Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico
Helicobacter pylori es una bacteria que coloniza la mucosa gástrica y está asociada a enfermedades como la gastritis y el cáncer gástrico, representando un desafío para su detección debido a la limitada sensibilidad y especificidad de los métodos actuales. En este contexto, los biosensores surgen co...
- Autores:
-
Sandoval Romero, Laura Camila
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14572
- Palabra clave:
- Helicobacter pylori
vacA
Biosensores
Genosensores
Inmovilización
Hibridación
In silico
610.28
Helicobacter pylori
vacA
Biosensors
Genosensors
Immobilization
Hybridization
In silico
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_7beea1ff8ac59e15689d06f82268c15f |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14572 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
dc.title.translated.none.fl_str_mv |
Design of the bioreception-transduction stage for a genosensor for the identification of Helicobacter pylori in gastric fluid samples |
title |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
spellingShingle |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico Helicobacter pylori vacA Biosensores Genosensores Inmovilización Hibridación In silico 610.28 Helicobacter pylori vacA Biosensors Genosensors Immobilization Hybridization In silico |
title_short |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
title_full |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
title_fullStr |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
title_full_unstemmed |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
title_sort |
Diseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástrico |
dc.creator.fl_str_mv |
Sandoval Romero, Laura Camila |
dc.contributor.advisor.none.fl_str_mv |
Ibla Gordillo, José Francisco Perdomo Lara, Sandra Janneth |
dc.contributor.author.none.fl_str_mv |
Sandoval Romero, Laura Camila |
dc.subject.none.fl_str_mv |
Helicobacter pylori vacA Biosensores Genosensores Inmovilización Hibridación In silico |
topic |
Helicobacter pylori vacA Biosensores Genosensores Inmovilización Hibridación In silico 610.28 Helicobacter pylori vacA Biosensors Genosensors Immobilization Hybridization In silico |
dc.subject.ddc.none.fl_str_mv |
610.28 |
dc.subject.keywords.none.fl_str_mv |
Helicobacter pylori vacA Biosensors Genosensors Immobilization Hybridization In silico |
description |
Helicobacter pylori es una bacteria que coloniza la mucosa gástrica y está asociada a enfermedades como la gastritis y el cáncer gástrico, representando un desafío para su detección debido a la limitada sensibilidad y especificidad de los métodos actuales. En este contexto, los biosensores surgen como una alternativa prometedora, aunque su sensibilidad y estabilidad dependen en gran medida de la elección del transductor, el biorreceptor y la estrategia de inmovilización. Este estudio desarrolla la etapa de biorrecepción-transducción de un genosensor electroquímico para la detección de Helicobacter pylori en muestras de fluido gástrico. Inicialmente, se estableció un diseño conceptual considerando las propiedades fisicoquímicas del fluido, seleccionando un electrodo serigrafiado de oro con una superficie modificada para mejorar la sensibilidad en la detección de ADN. En el diseño detallado, se seleccionó como biorreceptor una secuencia específica del alelo vacAs1 del gen vacA, debido a su alta prevalencia en cepas virulentas de H. pylori asociadas a la ulceración y cáncer gástrico. Se evaluó su estabilidad estructural a diferentes temperaturas para entender cómo las condiciones térmicas afectan la estabilidad de la hebra, su especificidad mediante la introducción de SNPs —analizando los cambios en ∆G, ∆H y ∆S—, y el comportamiento de interacción del dúplex con el fluido, así como su estabilidad en términos energéticos, con una energía total de –133.014 kJ/mol a 25 °C bajo condiciones simuladas de fluido gástrico. Además, se exploró una estrategia de detección sin marcadores, aprovechando la estructura y propiedades redox de la secuencia. Las nanopartículas de oro (AuNPs), inmovilizadas sobre un material semiconductor debido a su afinidad con el enlace Au–S, facilitaron la inmovilización del ADN tiolado correspondiente al gen vacAs1 en la superficie del electrodo, mejorando así la señal de corriente. Finalmente, mediante simulaciones in silico, se evaluó el comportamiento físico del biorreceptor y, mediante voltamperometría cíclica, se determinó una señal electroquímica que permitió establecer un límite de detección de 6,79 ×10^(-13) M. Este diseño in silico representa un avance en la detección electroquímica de H. pylori, ofreciendo una alternativa más sensible y menos invasiva para entornos clínicos. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-06T15:44:57Z |
dc.date.available.none.fl_str_mv |
2025-06-06T15:44:57Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14572 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14572 https://repositorio.unbosque.edu.co |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abbasi, M., Mahmoudi, A., & Asadpour, K. (2024). Fabrication of a polishable and reusable triple electrode as a new generation of three-electrode systems for the electrochemical analysis applications through both immersion and drop casting-procedures. Sensing and Bio-Sensing Research, 43, 100635. https://doi.org/10.1016/j.sbsr.2024.100635 ACSMaterial. (2025). Highly Conductive Reduced Graphene Oxide (RGO). https://www.acsmaterial.com/highly-conductive-reduced-graphene-oxide-rgo.html?srsltid=AfmBOopXpCHvdTfPeBkULOP1Dbi08HYv1NOzNI8FZ2YU_6i4buBJvBMA Adesokan, B., Quan, X., Evgrafov, A., Heiskanen, A., Boisen, A., & Sørensen, M. (2015). Experimentation and numerical modeling of cyclic voltammetry for electrochemical micro-sized sensors under the influence of electrolyte flow. Journal Of Electroanalytical Chemistry, 763, 141-148. https://doi.org/10.1016/j.jelechem.2015.12.029 Akbulut, U. (1988). Electron transfer mechanisms of some biochemically active purines. Communications Faculty Of Science University Of Ankara Series B Chemistry And Chemical Engineering, 083-092. https://doi.org/10.1501/commub_0000000490 Andrade, M., López, L., & Sáenz, A. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista mexicana de ciencias farmacéuticas , 43(3), 9-18. https://www.scielo.org.mx/scielo.php?pid=S1870-01952012000300002&script=sci_arttext Arechederra M, Ávila MA, Berasain C. (2020). La biopsia líquida en el manejo del cáncer: una nueva herramienta revolucionaria de la medicina de precisión, aún con limitaciones. Adv Lab Med. 1(3):20200038. Spanish. doi: 10.1515/almed-2020-0038. PMCID: PMC10197306. Arévalo, A., Trespalacios, A., Otero, W., Mercado, M., & Poutou, R. (2012). Prevalence of cagA, vacA, babA2 and iceA Genes in H. pylori Strains Isolated from Colombian Patients with Functional Dyspepsia. Polish Journal of Microbiology, Vol. 61, No 1, 33–40. http://www.pjmonline.org/wp-content/uploads/archive/vol6112012033.pdf Arnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. https://doi.org/10.1016/j.chembiol.2015.11.010 Artigues, C., Margalida, E. (2019). Estudio de biosensores electroquímicos basados en inmovilización enzimática. Universitat Ramon Llull. http://hdl.handle.net/10803/667847 Atherton, J. C. (2006). The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annual Review of Pathology; 1:63–96. https://doi.org/10.1146/annurev.pathol.1.110304.100125 Asadzadeh-Firouzabadi, A., Zare, H. R., & Nasirizadeh, N. (2015). Electrochemical Biosensor for Detection of Target DNA Sequence and Single-Base Mismatch Related to Helicobacter Pylori Using Chlorogenic Acid as Hybridization Indicator. Journal Of The Electrochemical Society, 163(3), B43-B48. https://doi.org/10.1149/2.0461603jes Azimzadeh, M., Rahaie, M., Nasirizadeh, N., & Naderi-Manesh, H. (2015). Application of Oracet Blue in a novel and sensitive electrochemical biosensor for the detection of microRNA. Analytical Methods, 7(22), 9495-9503. https://doi.org/10.1039/c5ay01848j Bailon, N., & Romero, JC. (2016). Genotoxicidad de los nanomateriales, grandes discrepancias y desafíos. Rev. Toxicol 33: 8- 15. http://www.redalyc.org/articulo.oa?id=91946517002 Babaei, A., Pouremamali, A., Rafiee, N., Sohrabi, H., Mokhtarzadeh, A., & De la Guardia, M. (2022). Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: A review of common techniques and outcomes. TrAC Trends In Analytical Chemistry, 155, 116686. https://doi.org/10.1016/j.trac.2022.116686 Ballón, W., & Grados, R. (2019). Acoplamiento molecular: criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Rev.Cs.Farm. y Bioq, 7(2). http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310- 02652019000200006 Bano, A., Dawood, A., Rida, N., Saira, F., Malik, A., Alkholief, M., Ahmad, H., Khan, M. A., Ahmad, Z., & Bazighifan, O. (2023). Enhancing catalytic activity of gold nanoparticles in a standard redox reaction by investigating the impact of AuNPs size, temperature and reductant concentrations. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38234-2 Barbosa, L., Insuasty, D., León, A., Arias, M., Rivera, Z., & Castañeda, J. (2021). Nucleic acid-based biosensors: analytical devices for prevention, diagnosis and treatment of diseases. JOURNAL VITAE. School of Pharmaceutical and Food Sciences. Vol 28; 03. 347259. https://doi.org/10.17533/udea.vitae.v28n3a347259 Bard, A., & Faulkner, L. (2001). Electron transfer by tunneling through blocking films. En Electrochemical Methods: Fundamentals and applications (pp. 624). (2nd Ed). Wiley Batistuti, M., Bueno, P., & Mulato, M. (2020). The importance of the assembling of DNA strands on the performance of electrochemical genosensors. 