Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key proces...
- Autores:
-
Millán, Diana
Sosnik, Alejandro
Fontanilla, Marta Raquel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/6767
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/6767
https://doi.org/10.1016/j.mtchem.2021.100722
- Palabra clave:
- Sistema de entrega
Andamios
plataforma de transporte
Emulsificación-gelificación
Métodos de homogeneización
Delivery system
Scaffolds
Carrier platform
Emulsification-gelation
Homogenization methods
- Rights
- openAccess
- License
- Acceso abierto
id |
UNBOSQUE2_7c0a58e71acb372fb7709bc080de3a37 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/6767 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
dc.title.translated.spa.fl_str_mv |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
title |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
spellingShingle |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance Sistema de entrega Andamios plataforma de transporte Emulsificación-gelificación Métodos de homogeneización Delivery system Scaffolds Carrier platform Emulsification-gelation Homogenization methods |
title_short |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
title_full |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
title_fullStr |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
title_full_unstemmed |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
title_sort |
Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance |
dc.creator.fl_str_mv |
Millán, Diana Sosnik, Alejandro Fontanilla, Marta Raquel |
dc.contributor.author.none.fl_str_mv |
Millán, Diana Sosnik, Alejandro Fontanilla, Marta Raquel |
dc.contributor.orcid.none.fl_str_mv |
Ronald Jimenez [https://orcid.org/ 0000-0002-1364-154X] |
dc.subject.spa.fl_str_mv |
Sistema de entrega Andamios plataforma de transporte Emulsificación-gelificación Métodos de homogeneización |
topic |
Sistema de entrega Andamios plataforma de transporte Emulsificación-gelificación Métodos de homogeneización Delivery system Scaffolds Carrier platform Emulsification-gelation Homogenization methods |
dc.subject.keywords.spa.fl_str_mv |
Delivery system Scaffolds Carrier platform Emulsification-gelation Homogenization methods |
description |
Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-09T17:55:11Z |
dc.date.available.none.fl_str_mv |
2022-02-09T17:55:11Z |
dc.date.issued.none.fl_str_mv |
2022-03 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
2468-5194 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/6767 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.mtchem.2021.100722 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
identifier_str_mv |
2468-5194 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/6767 https://doi.org/10.1016/j.mtchem.2021.100722 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Materials Today Chemistry, 2468-5194, Vol 23, Num 100722, 2022 |
dc.relation.uri.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2468519421003025?via%3Dihub#! |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
dc.publisher.journal.spa.fl_str_mv |
Materials Today Chemistry |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/fce3216f-d654-4fda-a00e-980d96cd20b9/download https://repositorio.unbosque.edu.co/bitstreams/fa4c196b-314f-4d76-acdc-8ed790cd2e1f/download https://repositorio.unbosque.edu.co/bitstreams/1d0b0655-c44d-4eb7-9791-5a3f6ccd4c7d/download https://repositorio.unbosque.edu.co/bitstreams/9c3da042-f3d6-4a4e-8f10-73bc619de62f/download |
bitstream.checksum.fl_str_mv |
e527ae8707fbe8e3c3a86dabeabf3711 8a4605be74aa9ea9d79846c1fba20a33 9daf18bd8183943a79f68b85753b96d1 64cc7eadbab21f8374690df72fe2cf2a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100732815605760 |
spelling |
Millán, DianaSosnik, AlejandroFontanilla, Marta RaquelRonald Jimenez [https://orcid.org/ 0000-0002-1364-154X]2022-02-09T17:55:11Z2022-02-09T17:55:11Z2022-032468-5194http://hdl.handle.net/20.500.12495/6767https://doi.org/10.1016/j.mtchem.2021.100722instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coMicrogels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics.Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics.application/pdfengElsevier LtdMaterials Today ChemistryMaterials Today Chemistry, 2468-5194, Vol 23, Num 100722, 2022https://www.sciencedirect.com/science/article/pii/S2468519421003025?via%3Dihub#!Sistema de entregaAndamiosplataforma de transporteEmulsificación-gelificaciónMétodos de homogeneizaciónDelivery systemScaffoldsCarrier platformEmulsification-gelationHomogenization methodsAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abiertoORIGINALAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdfAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdfAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceapplication/pdf2737956https://repositorio.unbosque.edu.co/bitstreams/fce3216f-d654-4fda-a00e-980d96cd20b9/downloade527ae8707fbe8e3c3a86dabeabf3711MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/fa4c196b-314f-4d76-acdc-8ed790cd2e1f/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.jpgAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.jpgIM Thumbnailimage/jpeg9719https://repositorio.unbosque.edu.co/bitstreams/1d0b0655-c44d-4eb7-9791-5a3f6ccd4c7d/download9daf18bd8183943a79f68b85753b96d1MD53TEXTAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.txtAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.txtExtracted texttext/plain71391https://repositorio.unbosque.edu.co/bitstreams/9c3da042-f3d6-4a4e-8f10-73bc619de62f/download64cc7eadbab21f8374690df72fe2cf2aMD5420.500.12495/6767oai:repositorio.unbosque.edu.co:20.500.12495/67672024-02-07 01:26:16.052open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |