Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance

Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key proces...

Full description

Autores:
Millán, Diana
Sosnik, Alejandro
Fontanilla, Marta Raquel
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/6767
Acceso en línea:
http://hdl.handle.net/20.500.12495/6767
https://doi.org/10.1016/j.mtchem.2021.100722
Palabra clave:
Sistema de entrega
Andamios
plataforma de transporte
Emulsificación-gelificación
Métodos de homogeneización
Delivery system
Scaffolds
Carrier platform
Emulsification-gelation
Homogenization methods
Rights
openAccess
License
Acceso abierto
id UNBOSQUE2_7c0a58e71acb372fb7709bc080de3a37
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/6767
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
dc.title.translated.spa.fl_str_mv Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
title Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
spellingShingle Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
Sistema de entrega
Andamios
plataforma de transporte
Emulsificación-gelificación
Métodos de homogeneización
Delivery system
Scaffolds
Carrier platform
Emulsification-gelation
Homogenization methods
title_short Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
title_full Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
title_fullStr Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
title_full_unstemmed Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
title_sort Aloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performance
dc.creator.fl_str_mv Millán, Diana
Sosnik, Alejandro
Fontanilla, Marta Raquel
dc.contributor.author.none.fl_str_mv Millán, Diana
Sosnik, Alejandro
Fontanilla, Marta Raquel
dc.contributor.orcid.none.fl_str_mv Ronald Jimenez [https://orcid.org/ 0000-0002-1364-154X]
dc.subject.spa.fl_str_mv Sistema de entrega
Andamios
plataforma de transporte
Emulsificación-gelificación
Métodos de homogeneización
topic Sistema de entrega
Andamios
plataforma de transporte
Emulsificación-gelificación
Métodos de homogeneización
Delivery system
Scaffolds
Carrier platform
Emulsification-gelation
Homogenization methods
dc.subject.keywords.spa.fl_str_mv Delivery system
Scaffolds
Carrier platform
Emulsification-gelation
Homogenization methods
description Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-02-09T17:55:11Z
dc.date.available.none.fl_str_mv 2022-02-09T17:55:11Z
dc.date.issued.none.fl_str_mv 2022-03
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2468-5194
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/6767
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.mtchem.2021.100722
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
identifier_str_mv 2468-5194
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/6767
https://doi.org/10.1016/j.mtchem.2021.100722
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Materials Today Chemistry, 2468-5194, Vol 23, Num 100722, 2022
dc.relation.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2468519421003025?via%3Dihub#!
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
dc.publisher.journal.spa.fl_str_mv Materials Today Chemistry
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/fce3216f-d654-4fda-a00e-980d96cd20b9/download
https://repositorio.unbosque.edu.co/bitstreams/fa4c196b-314f-4d76-acdc-8ed790cd2e1f/download
https://repositorio.unbosque.edu.co/bitstreams/1d0b0655-c44d-4eb7-9791-5a3f6ccd4c7d/download
https://repositorio.unbosque.edu.co/bitstreams/9c3da042-f3d6-4a4e-8f10-73bc619de62f/download
bitstream.checksum.fl_str_mv e527ae8707fbe8e3c3a86dabeabf3711
8a4605be74aa9ea9d79846c1fba20a33
9daf18bd8183943a79f68b85753b96d1
64cc7eadbab21f8374690df72fe2cf2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100732815605760
spelling Millán, DianaSosnik, AlejandroFontanilla, Marta RaquelRonald Jimenez [https://orcid.org/ 0000-0002-1364-154X]2022-02-09T17:55:11Z2022-02-09T17:55:11Z2022-032468-5194http://hdl.handle.net/20.500.12495/6767https://doi.org/10.1016/j.mtchem.2021.100722instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coMicrogels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics.Microgels absorb and retain high amounts of solvents, especially water. Because of their size, and association, the release kinetics of active molecules from microgels is easier to control than in hydrogels. Collagen I is one of the most extensively investigated biomaterials, although the key process parameters to produce microgels must be understood well before they can be used in veterinary and human medicine. Emulsification-gelation is widely used to obtain microgels because of its ease of handling and high yields. The concentration of the biomaterial and the homogenization method are among the critical parameters in this method. In this work, we produced cytocompatible collagen I microgels by emulsification-gelation and evaluated the effect of three different concentrations and homogenization methods on their physicochemical, mechanical, and biological properties. As proof of concept, microgels were loaded with an Aloe vera extract and the loading efficiency and the polyphenol release kinetics, as well as their properties assessed. When the same homogenization method (e.g. magnetic stirring) was used, the size of the microgels decreased with an increase of collagen I concentration, and the size distribution increased. In addition, the size and size distribution of microgels prepared with the same collagen I concentration were smaller when produced by high-energy homogenization methods (shear stress and ultrasound) than with a low-energy one (magnetic stirring). Collagen I concentration and the homogenization method also influenced the zeta-potential, the enzymatic degradation, and the encapsulation efficiency of the microgels. Overall, we show that the size of these microgels can be fine-tuned by the collagen I concentration and the homogenization method. Moreover, the integration of microgels of different sizes into the same carrier platform will pave the way for the combination of active compounds with different release kinetics.application/pdfengElsevier LtdMaterials Today ChemistryMaterials Today Chemistry, 2468-5194, Vol 23, Num 100722, 2022https://www.sciencedirect.com/science/article/pii/S2468519421003025?via%3Dihub#!Sistema de entregaAndamiosplataforma de transporteEmulsificación-gelificaciónMétodos de homogeneizaciónDelivery systemScaffoldsCarrier platformEmulsification-gelationHomogenization methodsAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abiertoORIGINALAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdfAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdfAloe vera–eluting collagen I microgels: physicochemical characterization and in vitro biological performanceapplication/pdf2737956https://repositorio.unbosque.edu.co/bitstreams/fce3216f-d654-4fda-a00e-980d96cd20b9/downloade527ae8707fbe8e3c3a86dabeabf3711MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/fa4c196b-314f-4d76-acdc-8ed790cd2e1f/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.jpgAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.jpgIM Thumbnailimage/jpeg9719https://repositorio.unbosque.edu.co/bitstreams/1d0b0655-c44d-4eb7-9791-5a3f6ccd4c7d/download9daf18bd8183943a79f68b85753b96d1MD53TEXTAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.txtAloe vera eluting collagen I microgels physicochemical characterization and in vitro biological performance.pdf.txtExtracted texttext/plain71391https://repositorio.unbosque.edu.co/bitstreams/9c3da042-f3d6-4a4e-8f10-73bc619de62f/download64cc7eadbab21f8374690df72fe2cf2aMD5420.500.12495/6767oai:repositorio.unbosque.edu.co:20.500.12495/67672024-02-07 01:26:16.052open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=