159, 105358. https://doiorg.ezproxy.unbosque.edu.co/10.1016/j.microc.2020.105358 Bermúdez, L., Torres, L. & Rodríguez, B. (2009). Techniques used for the Helicobacter pylori infection detection. Revista Cubana de Medicina, 48(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232009000100007&lng=es&tlng=es. Bertok, T., Sediva, A., Vikartovska, A., & Tkac, J. (2014). Comparison of the 2D and 3D Nanostructured Lectin-Based Biosensors for In Situ Detection of Sialic Acid on Glycoproteins. International Journal Of Electrochemical Science, 9(2), 890-900. https://doi.org/10.1016/s1452-3981(23)07764-7 Bettazzi, F., Marrazza, G., Minunni, M., Palchetti, I., & Scarano, S. (2017). Biosensors and Related Bioanalytical Tools. Comprehensive Analytical Chemistry, 1–33. doi:10.1016/bs.coac.2017.05.003 BIOVIA Materials Studio. (2023). CASTEP Energy Task. https://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/content/modules/castep/tskcastepenergy.htm Björketun, M. E., Tripkovic, V., Skúlason, E., & Rossmeisl, J. (2012). Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catalysis Today, 202, 168-174. https://doi.org/10.1016/j.cattod.2012.05.044 Boquet, P., Ricci, V., Galmiche, A., & Gauthier, N. C. (2003). Gastric cell apoptosis and H. pylori: has the main function of VacA finally been identified? Trends In Microbiology, 11(9), 410-413. https://doi.org/10.1016/s0966-842x(03)00211-7 Boxeida, D., & De Arguila, C. (2004). Helicobacter pylori y enfermedades relacionadas. https://www.elsevier.es/index.php?p=revista&pRevista=pdfsimple&pii=70000216&r=8 Blanco, A., & Blanco, G. (2017). Nucleic acids. En Elsevier eBooks (pp. 121-140). https://doi.org/10.1016/b978-0-12-803550-4.00006-9 Bush, L. (2022). Defensas contra la infección. Charles E. Schmidt College of Medicine, Florida Atlantic University. https://www.msdmanuals.com/es-co/hogar/infecciones/biolog%C3%ADa-de-las-enfermedades-infecciosas/defensas-contra-la-infecci%C3%B3n Bhat, K. S., Byun, S., Alam, A., Ko, M., An, J., & Lim, S. (2022). A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti3C2 MXene-based electrochemical sensor. Talanta, 244, 123421. https://doi.org/10.1016/j.talanta.2022.123421 Cajusol, E., & Del Carpio, P. (2016). Supplementation, through the dieto f broilers, an Emulsifier – Surfactant. UCV-HACER Rev. lnv. Cult. Volumen 5, Nº 1. https://dialnet.unirioja.es/descarga/articulo/5681735.pdf Callister, W. D., Jr., & Rethwisch, D. G. (2018). Materials science and engineering: An introduction (10th ed.). Wiley. Carrasco, C., Guadalupe, M., García, A., & Monserrat, A. (2015). Validación de un método analítico para la determinación de fósforo por espectrofotometría ultravioleta-visible. Universidad de Sonora. Biotecnia, vol. 17, núm. 1, 2015, pp. 32-39. https://www.redalyc.org/pdf/6729/672971115006.pdf Cardos, A. I., Maghiar, A., Zaha, D. C., Pop, O., Fritea, L., Miere, F., & Cavalu, S. (2022). Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics, 12(2), 508. https://doi.org/10.3390/diagnostics12020508 Castagnini, L., & Gilger, M. (2023). Helicobacter pylori. Principles and Practice of Pediatric Infectious Diseases, 174, 954-959.e5 Cesewski, E., & Johnson, B. (2020). Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 159. https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.bios.2020.112214 CFD – FEATool Multiphysics. (2020). https://www.cfd-online.com/Wiki/FEATool_Multiphysics Chang, C., Chen, C-P., Wu, T., Yang, C., Lin, C., & Chen, C-Y. (2019). Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials, 9(6), 861; https://doi.org/10.3390/nano9060861 Chen, L., Cui, H., Fan, S., Li, Z., Han, S., Ma, X., Luo, S., Song, X., & Lv, Q. (2018). Detection of Helicobacter pylori in dental plaque using a DNA biosensor for noninvasive diagnosis. RSC Advances, 8(38), 21075-21083. https://doi.org/10.1039/c8ra03134g Chuang, H., & Ho, Y. (2020). Advances in Biosensing Technology for Medical Diagnosis [eBook]. Singapore: Bentham Science Publishers Ltd. https://web-p-ebscohost-com.ezproxy.unbosque.edu.co/ehost/detail?sid=97cd9927-9a80-45c0-a8ad 59b1dd89ef7f@redis&vid=0&format=EB&lpid=lp_Ci&rid=0#AN=2659658&db=nlebk Celli, J., Turner, B., Afdhal, N., & Bansil, R. (2009). Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. 106 (34) 14321-14326. https://doi.org/10.1073/pnas.0903438106 Compendio de terminología química de la IUPAC (2006). 3.ª ed. Unión internacional de Química Pura Aplicada. Versión en línea 3.0.1, 2019 Cuellar, J., Calle, P., Morales, M., & Tovar, C. (2013). Simulando con OMNET. Selección de la herramienta y su utilización. ISBN: 978-958-8357-74-4 Choudhary, T., Jothi, L., & Nageswaran, G. (2017). Chapter 2 – Electrochemical Characterization. Spectroscopic Methods for Nanomaterials Characterization. Micro and Nano Technologies, 19-54. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-323-46140-5.00002-9 Clínica Universidad de Navarra. (2023). Ácido clorhídrico. Diccionario médico. https://www.cun.es/diccionario-medico/terminos/acido-clorhidrico Clínica Universidad de Navarra. (2023). Jugo gástrico. Diccionario médico. https://www.cun.es. https://www.cun.es/diccionario-medico/terminos/jugo-gastrico Clínica Universidad de Navarra. (2023). Taurocolato. Diccionario médico. https://www.cun.es/diccionario-medico/terminos/taurocolato Daniel MC & Astruc D (2003). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104(1):293-346. doi: 10.1021/cr030698+. PMID: 14719978. Das, R., Sharma, M., Rao, V., Bhattacharya, BK., Garg, E., Venkatesh, V., & Upadhyay. S. (2014). An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. Journal of Biotechnology, 188, 9-16. https://doi.org/10.1016/j.jbiotec.2014.08.002 De Silva, A. P., Amarasiri, L., Liyanage, M. N., Kottachchi, D., Dassanayake, A. S., & De Silva, H. J. (2009). One‐hour fast for water and six‐hour fast for solids prior to endoscopy provides good endoscopic vision and results in minimum patient discomfort. Journal Of Gastroenterology And Hepatology, 24(6), 1095-1097. https://doi.org/10.1111/j.1440-1746.2009.05782.x De Sousa, C., & Manganiello, L. (2018). Application of piezoelectric sensors in the detection of contaminants in food / Aplicación de los sensores piezoeléctricos en la 152 detección de elementos contaminantes en alimentos. https://www.redalyc.org/journal/707/70757670014/html/ Dickinson, E. J. F., & Hinds, G. (2019). The Butler-Volmer Equation for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Electrode Kinetics: A Critical Discussion. Journal Of The Electrochemical Society, 166(4), F221-F231. https://doi.org/10.1149/2.0361904jes Divins, M. (2015). Control de la acidez gástrica. Farmacia Profesional. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-control-acidez-gastrica-X0213932415344797#:~:text=El%20jugo%20g%C3%A1strico%20es%20un,se%20dan%20en%20su%20interior. Doble, M., & Kumar, A. (2005). Degradation of Dyes. En Elsevier eBooks (pp. 111-122). https://doi.org/10.1016/b978-075067838-4/50011-7 Elancheziyan, M., Singh, M., & Won, K. (2024). Gold Nanoparticle-Embedded Thiol-Functionalized Ti3C2Tx MXene for Sensitive Electrochemical Sensing of Ciprofloxacin. Nanomaterials, 14(20), 1655. https://doi.org/10.3390/nano14201655 Elbehiry, A., Marzouk, E., Aldubaib, M., Abalkhail, A., Anagreyyah, S., Anajirih, N., Almuzaini, A. M., Rawway, M., Alfadhel, A., Draz, A., & Abu-Okail, A. (2023). Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics, 12(2), 191. https://doi.org/10.3390/antibiotics12020191 Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal Of Chemical Education, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361 Ensafi, A. (2019). Chapter 1. An introduction to sensors and biosensors. Electrochemical Biosensors, 1-10. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00001-2 Erduran, V., Bekmezci, M., Bayat, R., Bayer, Z., & Sen, F. (2022). Functionalized nanomaterials and workplace health and safety. Principles, Fabrication Methods, and Applications. Woodhead Publishing Series in Electronic and Optical Materials. 393-406. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-823788-5.00015-6 Ermer, J.; Nethercote, P. (2015). Method Validation in Pharmaceutical Analysis: A Guide to Best Practice; Ermer, J., Nethercote, P., Eds.; Second.; Wiley-VCH Verlag GmbH & Co. KGaA; ISBN 9780470467091 FEATool Multiphysics - MATLAB FEA and CFD Toolbox. (2025). FEATool Multiphysics - MATLAB FEA And CFD Toolbox - File Exchange - MATLAB CentralFile Exchange - MATLAB Central. https://la.mathworks.com/matlabcentral/fileexchange/63144-featool-multiphysics-matlab-fea-and-cfd-toolbox Ferapontova, E. E. (2011). Electrochemical Indicators for DNA Electroanalysis. Current Analytical Chemistry, 7(1), 51-62. https://doi.org/10.2174/157341111793797617 Foster, C.W., Kadara, R.O., & Banks, C.E. (2016). Introduction and Current Applications of Screen-Printed Electrochemical Architectures. In: Screen.Printing Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi-org.ezproxy.unbosque.edu.co/10.1007/978-3-319-25193-6_1 Frishancho, O. (1996). Helicobacter pylori y la fisiopatogenia de la úlcera péptica. Boletín de la Sociedad Peruana de Medicina Interna, Vol. 9(1). https://sisbib.unmsm.edu.pe/bvrevistas/spmi/v09n1/helic_pylo_fisi.htm#:~:text=El%20Helicobacter%20pylori%20sintetiza%20la,puede%20producir%20directamente%20da%C3%B1o%20celular. Gao, Z. F., Gao, J. B., Zhou, L. Y., Zhang, Y., Si, J. C., Luo, H. Q., & Li, N. B. (2013). Rapid assembly of ssDNA on gold electrode surfaces at low pH and high salt concentration conditions. RSC Advances, 3(30), 12334. https://doi.org/10.1039/c3ra40810h García, L. (2008). Desarrollo de un multibiosensor de ADN para el diagnóstico temprano de cáncer de mama. [Tesis de Doctorado, Universidad Autónoma de Madrid]. Repositorio Universidad Autónoma de Madrid. García, T., Revenga-Parra, M., Abruña, H. D., Pariente, F., & Lorenzo, E. (2007). Single-Mismatch Position-Sensitive Detection of DNA Based on a Bifunctional Ruthenium Complex. Analytical Chemistry, 80(1), 77-84. https://doi.org/10.1021/ac071095r Genereux, J. C., & Barton, J. K. (2009). Mechanisms for DNA Charge Transport. Chemical Reviews, 110(3), 1642-1662. https://doi.org/10.1021/cr900228f Giraldo, B. E. S., Villegas, S. I. G., Gómez, D. E. V., Lopera, V. R., Cala, T. L. P., & Martínez, A. (2023). Frecuencia de la infección por Helicobacter pylori en pacientes que requirieron endoscopia digestiva en siete unidades de tres subregiones de Antioquia. Revista Colombiana de Gastroenterología, 38(3), 290-303. https://doi.org/10.22516/25007440.983 Goicochea, H., & Olivieri, A. (2007). La Calibración en Química Analítica. Ed. UNL, Santa Fe, Argentina. 