220. pp. 5-6J. Yin, B. Shao, J. Zhang, and K. Li, “A preliminary study on the occurrence of cytostatic drugs in hospital effluents in Beijing, China,” Bull. Environ. Contam. Toxicol. 2010, vol. 84, no. 1, pp. 39–45.A. Tauxe-Wuersch, L. F. De Alencastro, D. Grandjean, and J. Tarradellas, “Trace determination of tamoxifen and 5-fluorouracil in hospital and urban wastewaters,” Int. J. Environ. Anal. Chem. 2006, vol. 86, no. 7, pp. 473–485K. Lenz et al., “Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge,” Sci. Total Environ. 2005, vol. 345, no. 1–3, pp. 141–152.N. Vyas, A. Turner, and G. Sewell, “Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters,” Sci. Total Environ. 2014, vol. 493, pp. 324–329.M. B. Vandegehuchte and C. R. Janssen, “Epigenetics and its implications for ecotoxicology,” Ecotoxicology, 2011, vol. 20, no. 3, pp. 607–624.F. Ribeiro, L. Costa-Lotufo, S. Loureiro, and M. D. Pavlaki, “Environmental Hazard of Anticancer Drugs: State of the Art and Future Perspective for Marine Organisms,” Environ. Toxicol. Chem. 2022, vol. 41, no. 8, pp. 1793–1807L. Ferrando-Climent, S. Rodriguez-Mozaz, and D. Barceló, “Incidence of anticancer drugs in an aquatic urban system: From hospital effluents through urban wastewater to natural environment,” Environ. Pollut.2014, vol. 193, pp. 216–223.C. Nassour, S. Nabhani-Gebara, S. J. Barton, and J. Barker, “Determination of Anticancer Drugs in the Aquatic Environment by SPE–LC–MS/MS—A Lebanese Case Study,” Water (Switzerland), 2023, vol. 15, no. 8, pp.2-5.M. de O. Klein, L. F. V. Francisco, I. N. F. Gomes, S. V. Serrano, R. M. Reis, and H. C. S. Silveira, “Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays,” Mutat. Res. - Genet. Toxicol. Environ. Mutagen. 2023, vol. 892, pp. 2-4T. Kosjek, N. Negreira, E. Heath, M. L. de Alda, and D. Barceló, “Biodegradability of the anticancer drug etoposide and identification of the transformation products,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14706–14717.L. Ferrando-Climent, M. J. Reid, S. Rodriguez-Mozaz, D. Barceló, and K. V. Thomas, “Identification of markers of cancer in urban sewage through the use of a suspect screening approach,” J. Pharm. Biomed. Anal. 2016, vol. 129, pp. 571–580.N. Negreira, N. Mastroianni, M. López De Alda, and D. Barceló, “Multianalyte determination of 24 cytostatics and metabolites by liquid chromatography-electrospray-tandem mass spectrometry and study of their stability and optimum storage conditions in aqueous solution,” Talanta, 2013, vol. 116, pp. 290–299.M. Kundi, A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, and M. Isidori, “Prediction and assessment of ecogenotoxicity of antineoplastic drugs in binary mixtures,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14771–14779.S. Santana-Viera, P. Hernández-Arencibia, Z. Sosa-Ferrera, and J. J. Santana-Rodríguez, “Simultaneous and systematic analysis of cytostatic drugs in wastewater samples by ultra-high performance liquid chromatography tandem mass spectrometry,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, vol. 1110–1111, pp. 124–132.M. B. Cristóvão, A. Bento-Silva, M. R. Bronze, J. G. Crespo, and V. J. Pereira, “Detection of anticancer drugs in wastewater effluents: Grab versus passive sampling,” Sci. Total Environ. 2021, vol. 786, p. 147477.D. A. Skoog, F. James Holler, and S. R. Crouch, “Douglas A. Skoog & F. James Holler & Timothy A. Nieman - Principios de análisis instrumental (5ed, McGrawHill).pdf.” pp. 1–856, 2001.P. Škvára, S. Santana-Viera, S. Montesdeoca-Esponda, E. Mordačíková, J. J. Santana-Rodríguez, and A. Vojs Staňová, “Determination of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine in hospital wastewater by liquid chromatography–mass spectrometry,” J. Sep. Sci. 2020, vol. 43, no. 15, pp. 3074–3082.Y. Ghafuria, M. Yunesian, R. Nabizadeh, A. Mesdaghinia, M. H. Dehghani, and M. Alimohammadi, “Environmental risk assessment of platinum cytotoxic drugs: a focus on toxicity characterization of hospital effluents,” Int. J. Environ. Sci. Technol. 2018, vol. 15, no. 9, pp. 1983–1990.M. Alzola-Andrés, S. Domingo-Echaburu, Y. Segura, Y. Valcárcel, G. Orive, and U. Lertxundi, “Pharmaceuticals in hospital wastewaters: an analysis of the UBA’s pharmaceutical database,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 44, pp. 99345–99361.M. Mišík, C. Pichler, B. Rainer, M. Filipic, A. Nersesyan, and S. Knasmueller, “Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact on the environment,” Environ. Res. 2014, vol. 135, pp. 196–203.C. Russo, M. Lavorgna, M. Česen, T. Kosjek, E. Heath, and M. Isidori, “Evaluation of acute and chronic ecotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and UV treated samples,” Environ. Pollut. 