Desarrollo de un método de selección de características basado en el análisis de señales electroencefalográficas para la detección de somnolencia

El sueño es un estado que aísla a las personas de la realidad. Cuando no se descansa lo suficiente en la noche, las actividades del día comienzan a verse afectadas por etapas de somnolencia las cuales enlentecen los resultados de las tareas ejecutadas y, según el tipo de actividad que se esté realiz...

Full description

Autores:
Vásquez Jiménez, Sandra Sofia del Pilar
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/6096
Acceso en línea:
http://hdl.handle.net/20.500.12495/6096
https://repositorio.unbosque.edu.co
Palabra clave:
Procesamiento de señales EEG
Vigilia
Somnolencia
Discriminancia de características
610.28
EEG signal processing
Wakefulness
Drowsiness
Characteristic discrimination
Electroencefalografía -- Análisis
Trastornos del sueño -- Diagnóstico
Personas -- Trastornos del sueño
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
Description
Summary:El sueño es un estado que aísla a las personas de la realidad. Cuando no se descansa lo suficiente en la noche, las actividades del día comienzan a verse afectadas por etapas de somnolencia las cuales enlentecen los resultados de las tareas ejecutadas y, según el tipo de actividad que se esté realizando, pueden poner en riesgo la vida. La detección de somnolencia se ha realizado mediante análisis de imágenes y de señales electroencefalográficas. Los primeros suelen verse afectados por variables externas a los estudios realizados y los segundos suelen ser incómodos para los usuarios debido a la cantidad de electrodos y el sistema utilizado para la detección. Es por eso por lo que se planteó el desarrollo de un método de selección de características para la detección oportuna de somnolencia basado en el análisis de un solo canal de electroencefalografía. Este método se basó en el procesamiento de señales electroencefalográficas (EEG) obtenidas de la base de datos MIT-BIH Polysomnographic Database. Se realizó la selección de 14 características obtenidas del canal bipolar C3-O1 para 11 sujetos, todos ellos hombres. Se analizó el tipo de distribución de los datos obtenidos y se aplicó la prueba de discriminancia de Rangos con Signo de Wilcoxon. Posterior a esto se realizó el análisis de correlación de Spearman, utilizada para variables no paramétricas. De las 14 características iniciales se seleccionaron el centroide y el Cambio del área bajo la curva de Alpha respecto a Theta (( − ) / ) como aquellos índices que mejor efecto discriminante tenían sobre las dos clases de interés, W y S1. Posterior a la selección se clasificó con un LDA y se obtuvo un 74% de exactitud, 79% de sensibilidad, 69% de especificidad y 72% de precisión