180. ISBN: 978-987-508-900-6 Gómez, A., & Arcila, J. (2012). EVALUATION OF THE ELECTROCHEMICAL SYSTEM Pd(NH3)4Cl2 ON ALUMINUM SUBSTRATE. Momento 45, 44. https://revistas.unal.edu.co/index.php/momento/article/download/40387/67233?inline=1 Gonçalves, L. M., Batchelor-McAuley, C., Barros, A. A., & Compton, R. G. (2010). Electrochemical Oxidation of Adenine: A Mixed Adsorption and Diffusion Response on an Edge-Plane Pyrolytic Graphite Electrode. The Journal Of Physical Chemistry C, 114(33), 14213-14219. https://doi.org/10.1021/jp1046672 González, J., Gómez, R., & Ortega, G. (2021). Síntesis, caracterización y comparación de Óxido de grafeno reducido mediante láser pulsado de CO2 y CVD. https://www.esfm.ipn.mx/assets/files/esfm/docs/RNAFM/articulos-2021/XXVIRNAFM029.pdf Guidelli, R., Compton, R., Feliu, J., Gileadi, E., Lipkowski, J., Schmickler, W. & Trasatti, S. (2014). Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure and Applied Chemistry, 86(2), 245-258. https://doi.org/10.1515/pac-2014-5026 Gupta, S., Jain, U., Murti, B.T. et al. Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with @ Pdnano/rGO/PEDOT sensing platform. (2020). Sci Rep 10, 21217. https://doi.org/10.1038/s41598-020-78068-w Guzman, K. A., & Pazos, A. (2023). Helicobacter pylori: Microorganismo patógeno o mutualista en poblaciones colombianas. Universidad y Salud, 25(1), A1-A6. https://doi.org/10.22267/rus.232501.292 Grönbeck, H., Curioni, A., & Andreoni, W. (2000). Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction. Journal Of The American Chemical Society, 122(16), 3839-3842. https://doi.org/10.1021/ja993622x Habib, T., Zhao, X., Shah, S.A. et al. (2019). Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater Appl 3, 8. https://doi.org/10.1038/s41699-019-0089-3 Hajihosseini, S., Nasirizadeh, N., Hejazi, M. S., & Yaghmaei, P. (2016). A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Materials Science And Engineering: C, 61, 506-515. https://doi.org/10.1016/j.msec.2015.12.091 Harvey, D. (2022). Electrodos de referencia. LibreTexts Español. https://espanol.libretexts.org/Quimica/Qu%C3%ADmica_Anal%C3%ADtica/An%C3%A1lisis_Instrumental_(LibreTextos)/23%3A_Potenciometr%C3%ADa/23.01%3A_Electrodos_de_Referencia Hasnain, S., Jacobson, M. P., & Bandyopadhyay, P. (2013). A comparative Brownian dynamics investigation between small linear and circular DNA: Scaling of diffusion coefficient with size and topology of DNA. Chemical Physics Letters, 591, 253-258. https://doi.org/10.1016/j.cplett.2013.11.029 Hassler, S. (2012). Other commonly used biomedical coatings: pyrolitic carbon coatings. Woodhead Publishing Series in Biomaterials, 75-105. https://doi.org/10.1533/9780857093677.1.75 Hebbar, R., Isloor, A., & Ismail, A. (2017). Contact angle measurements. En Elsevier eBooks (pp. 219-255). https://doi.org/10.1016/b978-0-444-63776-5.00012-7 Heda, R., Toro, F., & Tombazzi, CR. (2023). Physiology, Pepsin. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537005 Hernández, J., & Borrás, C. (2020). Analysis of liquid biopsies for cancer diagnosis: Systematic review. https://www.elsevier.es/es-revista-revista-espanola-geriatria-gerontologia-124-articulo-analisis-biopsias-liquidas-el-diagnostico S0211139X20301396 Hernández. R., Morales. K., Garrido. M., & Piñera. T. (2021). Immobilization a look at the methods, supports and challenges. Revista CENIC Ciencias Biológicas, 52(1), 59-78. Epub. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502021000100059&lng=es&tlng=es. Hollingsworth, S., & Dror, R. (2018). Molecular Dynamics Simulation for All. Cell Press Journal, 99, 6, P1129-1143. https://doi.org/10.1016/j.neuron.2018.08.011 Huang, K., Niu, D., Sun, J., Han, C., Wu, Z., Li, Y., & Xiong, X. (2010). Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids And Surfaces B Biointerfaces, 82(2), 543-549. https://doi.org/10.1016/j.colsurfb.2010.10.014 Idowu, S.; Bertrand, P.P.; Walduck, A.K. (2022). Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter, 27, e12891 IUPAC. Compendio de terminología química, 2ª ed. (el "Libro de Oro"). Compilado por AD McNaught y A. Wilkinson. Publicaciones científicas de Blackwell, Oxford (1997). Versión online (2019-) creada por SJ Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook Isaza. E., Ángel. M., Ocampo. M., Díaz. C., Molina. I., Velásquez. M., Posada. P., & Salazar. S. (2020). Controversias en cirugía: Erradicación del Helicobacter pylori ¿Terapia a todos o según indicación usuales?. Rev Colomb Cir. 35:665-74 https://doi.org/10.30944/20117582.563 Juárez, S. (2022). Tutorial: Diseño y fabricación de nano-biosensores basados en ADN para la detección de fármacos. Departamento de Sistemas Biológicos. UAM Xochimilco. https://repositorio.xoc.uam.mx/jspui/bitstream/123456789/27400/1/250291.pdf Karunakaran, C., Bhargava. K., & Benjamin, R. Introduction to Biosensors. Biosensors and Bioelectronics, 1-68. https://doi.org/10.1016/B978-0-12-803100-1.00001-3. Kasturi, S., Eom, Y., Torati, S. R., & Kim, C. (2020). Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. Journal Of Industrial And Engineering Chemistry, 93, 186-195. https://doi.org/10.1016/j.jiec.2020.09.022 Kavita, V. (2017). DNA Biosensors- A Review. Journal of Bioengineer & Biomedical Science, 7:2. DOI: 10.4172/2155-9538.1000222 Kaur, H., Garg, R., Singh, S., Jana, A., Bathula., Kim, H., Kumbar, S., & Mittal, M. (2022). Progress and challenges of graphene and its congeners for biomedical applications: Drug delivery, gene delivery, biosensing, bioimaging, and tissue engineering. https://www.elsevier.com/open-access/userlicense/1.0/ Kim, N. (2023). Helicobacter pylori. https://doi.org/10.1007/978-981-97-0013-4 Kumar, A., & Mahato, K. (2024). Chapter 6 - Recent advancements in bioreceptors and materials for biosensors. Biosensors in Precision Medicine. Fundamentals to Future Trends. 163-202. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-443-15380-8.00007-2 Kumalasari, M., Alfanaar, R., & Andreani, A. (2024). Gold nanoparticles (AuNPs): A versatile material for biosensor application. 9, 100327. https://doi.org/10.1016/j.talo.2024.100327 Kumari, A. (2023). Purine structure. En Elsevier eBooks (pp. 117-120). https://doi.org/10.1016/b978-0-443-15348-8.00022-3 Laino, S. P., Boggio, E., Martin, M., Cáceres, E., & Ruiz, S. (2020). Comparación de métodos diagnósticos para la detección de Helicobacter pylori en biopsias gástricas en pacientes con trastornos gastrointestinales [Trabajo de Especialización]. Universidad Nacional de Córdoba. https://revistas.unc.edu.ar/index.php/Bitacora/issue/download/2180/389 Lakhera, P., Chaudhary, V., Jha, A., Singh, R., Kush, P., & Kumar, P. (2022). Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Materials Today Chemistry, 26, 101129. https://doi.org/10.1016/j.mtchem.2022.101129 Lazerges, M., Perrot, H., Rabehagasoa, N., Compère, C., Dreanno, C., Pedroso, M. M., Faria, R., & Bueno, P. (2012). DNA hybridization mechanism in an interfacial environment: What hides beneath first order k (s−1) kinetic constant? Sensors And Actuators B Chemical, 171-172, 522-527. https://doi.org/10.1016/j.snb.2012.05.023 Lefrou, C., Fabry, P., & Poignet, J. C. (2012). Electrochemistry: the basics, with examples. Springer Science & Business Media. Lee, K., Suh, H., Park, H., Park, Y., Kim, H., & Kim, S. (2022). Regenerative Strategy of Gold Electrodes for Long-Term Reuse of Electrochemical Biosensors. ACS Omega. ACS Omega, 8, 1, 1389–1400. https://doi.org/10.1021/acsomega.2c06851 Lin, R., Lim, T., & Tran, T. (2018). Carbon nanotube band electrodes for electrochemical sensors. Electrochemistry Communications, 86, 135-139. https://doi.org/10.1016/j.elecom.2017.11.023 Ling, Z., Ren, C. E., Zhao, M., Yang, J., Giammarco, J. M., Qiu, J., Barsoum, M. W., & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings Of The National Academy Of Sciences, 111(47), 16676-16681. https://doi.org/10.1073/pnas.1414215111 Lipatov, A., Goad, A., Loes, M. J., Vorobeva, N. S., Abourahma, J., Gogotsi, Y., & Sinitskii, A. (2021). High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter, 4(4), 1413-1427. https://doi.org/10.1016/j.matt.2021.01.021 Lister, J. (1966). Physicochemical Aspects of the Chemistry of Purines. Advances In Heterocyclic Chemistry, 1-43. https://doi.org/10.1016/s0065-2725(08)60574-7 Liu, Z., & Su, X. (2017). A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 87, 66-72. https://doi.org/10.1016/j.bios.2016.07.061 Lorente, A., & Fernández, M. (2008). Interacciones no covalentes con el ADN. ISSN-e 2792-5250 Lorenzo, E., Pariente, F., Revenga, M., & García, T. (2008). MÉTODO PARA LA DETECCIÓN ELECTROQUÍMICA DE SECUENCIAS DE ÁCIDOS NUCLÉICOS (WO2008145785A1). Organización Mundial de la Propiedad Intelectual. https://patents.google.com/patent/WO2008145785A1/es Luna, Y. (2022). Digestión con pepsina. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla, México. https://repositorioinstitucional.buap.mx/items/9011092d-b292-4403-9e55-6f3ade38b4ac Luong JH, Male KB, Glennon JD. Biosensor technology: technology push versus market pull. Biotechnol Adv. 2008 Sep-Oct;26(5):492-500. doi: 10.1016/j.biotechadv.2008.05.007. Epub 2008 Jun 8. PMID: 18577442 Lv, M., Fan, S., Wang, Q., Lv, Q., Song, X., & Cui, H. (2019). An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori. Mikrochimica Acta (1966. Print), 187(1). https://doi.org/10.1007/s00604-019-3999-z Mahmoud, R. (2022). Chapter Four - Nanotechnology in wastewater treatment. Comprehensive Analytical Chemistry, 99, 105-134. https://doi.org/10.1016/bs.coac.2021.11.002 Malhotra, S., Verma, A., Tyagi, N., & Kumar, V. (2017). BIOSENSORS: PRINCIPLE, TYPES AND APPLICATIONS. IJARIIE-ISSN(O)-2395-4396. https://snscourseware.org/snsctnew/files/1714382459.pdf Manfredi, M., & De´Angels. (2013). Helicobacter pylori: Detection Methods, Diseases and Health Implications. Bacteriology Research Developments. Nova Science Publishers, Inc. 978-1-62808-755-0 Markham, N. R., & Zuker, M. (2005). DINAMelt web server for nucleic acid melting prediction. Nucleic acids research, 33(Web Server issue), W577–W581. https://doi.org/10.1093/nar/gki591 Markham, N. R., & Zuker, M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 453:3-31. doi: 10.1007/978-1-60327-429-6_1. Marques, M., Löbenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies 18(3):15-28. DOI:10.14227/DT180311P15 Maquera, A. (2010). ¿Qué son los biosensores y para qué los podemos utilizar?. Universidad Politécnica de Valencia. IDM. http://enclave.cev.es/unoi/wp-content/uploads/2011/01/qu%C3%A9-son-los-bionsenores-y-para-qu%C3%A9-los-podemos-utilizar.pdf Mauro, J. C. (2021). Fick’s Laws of Diffusion. En Elsevier eBooks (pp. 39-58). https://doi.org/10.1016/b978-0-12-823907-0.00026-1 Medina-Lopez, C., Marin-Garcia, J. A., & Alfalla-Luque, R. (2010). Una propuesta metodológica para la realización de búsquedas sistemáticas de bibliografía (A methodological proposal for the systematic literature review). WPOM-Working Papers on Operations Management, 1(2), 13–30. https://doi.org/10.4995/wpom.v1i2.786 Meneau Hernández, Rosa I., Borrego Morales, Katia, Liva Garrido, Maria, & Fariñas Piñera, Tania. (2021). Inmovilización, una mirada a los métodos, soportes y retos. Revista CENIC Ciencias Biológicas, 52(1), 59-78. Epub 01 de abril de 2021. Recuperado en 07 de abril de 2024, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502021000100059&lng=es&tlng=es. Millan, K. M., & Mikkelsen, S. R. (1993). Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 65(17), 2317-2323. https://doi.org/10.1021/ac00065a025 Minatogau, L., De Barros, A., Zaparoli, L., Crispilho, C., Merces, L., & Bof, C. (2020). Highly efficient electrochemical energy conversión in a 3D hollow microenvironment: towards on-a-chip sensor applications. Electronic Supplementary Mterial (ESI) for Journal of Materials Chemistry A. https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta05796g Mirzaei, S., Mehrdadi, N., Nabi, G., Pourmadadi, M., Ahmadi, M., & Meknatkhah, S. (2024). Novel detection of H. pylori using ultrasensitive electrochemical aptasensor based on surface modified graphene oxide doped gold nanoparticles conjugated polythiophene. Microchemical Journal, Vol. 200, 110279, ISSN 0026-265X. https://doi.org/10.1016/j.microc.2024.110279 Mouli, C., & Dhar, B. (2019). Biosensors: Fundamentals and Applications. [eBook]. Gruyter, 2-3, 978-3-11-064108-0 Mohammadniaei, M., Koyappayil, A., Sun, Y., Min, J., & Lee, M. (2020). Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosensors And Bioelectronics, 159, 112208. https://doi.org/10.1016/j.bios.2020.112208 Mu, Z., Tan, Y., Liu, J., Zhang, B., & Shi, Y. (2023). Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules, 28(12), 4833. https://doi.org/10.3390/molecules28124833 Musa, A., Kiely, J., Luxton, R., & Honeychurch, K. (2021). Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC Trends in Analytical Chemistry, 139, 116254. https://doi.org/10.1016/j.trac.2021.116254 Nayak, P., Jiang, Q., Mohanraman, R., Anjum, D., Hedhili, M. N., & Alshareef, H. N. (2018). Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2TxMXene. Nanoscale, 10(36), 17030-17037. https://doi.org/10.1039/c8nr01883a National Cancer Institute. (2023). Helicobacter pylori (H. pylori) and Cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheet Nesterova, V., Korostelev, V., & Klyukin, K. (2024). Unveiling the role of termination groups in stabilizing MXenes in contact with water. The Journal Of Physical Chemistry Letters. https://doi.org/10.26434/chemrxiv-2024-121k1 Nishimura, T., Hifumi, E., Fujii, T., Niimi, Y., Egashira, N., Shimizu, K., & Uda, T. (2000). Measurement of Helicobacter pylori Using Anti Its Urease Monoclonal Antibody by Surface Plasmon Resonance. Electrochemistry, 68(11), 916-919. https://doi.org/10.5796/electrochemistry.68.916 Oliveira-Brett, A., Diculescu, V., & Piedade, J. (2002). Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry, 55(1-2), 61-62. https://doi.org/10.1016/s1567-5394(01)00147-5 O'Neil, M.J. (2001.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 804 Pei, S., & Cheng, H. (2011). The reduction of graphene oxide. Carbon, 50(9), 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010 Paleček, E. (1996). From polarography of DNA to microanalysis with nucleic acid‐modified electrodes. Electroanalysis, 8(1), 7-14. https://doi.org/10.1002/elan.1140080103 Pandey, P., Govind, P., and Roger, J. (2021) Biological sensing mechanisms. Chap. 24.2 in Biomedical Engineering Fundamentals. 3rd ed., edited by Myer Kutz. New York: McGraw Hill. Peng, P. (2017). Fabrication of an Electrochemical Sensor for Helicobacter pylori in Excrement Based on a Gold Electrode. International Journal Of Electrochemical Science, 12(10), 9478-9487. https://doi.org/10.20964/2017.10.19 Peralta, S. & Sánchez, Y. (2023). Diseño de la etapa de biorrecepción-transducción de un biosensor para la cuantificación de colesterol LDL [Tesis de pregrado, Universidad El Bosque]. Repositorio Institucional de la Universidad El Bosque. https://repositorio.unbosque.edu.co/items/513221fd-f8fe-4e51-8bc7-3f264f4ad494 Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1-15 Piao, X., Sun, L., Zhang, T., Gan, Y., & Guan, Y. (2008). Effects of mismatches and insertions on discrimination accuracy of nucleic acid probes. Acta Biochimica Polonica, 55(4), 713-720. http://www.actabp.pl/ Pournaghi-Azar MH, Alipoura E, Zununi S, Froohandeh H, Hejazi MS. (2008). Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Biosens Bioelectron 24:524–530 Powell, J., Greenfield, S., & Thompson, R. (1992). Concentrations of metals in gastric juice in health and peptic ulcer disease. Gut. 1992 Dec; 33(12): 1617–1620. doi: 10.1136/gut.33.12.1617 Prunet, G., Pawula, F., Fleury, G., Cloutet, E., Robinson, A., Hadziioannou, G., & Pakdel, A. (2021). A review on conductive polymers and their hybrids for flexible and wereable thermoelectric applications. Materials Today Physics, 18, https://doi.org/10.1016/j.mtphys.2021.100402 Qu, K., & Dan, D. (2023). Introduction. Enviromental Analytical Chemistry (pp. 1-33). https://doi.org/10.1016/b978-0-443-21966-5.00001-6 Qiao W; Chiang H-C; Xie H; Levicky R. (2015). Surface vs. Solution Hybridization: Effects of Salt, Temperature, and Probe Type. Chem. Commun, 51, 17245–17248 Rafique, B., Iqbal, M., Mehmood, T. and Shaheen, M.A. (2019), "Electrochemical DNA biosensors: a review", Sensor Review, Vol. 39 No. 1, pp. 34-50. https://doi.org/10.1108/SR-08-2017-0156 Rahman MM, Li X-B, Lopa NS, Ahn SJ, Lee J-J. (2015). Electrochemical DNA Hybridization Sensors Based on Conducting Polymers. Sensors. 15(2):3801-3829. https://doi.org/10.3390/s150203801 Ramotowska, S., Ciesielska, A., & Makowski, M. (2021). What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules, 26(11), 3478. https://doi.org/10.3390/molecules26113478 Rashid, J. I. A., & Yusof, N. A. (2017). The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing And Bio-Sensing Research, 16, 19-31. https://doi.org/10.1016/j.sbsr.2017.09.001 Rezaei, B., & Irannejad, N. (2019). Chapter 2- Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors, 11-43. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00002-4 Rodríguez, D., & Alfaro, A. (2010). Actualización de la Fisiología Gástrica. Medicina Legal de Costa Rica, 27(2), 59-68. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152010000200007&lng=en&tlng=es. Rodríguez Romeu, R., Jaime Infante, R., Triana Dopico, J., & Vázquez Molina, J. (2018). Análisis In Silico de la Viabilidad de la Mutación de Sistemas Biológicos. Revista de Ciencias Médicas de Pinar del Río, 22(4), 719-728. Recuperado de https://revcmpinar.sld.cu/index.php/publicaciones/article/view/3473 Sabaté del Río, J., Henry, O. Y. F., Jolly, P., & Ingber, D. E. (2019). An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nature Nanotechnology, 14(12), 1143–1149. doi:10.1038/s41565-019-0566-z Safaeipour, S., & Kalantarian, M. M. (2024). Insight into the origin of electrochemical potential: Fermi vs. Gibbs free energies. Nano-Structures & Nano-Objects, 39, 101213. https://doi.org/10.1016/j.nanoso.2024.101213 Salvo, C. (2019). Electrochemical sensors and biosensors: new horizons and challenges in their integration in multisensor systems for food industry applications [Tesis Doctoral, Universidad de Valladolid]. Repositorio Universidad de Valladolid. https://uvadoc.uva.es/bitstream/handle/10324/55199/TESIS-2019-220907.pdf?isAllowed=y&sequence=1 Sandhyarani, N. (2019). Chapter 3 – Surface modificationi methods for electrochemical biosensors. Electrochemical Biosensors, 45-75. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00003-6 Sawhney, M., Azzopardi, E., Rodrigues, S., Francis, L., Conlan, R., & Gazze, S. (2019). Measuring the impact on impedance spectroscopy of pseudo-reference electrode accumulations. Electrochemistry Communications, 105. https://doi.org/10.1016/j.elecom.2019.106508 Saxena, V., & Malhotra, B. D. (2003). Electrochemical biosensors. Advances in Biosensors: Perspectives in Biosensor. JAI Press, Stamford, 63-100 Saxena, K., Chauhan, N., & Jain, U. (2021). Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices. Analytical Biochemistry, 630, 114325. https://doi.org/10.1016/j.ab.2021.114325 Shanmugam, V., Mensah, R. A., Babu, K., Gawusu, S., Chanda, A., Tu, Y., Neisiany, R. E., Försth, M., Sas, G., & Das, O. (2022). A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 39(6). https://doi.org/10.1002/ppsc.202200031 Sharafeldin, M., & Davis, J. J. (2022). Characterising the biosensing interface. Analytica Chimica Acta, 1216, 339759. https://doi.org/10.1016/j.aca.2022.339759 Scaranto, J., Mallia, G., & Harrison, N. (2011). An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(1 1 0) surface. Computational Materials Science, 50(7), 2080-2086. https://doi.org/10.1016/j.commatsci.2011.02.011 Sevidanes, M. (2022). Biosensores basados en aptámeros: Tipos y aplicaciones en biomedicina. Revisión bibliográfica. [Tesis de finde grado, Universidad de Sevilla]. https://idus.us.es/bitstream/handle/11441/143953/SEVIDANES%20QUINCY%2C%20MIGUEL.pdf?sequence=1 Silakari O, Singh P. (2021). Chapter 6 - Molecular docking analysis: Basic technique to predict drug-receptor interactions. Concepts and Experimental Protocols of 62 Modelling and Informatics in Drug Design. [Internet]. Pages 131-155. https://www.sciencedirect.com/science/article/pii/B9780128205464000064 Sivasubramaniyam, V., Ramasamy, S., Venkatraman, M., Gatto, G., & Kumar, A. (2023). Carbon Nanotubes as an Alternative to Copper Wires in Electrical Machines: A Review. Energies, 16(9), 3665. https://doi.org/10.3390/en16093665 Sophocleous, M., & Atkinson, J. K. (2017). A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sensors And Actuators A Physical, 267, 106-120. https://doi.org/10.1016/j.sna.2017.10.013 Su, X., & Li, S. (2001). Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chimica Acta, Vol 429, 27-36, ISSN 0003-2670, DOI 10.1016/S0003-2670(00)01262-9. Sun, W., Li, L., Lei, B., Li, T., Ju, X., Wang, X., Li, G., & Sun, Z. (2013). Fabrication of graphene–platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin. Materials Science And Engineering C, 33(4), 1907-1913. https://doi.org/10.1016/j.msec.2012.12.077 Švorc, Ľ., & Kalcher, K. (2014). Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: Simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sensors And Actuators B Chemical, 194, 332-342. https://doi.org/10.1016/j.snb.2013.12.104 Taleat, Z., Khoshroo, A., Mazloum-Ardakani, M. (2014). Screen-printer electrodes for biosensing: a review (2008-2012). Microchim Acta 181:865–891. DOI 10.1007/s00604-014-1181-1 Tan, Z., & Chen, S. (2005). Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophysical Journal, 90(4), 1175-1190. https://doi.org/10.1529/biophysj.105.070904 Tang, M., Li, J., Wang, Y., Han, W., Xu, S., Lu, M., Zhang, W., & Li, H. (2022). Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry, 14(11), 2232. https://doi.org/10.3390/sym14112232 Teles, F., & Fonseca, L. P. (2008). Trends in DNA biosensors. Talanta, 77(2), 606-623. https://doi.org/10.1016/j.talanta.2008.07.02 Tetyana, P., Morgan Shumbula, P., & Njengele-Tetyana, Z. (2021). Biosensors: Design, Development and Applications. IntechOpen. doi: 10.5772/intechopen.97576 Thapa, K., Liu, W., & Wang, R. (2022). Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 14(1), e1765. https://doi-org.ezproxy.unbosque.edu.co/10.1002/wnan.1765 Ullman, D. G. (2010). The Mechanical Design Process (4th ed.). New York: McGraw‐ Hill. (pp. 15-21) Vargas A., Alvaro., & Fuentes., C. (2021). Estudios in Silico, Simulando Vida en un Entorno Virtual. Gaceta Médica Boliviana, 44(2), 278-279.https://doi.org/10.47993/gmb.v44i2.263 Vertzoni, M., Dressman, J., Butler, J., Hempenstall, J., Reppas, C. (2005). Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Biopharm. 60, 413–417 Vidic, J., & Manzano, M. (2021). Electrochemical biosensors for rapid pathogen detection. Current Opinion in Electrochemistry. 29, 100750. https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.coelec.2021.100750 Wang F, Xie Y, Zhu W, Wei T. (2023). Recent Advances in Functionalization Strategies for Biosensor Interfaces, Especially the Emerging Electro-Click: A Review. Chemosensors. 11(9):481. https://doi.org/10.3390/chemosensors11090481 Wang, L., Cui, K., Wang, P., Pei, M., & Guo, W. (2021). A sensitive electrochemical DNA sensor for detecting Helicobacter pylori based on accordion-like Ti3C2Tx: a simple strategy. Analytical And Bioanalytical Chemistry, 413(16), 4353-4362. https://doi.org/10.1007/s00216-021-03391-8 Wang, Y., Xu, H., Zhang, J., & Li, G. (2008). Electrochemical sensors for clinic analysis. Sensors, 8(4), 2043-2081. Wei, D., Bailey, M., Andrew, P., & Ryhänen, T. (2009). Electrochemical biosensors at the nanoscale. https://pubs.rsc.org/en/content/articlelanding/2009/lc/b903118a Xu, K., Huang, J., Ye, Z., Ying, Y., & Li, Y. (2009). Recent Development of Nano-Materials Used in DNA Biosensors. Sensors, 9(7), 5534-5557; https://doi.org/10.3390/s90705534 Yang, C., Kim, E., & Pak, Y. (2015). Free energy landscape and transition pathways from Watson–Crick to Hoogsteen base pairing in free duplex DNA. Nucleic Acids Research, 43(16), 7769-7778. https://doi.org/10.1093/nar/gkv796 Yartsev, A. (2021). Composition, volumes and regulation of gastrointestinal secretions. Deranged Physiology. https://derangedphysiology.com/main/cicm-primary-exam/required-reading/gastrointestinal-system/Chapter%20110/composition-volumes-and-regulation-gastrointestinal-secretions Yilmaz, L. S., and D. R. Noguera. (2004). Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl. Environ. Microbiol. 70:7126-7139. https://doi.org/10.1128%2FAEM.70.12.7126-7139.2004 You, Y., & Hansen, C. (2013). Calculating melting temperature (Tm). Integrated DNA Technologies. https://www.idtdna.com/pages/education/decoded/article/understanding-melting-temperature-(t-sub-m-sub-) Zadeh, J. N., Steenberg, C., Bois, J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., & Pierce, N. A. (2011). NUPACK: Analysis and design of nucleic acid systems. Journal Of Computational Chemistry, 32(1), 170-173. https://doi.org/10.1002/jcc.21596 Zamzami, M., Ahmad, A., Alamoudi, S., Choudhry, H., Hosawi, S., Rabbani, G., Shalaan, E., & Arkook, B. (2024). A highly sensitive and specific Gold Electrode-Based electrochemical immunosensor for rapid On-Site detection of Salmonella entérica. Microchemical Journal, 199, 110190. https://doi.org/10.1016/j.microc.2024.110190 Zare, H. R., & Nasirizadeh, N. (2012). Fabrication, characterization and analytical performance of the hydroxylamine sensor based on an oracet blue multi-walled carbon nanotubes film deposited on an electrode surface. Journal Of The Brazilian Chemical Society, 23(6), 1070-1077. https://doi.org/10.1590/s0103-50532012000600011 Zhang, J. (2024). Helicobacter pylori: Structure and morphology. Molecular Medical Microbiology. Third Edition, 1133-1159. https://doi.org/10.1016/B978-0-12-818619-0.00120-9 Zhang, L., Li, Z., Zhou, X., Yang, G., Yang, J., Wang, H., Wang, M., Liang, C., Wen, Y., & Lu, Y. (2015). Hybridization performance of DNA/mercaptohexanol mixed monolayers on electrodeposited nanoAu and rough Au surfaces. Journal Of Electroanalytical Chemistry, 757, 203-209. https://doi.org/10.1016/j.jelechem.2015.09.032 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bioingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/ba72f4ad-65ff-4a86-bbc7-aeb4c00ae64e/download https://repositorio.unbosque.edu.co/bitstreams/18c249c6-56a6-4ad1-bdfd-5af714a539d0/download https://repositorio.unbosque.edu.co/bitstreams/2828171f-8a9c-4dcf-adb0-7054f6fba9ba/download https://repositorio.unbosque.edu.co/bitstreams/45695b89-595b-44d3-b396-7129b699e6b5/download https://repositorio.unbosque.edu.co/bitstreams/adf7e0b0-9b7e-442d-b3e0-db0cf34f2aa6/download https://repositorio.unbosque.edu.co/bitstreams/9d1a6e57-682f-4c3a-8e38-9d99f2bd9a08/download |
bitstream.checksum.fl_str_mv |
502be742e1ffa74dd53b307be0343c64 17cc15b951e7cc6b3728a574117320f9 720cec9983583e5318e4ae864e8d93af 5643bfd9bcf29d560eeec56d584edaa9 90b6785955652a2a4a59605101fbd115 4c0ec8f7dc5b2ae5576c88f91ab66660 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1836752125109993472 |
spelling |
Ibla Gordillo, José FranciscoPerdomo Lara, Sandra JannethSandoval Romero, Laura Camila2025-06-06T15:44:57Z2025-06-06T15:44:57Z2025-05https://hdl.handle.net/20.500.12495/14572instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coHelicobacter pylori es una bacteria que coloniza la mucosa gástrica y está asociada a enfermedades como la gastritis y el cáncer gástrico, representando un desafío para su detección debido a la limitada sensibilidad y especificidad de los métodos actuales. En este contexto, los biosensores surgen como una alternativa prometedora, aunque su sensibilidad y estabilidad dependen en gran medida de la elección del transductor, el biorreceptor y la estrategia de inmovilización. Este estudio desarrolla la etapa de biorrecepción-transducción de un genosensor electroquímico para la detección de Helicobacter pylori en muestras de fluido gástrico. Inicialmente, se estableció un diseño conceptual considerando las propiedades fisicoquímicas del fluido, seleccionando un electrodo serigrafiado de oro con una superficie modificada para mejorar la sensibilidad en la detección de ADN. En el diseño detallado, se seleccionó como biorreceptor una secuencia específica del alelo vacAs1 del gen vacA, debido a su alta prevalencia en cepas virulentas de H. pylori asociadas a la ulceración y cáncer gástrico. Se evaluó su estabilidad estructural a diferentes temperaturas para entender cómo las condiciones térmicas afectan la estabilidad de la hebra, su especificidad mediante la introducción de SNPs —analizando los cambios en ∆G, ∆H y ∆S—, y el comportamiento de interacción del dúplex con el fluido, así como su estabilidad en términos energéticos, con una energía total de –133.014 kJ/mol a 25 °C bajo condiciones simuladas de fluido gástrico. Además, se exploró una estrategia de detección sin marcadores, aprovechando la estructura y propiedades redox de la secuencia. Las nanopartículas de oro (AuNPs), inmovilizadas sobre un material semiconductor debido a su afinidad con el enlace Au–S, facilitaron la inmovilización del ADN tiolado correspondiente al gen vacAs1 en la superficie del electrodo, mejorando así la señal de corriente. Finalmente, mediante simulaciones in silico, se evaluó el comportamiento físico del biorreceptor y, mediante voltamperometría cíclica, se determinó una señal electroquímica que permitió establecer un