2018, vol. 233, pp. 356–363.M. Jureczko and W. Przystaś, “Ecotoxicity risk of presence of two cytostatic drugs: Bleomycin and vincristine and their binary mixture in aquatic environment,” Ecotoxicol. Environ. Saf. 2019, vol. 172, pp. 210–215.A. C. Johnson, M. D. Jürgens, R. J. Williams, K. Kümmerer, A. Kortenkamp, and J. P. Sumpter, “Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study,” J. Hydrol. 2008, vol. 348, no. 1–2, pp. 167–175.G. V. Aguirre-Martínez, C. Okello, M. J. Salamanca, C. Garrido, T. A. Del Valls, and M. L. Martín-Díaz, “Is the step-wise tiered approach for ERA of pharmaceuticals useful for the assessment of cancer therapeutic drugs present in marine environment?,” Environ. Res. 2016, vol. 144, pp. 43–59.R. Zounkova, L. Kovalova, L. Blaha, and W. Dott, “Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites,” Chemosphere, 2010, vol. 81, no. 2, pp. 253–260.C. Mesak et al., “Do Amazon turtles exposed to environmental concentrations of the antineoplastic drug cyclophosphamide present mutagenic damages? If so, would such damages be reversible?,” Environ. Sci.Pollut. Res. 2019, vol. 26, no. 6, pp. 6234–6243.E. Ivantsova, M. Huang, A. S. Wengrovitz, C. L. Souders, and C. J. Martyniuk, “Molecular and behavioral assessment in larval zebrafish (Danio rerio) following exposure to environmentally relevant levels of the antineoplastic cyclophosphamide,” Environ. Toxicol. Pharmacol. 2022, vol. 90, p. 103809.F. Orias, L. Simon, G. Mialdea, A. Clair, V. Brosselin, and Y. Perrodin, “Bioconcentration of 15N-tamoxifen at environmental concentration in liver, gonad and muscle of Danio rerio,” Ecotoxicol. Environ. Saf. 2015, vol. 120, pp. 457–462.Q. Yu et al., “Tamoxifen-induced hepatotoxicity via lipid accumulation and inflammation in zebrafish,” Chemosphere, 2020, vol. 239, pp. 1–10..F. Orias et al., “Tamoxifen ecotoxicity and resulting risks for aquatic ecosystems,” Chemosphere, 2015, vol. 128, pp. 79–84.C. Venâncio, B. Monteiro, I. Lopes, and A. C. A. Sousa, “Assessing the risks of capecitabine and its active metabolite 5-fluorouracil to freshwater biota,” Environ. Sci. Pollut. Res. 2023, vol. 30, no. 20, pp. 58841–58854.M. Mišík, M. Filipic, A. Nersesyan, K. Mišíková, S. Knasmueller, and M. Kundi, “Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia,” Environ. Sci. Pollut. Res. 2016, vol. 23, no. 15, pp. 14762–14770.M. Kračun-Kolarević et al., “Effects of 5-Fluorouracil, Etoposide and CdCl2 in Aquatic Oligochaeta Limnodrilus udekemianus Claparede (Tubificidae) Measured by Comet Assay,” Water. Air. Soil Pollut. 2015, vol. 226, no. 8.L. C. Mello, T. G. da Fonseca, and A. Denis Moledode de Souza, “Ecotoxicological assessment of chemotherapeutic agents using toxicity tests with embryos of Mellita quinquiesperforata,” Mar. Pollut. Bull. 2020, vol. 159, no. May, p. 111493.C. Trombini, T. Garcia da Fonseca, M. Morais, T. L. Rocha, J. Blasco, and M. J. Bebianno, “Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis,” Mar. Environ. Res. 2016, vol. 119, pp. 12–21A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, V. Fiumano, and M. Isidori, “Acute and chronic toxicity of six anticancer drugs on rotifers and crustaceans,” Chemosphere, 2024, vol. 115, no. 1, pp. 59–66.Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/75201f33-c78b-4905-af45-91f2db5996a4/download17cc15b951e7cc6b3728a574117320f9MD51Acta de aprobacion.pdfapplication/pdf1664114https://repositorio.unbosque.edu.co/bitstreams/ce9fe49c-7020-480f-a4a9-ae426a56a409/downloadadfac439c6a3d8664b5db85bf8fb5ffdMD53Carta de autorizacion.pdfapplication/pdf233215https://repositorio.unbosque.edu.co/bitstreams/f901de35-a8b1-4057-8179-7f8145e55994/download44876a3d81463606a7906f648c2fe376MD54ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf861526https://repositorio.unbosque.edu.co/bitstreams/ebcde7ef-1910-4c20-8270-504fbf7f53ad/download76c3f6f3d00be65171a466eb8187af6aMD52TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain99359https://repositorio.unbosque.edu.co/bitstreams/bd3eb850-75f1-46d0-9465-c3cb2dc6f2b7/download4de52afb12c3a6f8b522a70ad81b2777MD55THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5294https://repositorio.unbosque.edu.co/bitstreams/58df7300-d20e-4331-857d-67d345579e25/download514371658724d4d4724d74834cfce00eMD5620.500.12495/13268oai:repositorio.unbosque.edu.co:20.500.12495/132682024-11-21 03:05:46.613open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=