límite de detección de 6,79 ×10^(-13) M. Este diseño in silico representa un avance en la detección electroquímica de H. pylori, ofreciendo una alternativa más sensible y menos invasiva para entornos clínicos.BioingenieroPregradoHelicobacter pylori is a bacterium that colonizes the gastric mucosa and is associated with diseases such as gastritis and gastric cancer, posing challenges for its detection due to the limited sensitivity and specificity of current methods. In this context, biosensors emerge as a promising alternative, although their sensitivity and stability largely depend on the selection of the transducer, bioreceptor, and immobilization strategy. This study develops the bioreception-transduction stage of an electrochemical genosensor for the detection of Helicobacter pylori in gastric fluid samples. Initially, a conceptual design was established considering the physicochemical properties of the fluid, selecting a gold screen-printed electrode with a modified surface to improve sensitivity in DNA detection. In the detailed design, a specific sequence of the vacAs1 allele of the vacA gene was selected as a bioreceptor, due to its high prevalence in virulent strains of H. pylori associated with gastric ulceration and cancer. Its structural stability at different temperatures was evaluated to understand how thermal conditions affect strand stability, its specificity by introducing SNPs -analyzing changes in ∆G, ∆H and ∆S-, and the interaction behavior of the duplex with the fluid, as well as its stability in energetic terms, with a total energy of -133.014 kJ/mol at 25 °C under simulated gastric fluid conditions. In addition, a markerless detection strategy was explored, taking advantage of the structure and redox properties of the sequence. Gold nanoparticles (AuNPs), immobilized on a semiconductor material due to their affinity for the Au–S bond, facilitated the immobilization of thiolated DNA corresponding to the vacAs1 gene on the electrode surface, thereby improving the current signal. Finally, through in silico simulations, the physical behavior of the bioreceptor was evaluated, and cyclic voltammetry determined an electrochemical signal that allowed establishing a detection limit in the range of 6,79 ×10^(-13) M. This in silico design represents an advancement in the electrochemical detection of H. pylori, offering a more sensitive and less invasive alternative for clinical settings.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Helicobacter pylorivacABiosensoresGenosensoresInmovilizaciónHibridaciónIn silico610.28Helicobacter pylorivacABiosensorsGenosensorsImmobilizationHybridizationIn silicoDiseño de la etapa de biorrecepción-transducción de un genosensor para la identificación de Helicobacter pylori en muestras de fluido gástricoDesign of the bioreception-transduction stage for a genosensor for the identification of Helicobacter pylori in gastric fluid samplesBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Abbasi, M., Mahmoudi, A., & Asadpour, K. (2024). Fabrication of a polishable and reusable triple electrode as a new generation of three-electrode systems for the electrochemical analysis applications through both immersion and drop casting-procedures. Sensing and Bio-Sensing Research, 43, 100635. https://doi.org/10.1016/j.sbsr.2024.100635ACSMaterial. (2025). Highly Conductive Reduced Graphene Oxide (RGO). https://www.acsmaterial.com/highly-conductive-reduced-graphene-oxide-rgo.html?srsltid=AfmBOopXpCHvdTfPeBkULOP1Dbi08HYv1NOzNI8FZ2YU_6i4buBJvBMAAdesokan, B., Quan, X., Evgrafov, A., Heiskanen, A., Boisen, A., & Sørensen, M. (2015). Experimentation and numerical modeling of cyclic voltammetry for electrochemical micro-sized sensors under the influence of electrolyte flow. Journal Of Electroanalytical Chemistry, 763, 141-148. https://doi.org/10.1016/j.jelechem.2015.12.029Akbulut, U. (1988). Electron transfer mechanisms of some biochemically active purines. Communications Faculty Of Science University Of Ankara Series B Chemistry And Chemical Engineering, 083-092. https://doi.org/10.1501/commub_0000000490Andrade, M., López, L., & Sáenz, A. (2012). Nanotubos de carbono: funcionalización y aplicaciones biológicas. Revista mexicana de ciencias farmacéuticas , 43(3), 9-18. https://www.scielo.org.mx/scielo.php?pid=S1870-01952012000300002&script=sci_arttextArechederra M, Ávila MA, Berasain C. (2020). La biopsia líquida en el manejo del cáncer: una nueva herramienta revolucionaria de la medicina de precisión, aún con limitaciones. Adv Lab Med. 1(3):20200038. Spanish. doi: 10.1515/almed-2020-0038. PMCID: PMC10197306.Arévalo, A., Trespalacios, A., Otero, W., Mercado, M., & Poutou, R. (2012). Prevalence of cagA, vacA, babA2 and iceA Genes in H. pylori Strains Isolated from Colombian Patients with Functional Dyspepsia. Polish Journal of Microbiology, Vol. 61, No 1, 33–40. http://www.pjmonline.org/wp-content/uploads/archive/vol6112012033.pdfArnold, A. R., Grodick, M. A., & Barton, J. K. (2016). DNA Charge Transport: from Chemical Principles to the Cell. Cell Chemical Biology, 23(1), 183-197. https://doi.org/10.1016/j.chembiol.2015.11.010Artigues, C., Margalida, E. (2019). Estudio de biosensores electroquímicos basados en inmovilización enzimática. Universitat Ramon Llull. http://hdl.handle.net/10803/667847Atherton, J. C. (2006). The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annual Review of Pathology; 1:63–96. https://doi.org/10.1146/annurev.pathol.1.110304.100125Asadzadeh-Firouzabadi, A., Zare, H. R., & Nasirizadeh, N. (2015). Electrochemical Biosensor for Detection of Target DNA Sequence and Single-Base Mismatch Related to Helicobacter Pylori Using Chlorogenic Acid as Hybridization Indicator. Journal Of The Electrochemical Society, 163(3), B43-B48. https://doi.org/10.1149/2.0461603jesAzimzadeh, M., Rahaie, M., Nasirizadeh, N., & Naderi-Manesh, H. (2015). Application of Oracet Blue in a novel and sensitive electrochemical biosensor for the detection of microRNA. Analytical Methods, 7(22), 9495-9503. https://doi.org/10.1039/c5ay01848jBailon, N., & Romero, JC. (2016). Genotoxicidad de los nanomateriales, grandes discrepancias y desafíos. Rev. Toxicol 33: 8- 15. http://www.redalyc.org/articulo.oa?id=91946517002Babaei, A., Pouremamali, A., Rafiee, N., Sohrabi, H., Mokhtarzadeh, A., & De la Guardia, M. (2022). Genosensors as an alternative diagnostic sensing approaches for specific detection of virus species: A review of common techniques and outcomes. TrAC Trends In Analytical Chemistry, 155, 116686. https://doi.org/10.1016/j.trac.2022.116686Ballón, W., & Grados, R. (2019). Acoplamiento molecular: criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Rev.Cs.Farm. y Bioq, 7(2). http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310- 02652019000200006Bano, A., Dawood, A., Rida, N., Saira, F., Malik, A., Alkholief, M., Ahmad, H., Khan, M. A., Ahmad, Z., & Bazighifan, O. (2023). Enhancing catalytic activity of gold nanoparticles in a standard redox reaction by investigating the impact of AuNPs size, temperature and reductant concentrations. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-38234-2Barbosa, L., Insuasty, D., León, A., Arias, M., Rivera, Z., & Castañeda, J. (2021). Nucleic acid-based biosensors: analytical devices for prevention, diagnosis and treatment of diseases. JOURNAL VITAE. School of Pharmaceutical and Food Sciences. Vol 28; 03. 347259. https://doi.org/10.17533/udea.vitae.v28n3a347259Bard, A., & Faulkner, L. (2001). Electron transfer by tunneling through blocking films. En Electrochemical Methods: Fundamentals and applications (pp. 624). (2nd Ed). WileyBatistuti, M., Bueno, P., & Mulato, M. (2020). The importance of the assembling of DNA strands on the performance of electrochemical genosensors. 159, 105358. https://doiorg.ezproxy.unbosque.edu.co/10.1016/j.microc.2020.105358Bermúdez, L., Torres, L. & Rodríguez, B. (2009). Techniques used for the Helicobacter pylori infection detection. Revista Cubana de Medicina, 48(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0034-75232009000100007&lng=es&tlng=es.Bertok, T., Sediva, A., Vikartovska, A., & Tkac, J. (2014). Comparison of the 2D and 3D Nanostructured Lectin-Based Biosensors for In Situ Detection of Sialic Acid on Glycoproteins. International Journal Of Electrochemical Science, 9(2), 890-900. https://doi.org/10.1016/s1452-3981(23)07764-7Bettazzi, F., Marrazza, G., Minunni, M., Palchetti, I., & Scarano, S. (2017). Biosensors and Related Bioanalytical Tools. Comprehensive Analytical Chemistry, 1–33. doi:10.1016/bs.coac.2017.05.003BIOVIA Materials Studio. (2023). CASTEP Energy Task. https://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/content/modules/castep/tskcastepenergy.htmBjörketun, M. E., Tripkovic, V., Skúlason, E., & Rossmeisl, J. (2012). Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catalysis Today, 202, 168-174. https://doi.org/10.1016/j.cattod.2012.05.044Boquet, P., Ricci, V., Galmiche, A., & Gauthier, N. C. (2003). Gastric cell apoptosis and H. pylori: has the main function of VacA finally been identified? Trends In Microbiology, 11(9), 410-413. https://doi.org/10.1016/s0966-842x(03)00211-7Boxeida, D., & De Arguila, C. (2004). Helicobacter pylori y enfermedades relacionadas. https://www.elsevier.es/index.php?p=revista&pRevista=pdfsimple&pii=70000216&r=8Blanco, A., & Blanco, G. (2017). Nucleic acids. En Elsevier eBooks (pp. 121-140). https://doi.org/10.1016/b978-0-12-803550-4.00006-9Bush, L. (2022). Defensas contra la infección. Charles E. Schmidt College of Medicine, Florida Atlantic University. https://www.msdmanuals.com/es-co/hogar/infecciones/biolog%C3%ADa-de-las-enfermedades-infecciosas/defensas-contra-la-infecci%C3%B3nBhat, K. S., Byun, S., Alam, A., Ko, M., An, J., & Lim, S. (2022). A fast and label-free detection of hydroxymethylated DNA using a nozzle-jet printed AuNPs@Ti3C2 MXene-based electrochemical sensor. Talanta, 244, 123421. https://doi.org/10.1016/j.talanta.2022.123421Cajusol, E., & Del Carpio, P. (2016). Supplementation, through the dieto f broilers, an Emulsifier – Surfactant. UCV-HACER Rev. lnv. Cult. Volumen 5, Nº 1. https://dialnet.unirioja.es/descarga/articulo/5681735.pdfCallister, W. D., Jr., & Rethwisch, D. G. (2018). Materials science and engineering: An introduction (10th ed.). Wiley.Carrasco, C., Guadalupe, M., García, A., & Monserrat, A. (2015). Validación de un método analítico para la determinación de fósforo por espectrofotometría ultravioleta-visible. Universidad de Sonora. Biotecnia, vol. 17, núm. 1, 2015, pp. 32-39. https://www.redalyc.org/pdf/6729/672971115006.pdfCardos, A. I., Maghiar, A., Zaha, D. C., Pop, O., Fritea, L., Miere, F., & Cavalu, S. (2022). Evolution of Diagnostic Methods for Helicobacter pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics, 12(2), 508. https://doi.org/10.3390/diagnostics12020508Castagnini, L., & Gilger, M. (2023). Helicobacter pylori. Principles and Practice of Pediatric Infectious Diseases, 174, 954-959.e5Cesewski, E., & Johnson, B. (2020). Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 159. https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.bios.2020.112214CFD – FEATool Multiphysics. (2020). https://www.cfd-online.com/Wiki/FEATool_MultiphysicsChang, C., Chen, C-P., Wu, T., Yang, C., Lin, C., & Chen, C-Y. (2019). Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. Nanomaterials, 9(6), 861; https://doi.org/10.3390/nano9060861Chen, L., Cui, H., Fan, S., Li, Z., Han, S., Ma, X., Luo, S., Song, X., & Lv, Q. (2018). Detection of Helicobacter pylori in dental plaque using a DNA biosensor for noninvasive diagnosis. RSC Advances, 8(38), 21075-21083. https://doi.org/10.1039/c8ra03134gChuang, H., & Ho, Y. (2020). Advances in Biosensing Technology for Medical Diagnosis [eBook]. Singapore: Bentham Science Publishers Ltd. https://web-p-ebscohost-com.ezproxy.unbosque.edu.co/ehost/detail?sid=97cd9927-9a80-45c0-a8ad 59b1dd89ef7f@redis&vid=0&format=EB&lpid=lp_Ci&rid=0#AN=2659658&db=nlebkCelli, J., Turner, B., Afdhal, N., & Bansil, R. (2009). Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. 106 (34) 14321-14326. https://doi.org/10.1073/pnas.0903438106Compendio de terminología química de la IUPAC (2006). 3.ª ed. Unión internacional de Química Pura Aplicada. Versión en línea 3.0.1, 2019Cuellar, J., Calle, P., Morales, M., & Tovar, C. (2013). Simulando con OMNET. Selección de la herramienta y su utilización. ISBN: 978-958-8357-74-4Choudhary, T., Jothi, L., & Nageswaran, G. (2017). Chapter 2 – Electrochemical Characterization. Spectroscopic Methods for Nanomaterials Characterization. Micro and Nano Technologies, 19-54. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-323-46140-5.00002-9Clínica Universidad de Navarra. (2023). Ácido clorhídrico. Diccionario médico. https://www.cun.es/diccionario-medico/terminos/acido-clorhidricoClínica Universidad de Navarra. (2023). Jugo gástrico. Diccionario médico. https://www.cun.es. https://www.cun.es/diccionario-medico/terminos/jugo-gastricoClínica Universidad de Navarra. (2023). Taurocolato. Diccionario médico. https://www.cun.es/diccionario-medico/terminos/taurocolatoDaniel MC & Astruc D (2003). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 104(1):293-346. doi: 10.1021/cr030698+. PMID: 14719978.Das, R., Sharma, M., Rao, V., Bhattacharya, BK., Garg, E., Venkatesh, V., & Upadhyay. S. (2014). An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode. Journal of Biotechnology, 188, 9-16. https://doi.org/10.1016/j.jbiotec.2014.08.002De Silva, A. P., Amarasiri, L., Liyanage, M. N., Kottachchi, D., Dassanayake, A. S., & De Silva, H. J. (2009). One‐hour fast for water and six‐hour fast for solids prior to endoscopy provides good endoscopic vision and results in minimum patient discomfort. Journal Of Gastroenterology And Hepatology, 24(6), 1095-1097. https://doi.org/10.1111/j.1440-1746.2009.05782.xDe Sousa, C., & Manganiello, L. (2018). Application of piezoelectric sensors in the detection of contaminants in food / Aplicación de los sensores piezoeléctricos en la 152 detección de elementos contaminantes en alimentos. https://www.redalyc.org/journal/707/70757670014/html/Dickinson, E. J. F., & Hinds, G. (2019). The Butler-Volmer Equation for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Electrode Kinetics: A Critical Discussion. Journal Of The Electrochemical Society, 166(4), F221-F231. https://doi.org/10.1149/2.0361904jesDivins, M. (2015). Control de la acidez gástrica. Farmacia Profesional. https://www.elsevier.es/es-revista-farmacia-profesional-3-articulo-control-acidez-gastrica-X0213932415344797#:~:text=El%20jugo%20g%C3%A1strico%20es%20un,se%20dan%20en%20su%20interior.Doble, M., & Kumar, A. (2005). Degradation of Dyes. En Elsevier eBooks (pp. 111-122). https://doi.org/10.1016/b978-075067838-4/50011-7Elancheziyan, M., Singh, M., & Won, K. (2024). Gold Nanoparticle-Embedded Thiol-Functionalized Ti3C2Tx MXene for Sensitive Electrochemical Sensing of Ciprofloxacin. Nanomaterials, 14(20), 1655. https://doi.org/10.3390/nano14201655Elbehiry, A., Marzouk, E., Aldubaib, M., Abalkhail, A., Anagreyyah, S., Anajirih, N., Almuzaini, A. M., Rawway, M., Alfadhel, A., Draz, A., & Abu-Okail, A. (2023). Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges. Antibiotics, 12(2), 191. https://doi.org/10.3390/antibiotics12020191Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal Of Chemical Education, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361Ensafi, A. (2019). Chapter 1. An introduction to sensors and biosensors. Electrochemical Biosensors, 1-10. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00001-2Erduran, V., Bekmezci, M., Bayat, R., Bayer, Z., & Sen, F. (2022). Functionalized nanomaterials and workplace health and safety. Principles, Fabrication Methods, and Applications. Woodhead Publishing Series in Electronic and Optical Materials. 393-406. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-823788-5.00015-6Ermer, J.; Nethercote, P. (2015). Method Validation in Pharmaceutical Analysis: A Guide to Best Practice; Ermer, J., Nethercote, P., Eds.; Second.; Wiley-VCH Verlag GmbH & Co. KGaA; ISBN 9780470467091FEATool Multiphysics - MATLAB FEA and CFD Toolbox. (2025). FEATool Multiphysics - MATLAB FEA And CFD Toolbox - File Exchange - MATLAB CentralFile Exchange - MATLAB Central. https://la.mathworks.com/matlabcentral/fileexchange/63144-featool-multiphysics-matlab-fea-and-cfd-toolboxFerapontova, E. E. (2011). Electrochemical Indicators for DNA Electroanalysis. Current Analytical Chemistry, 7(1), 51-62. https://doi.org/10.2174/157341111793797617Foster, C.W., Kadara, R.O., & Banks, C.E. (2016). Introduction and Current Applications of Screen-Printed Electrochemical Architectures. In: Screen.Printing Electrochemical Architectures. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi-org.ezproxy.unbosque.edu.co/10.1007/978-3-319-25193-6_1Frishancho, O. (1996). Helicobacter pylori y la fisiopatogenia de la úlcera péptica. Boletín de la Sociedad Peruana de Medicina Interna, Vol. 9(1). https://sisbib.unmsm.edu.pe/bvrevistas/spmi/v09n1/helic_pylo_fisi.htm#:~:text=El%20Helicobacter%20pylori%20sintetiza%20la,puede%20producir%20directamente%20da%C3%B1o%20celular.Gao, Z. F., Gao, J. B., Zhou, L. Y., Zhang, Y., Si, J. C., Luo, H. Q., & Li, N. B. (2013). Rapid assembly of ssDNA on gold electrode surfaces at low pH and high salt concentration conditions. RSC Advances, 3(30), 12334. https://doi.org/10.1039/c3ra40810hGarcía, L. (2008). Desarrollo de un multibiosensor de ADN para el diagnóstico temprano de cáncer de mama. [Tesis de Doctorado, Universidad Autónoma de Madrid]. Repositorio Universidad Autónoma de Madrid.García, T., Revenga-Parra, M., Abruña, H. D., Pariente, F., & Lorenzo, E. (2007). Single-Mismatch Position-Sensitive Detection of DNA Based on a Bifunctional Ruthenium Complex. Analytical Chemistry, 80(1), 77-84. https://doi.org/10.1021/ac071095rGenereux, J. C., & Barton, J. K. (2009). Mechanisms for DNA Charge Transport. Chemical Reviews, 110(3), 1642-1662. https://doi.org/10.1021/cr900228fGiraldo, B. E. S., Villegas, S. I. G., Gómez, D. E. V., Lopera, V. R., Cala, T. L. P., & Martínez, A. (2023). Frecuencia de la infección por Helicobacter pylori en pacientes que requirieron endoscopia digestiva en siete unidades de tres subregiones de Antioquia. Revista Colombiana de Gastroenterología, 38(3), 290-303. https://doi.org/10.22516/25007440.983Goicochea, H., & Olivieri, A. (2007). La Calibración en Química Analítica. Ed. UNL, Santa Fe, Argentina. 180. ISBN: 978-987-508-900-6Gómez, A., & Arcila, J. (2012). EVALUATION OF THE ELECTROCHEMICAL SYSTEM Pd(NH3)4Cl2 ON ALUMINUM SUBSTRATE. Momento 45, 44. https://revistas.unal.edu.co/index.php/momento/article/download/40387/67233?inline=1Gonçalves, L. M., Batchelor-McAuley, C., Barros, A. A., & Compton, R. G. (2010). Electrochemical Oxidation of Adenine: A Mixed Adsorption and Diffusion Response on an Edge-Plane Pyrolytic Graphite Electrode. The Journal Of Physical Chemistry C, 114(33), 14213-14219. https://doi.org/10.1021/jp1046672González, J., Gómez, R., & Ortega, G. (2021). Síntesis, caracterización y comparación de Óxido de grafeno reducido mediante láser pulsado de CO2 y CVD. https://www.esfm.ipn.mx/assets/files/esfm/docs/RNAFM/articulos-2021/XXVIRNAFM029.pdfGuidelli, R., Compton, R., Feliu, J., Gileadi, E., Lipkowski, J., Schmickler, W. & Trasatti, S. (2014). Defining the transfer coefficient in electrochemistry: An assessment (IUPAC Technical Report). Pure and Applied Chemistry, 86(2), 245-258. https://doi.org/10.1515/pac-2014-5026Gupta, S., Jain, U., Murti, B.T. et al. Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with @ Pdnano/rGO/PEDOT sensing platform. (2020). Sci Rep 10, 21217. https://doi.org/10.1038/s41598-020-78068-wGuzman, K. A., & Pazos, A. (2023). Helicobacter pylori: Microorganismo patógeno o mutualista en poblaciones colombianas. Universidad y Salud, 25(1), A1-A6. https://doi.org/10.22267/rus.232501.292Grönbeck, H., Curioni, A., & Andreoni, W. (2000). Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction. Journal Of The American Chemical Society, 122(16), 3839-3842. https://doi.org/10.1021/ja993622xHabib, T., Zhao, X., Shah, S.A. et al. (2019). Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater Appl 3, 8. https://doi.org/10.1038/s41699-019-0089-3Hajihosseini, S., Nasirizadeh, N., Hejazi, M. S., & Yaghmaei, P. (2016). A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Materials Science And Engineering: C, 61, 506-515. https://doi.org/10.1016/j.msec.2015.12.091Harvey, D. (2022). Electrodos de referencia. LibreTexts Español. https://espanol.libretexts.org/Quimica/Qu%C3%ADmica_Anal%C3%ADtica/An%C3%A1lisis_Instrumental_(LibreTextos)/23%3A_Potenciometr%C3%ADa/23.01%3A_Electrodos_de_ReferenciaHasnain, S., Jacobson, M. P., & Bandyopadhyay, P. (2013). A comparative Brownian dynamics investigation between small linear and circular DNA: Scaling of diffusion coefficient with size and topology of DNA. Chemical Physics Letters, 591, 253-258. https://doi.org/10.1016/j.cplett.2013.11.029Hassler, S. (2012). Other commonly used biomedical coatings: pyrolitic carbon coatings. Woodhead Publishing Series in Biomaterials, 75-105. https://doi.org/10.1533/9780857093677.1.75Hebbar, R., Isloor, A., & Ismail, A. (2017). Contact angle measurements. En Elsevier eBooks (pp. 219-255). https://doi.org/10.1016/b978-0-444-63776-5.00012-7Heda, R., Toro, F., & Tombazzi, CR. (2023). Physiology, Pepsin. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537005Hernández, J., & Borrás, C. (2020). Analysis of liquid biopsies for cancer diagnosis: Systematic review. https://www.elsevier.es/es-revista-revista-espanola-geriatria-gerontologia-124-articulo-analisis-biopsias-liquidas-el-diagnostico S0211139X20301396Hernández. R., Morales. K., Garrido. M., & Piñera. T. (2021). Immobilization a look at the methods, supports and challenges. Revista CENIC Ciencias Biológicas, 52(1), 59-78. Epub. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502021000100059&lng=es&tlng=es.Hollingsworth, S., & Dror, R. (2018). Molecular Dynamics Simulation for All. Cell Press Journal, 99, 6, P1129-1143. https://doi.org/10.1016/j.neuron.2018.08.011Huang, K., Niu, D., Sun, J., Han, C., Wu, Z., Li, Y., & Xiong, X. (2010). Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids And Surfaces B Biointerfaces, 82(2), 543-549. https://doi.org/10.1016/j.colsurfb.2010.10.014Idowu, S.; Bertrand, P.P.; Walduck, A.K. (2022). Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation. Helicobacter, 27, e12891IUPAC. Compendio de terminología química, 2ª ed. (el "Libro de Oro"). Compilado por AD McNaught y A. Wilkinson. Publicaciones científicas de Blackwell, Oxford (1997). Versión online (2019-) creada por SJ Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbookIsaza. E., Ángel. M., Ocampo. M., Díaz. C., Molina. I., Velásquez. M., Posada. P., & Salazar. S. (2020). Controversias en cirugía: Erradicación del Helicobacter pylori ¿Terapia a todos o según indicación usuales?. Rev Colomb Cir. 35:665-74 https://doi.org/10.30944/20117582.563Juárez, S. (2022). Tutorial: Diseño y fabricación de nano-biosensores basados en ADN para la detección de fármacos. Departamento de Sistemas Biológicos. UAM Xochimilco. https://repositorio.xoc.uam.mx/jspui/bitstream/123456789/27400/1/250291.pdfKarunakaran, C., Bhargava. K., & Benjamin, R. Introduction to Biosensors. Biosensors and Bioelectronics, 1-68. https://doi.org/10.1016/B978-0-12-803100-1.00001-3.Kasturi, S., Eom, Y., Torati, S. R., & Kim, C. (2020). Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. Journal Of Industrial And Engineering Chemistry, 93, 186-195. https://doi.org/10.1016/j.jiec.2020.09.022Kavita, V. (2017). DNA Biosensors- A Review. Journal of Bioengineer & Biomedical Science, 7:2. DOI: 10.4172/2155-9538.1000222Kaur, H., Garg, R., Singh, S., Jana, A., Bathula., Kim, H., Kumbar, S., & Mittal, M. (2022). Progress and challenges of graphene and its congeners for biomedical applications: Drug delivery, gene delivery, biosensing, bioimaging, and tissue engineering. https://www.elsevier.com/open-access/userlicense/1.0/Kim, N. (2023). Helicobacter pylori. https://doi.org/10.1007/978-981-97-0013-4Kumar, A., & Mahato, K. (2024). Chapter 6 - Recent advancements in bioreceptors and materials for biosensors. Biosensors in Precision Medicine. Fundamentals to Future Trends. 163-202. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-443-15380-8.00007-2Kumalasari, M., Alfanaar, R., & Andreani, A. (2024). Gold nanoparticles (AuNPs): A versatile material for biosensor application. 9, 100327. https://doi.org/10.1016/j.talo.2024.100327Kumari, A. (2023). Purine structure. En Elsevier eBooks (pp. 117-120). https://doi.org/10.1016/b978-0-443-15348-8.00022-3Laino, S. P., Boggio, E., Martin, M., Cáceres, E., & Ruiz, S. (2020). Comparación de métodos diagnósticos para la detección de Helicobacter pylori en biopsias gástricas en pacientes con trastornos gastrointestinales [Trabajo de Especialización]. Universidad Nacional de Córdoba. https://revistas.unc.edu.ar/index.php/Bitacora/issue/download/2180/389Lakhera, P., Chaudhary, V., Jha, A., Singh, R., Kush, P., & Kumar, P. (2022). Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Materials Today Chemistry, 26, 101129. https://doi.org/10.1016/j.mtchem.2022.101129Lazerges, M., Perrot, H., Rabehagasoa, N., Compère, C., Dreanno, C., Pedroso, M. M., Faria, R., & Bueno, P. (2012). DNA hybridization mechanism in an interfacial environment: What hides beneath first order k (s−1) kinetic constant? Sensors And Actuators B Chemical, 171-172, 522-527. https://doi.org/10.1016/j.snb.2012.05.023Lefrou, C., Fabry, P., & Poignet, J. C. (2012). Electrochemistry: the basics, with examples. Springer Science & Business Media.Lee, K., Suh, H., Park, H., Park, Y., Kim, H., & Kim, S. (2022). Regenerative Strategy of Gold Electrodes for Long-Term Reuse of Electrochemical Biosensors. ACS Omega. ACS Omega, 8, 1, 1389–1400. https://doi.org/10.1021/acsomega.2c06851Lin, R., Lim, T., & Tran, T. (2018). Carbon nanotube band electrodes for electrochemical sensors. Electrochemistry Communications, 86, 135-139. https://doi.org/10.1016/j.elecom.2017.11.023Ling, Z., Ren, C. E., Zhao, M., Yang, J., Giammarco, J. M., Qiu, J., Barsoum, M. W., & Gogotsi, Y. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings Of The National Academy Of Sciences, 111(47), 16676-16681. https://doi.org/10.1073/pnas.1414215111Lipatov, A., Goad, A., Loes, M. J., Vorobeva, N. S., Abourahma, J., Gogotsi, Y., & Sinitskii, A. (2021). High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter, 4(4), 1413-1427. https://doi.org/10.1016/j.matt.2021.01.021Lister, J. (1966). Physicochemical Aspects of the Chemistry of Purines. Advances In Heterocyclic Chemistry, 1-43. https://doi.org/10.1016/s0065-2725(08)60574-7Liu, Z., & Su, X. (2017). A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosensors & Bioelectronics/Biosensors & Bioelectronics (Online), 87, 66-72. https://doi.org/10.1016/j.bios.2016.07.061Lorente, A., & Fernández, M. (2008). Interacciones no covalentes con el ADN. ISSN-e 2792-5250Lorenzo, E., Pariente, F., Revenga, M., & García, T. (2008). MÉTODO PARA LA DETECCIÓN ELECTROQUÍMICA DE SECUENCIAS DE ÁCIDOS NUCLÉICOS (WO2008145785A1). Organización Mundial de la Propiedad Intelectual. https://patents.google.com/patent/WO2008145785A1/esLuna, Y. (2022). Digestión con pepsina. Instituto de Ciencias. Benemérita Universidad Autónoma de Puebla, México. https://repositorioinstitucional.buap.mx/items/9011092d-b292-4403-9e55-6f3ade38b4acLuong JH, Male KB, Glennon JD. Biosensor technology: technology push versus market pull. Biotechnol Adv. 2008 Sep-Oct;26(5):492-500. doi: 10.1016/j.biotechadv.2008.05.007. Epub 2008 Jun 8. PMID: 18577442Lv, M., Fan, S., Wang, Q., Lv, Q., Song, X., & Cui, H. (2019). An enzyme-free electrochemical sandwich DNA assay based on the use of hybridization chain reaction and gold nanoparticles: application to the determination of the DNA of Helicobacter pylori. Mikrochimica Acta (1966. Print), 187(1). https://doi.org/10.1007/s00604-019-3999-zMahmoud, R. (2022). Chapter Four - Nanotechnology in wastewater treatment. Comprehensive Analytical Chemistry, 99, 105-134. https://doi.org/10.1016/bs.coac.2021.11.002Malhotra, S., Verma, A., Tyagi, N., & Kumar, V. (2017). BIOSENSORS: PRINCIPLE, TYPES AND APPLICATIONS. IJARIIE-ISSN(O)-2395-4396. https://snscourseware.org/snsctnew/files/1714382459.pdfManfredi, M., & De´Angels. (2013). Helicobacter pylori: Detection Methods, Diseases and Health Implications. Bacteriology Research Developments. Nova Science Publishers, Inc. 978-1-62808-755-0Markham, N. R., & Zuker, M. (2005). DINAMelt web server for nucleic acid melting prediction. Nucleic acids research, 33(Web Server issue), W577–W581. https://doi.org/10.1093/nar/gki591Markham, N. R., & Zuker, M. (2008). UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 453:3-31. doi: 10.1007/978-1-60327-429-6_1.Marques, M., Löbenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with Possible Application in Dissolution Testing. Dissolution Technologies 18(3):15-28. DOI:10.14227/DT180311P15Maquera, A. (2010). ¿Qué son los biosensores y para qué los podemos utilizar?. Universidad Politécnica de Valencia. IDM. http://enclave.cev.es/unoi/wp-content/uploads/2011/01/qu%C3%A9-son-los-bionsenores-y-para-qu%C3%A9-los-podemos-utilizar.pdfMauro, J. C. (2021). Fick’s Laws of Diffusion. En Elsevier eBooks (pp. 39-58). https://doi.org/10.1016/b978-0-12-823907-0.00026-1Medina-Lopez, C., Marin-Garcia, J. A., & Alfalla-Luque, R. (2010). Una propuesta metodológica para la realización de búsquedas sistemáticas de bibliografía (A methodological proposal for the systematic literature review). WPOM-Working Papers on Operations Management, 1(2), 13–30. https://doi.org/10.4995/wpom.v1i2.786Meneau Hernández, Rosa I., Borrego Morales, Katia, Liva Garrido, Maria, & Fariñas Piñera, Tania. (2021). Inmovilización, una mirada a los métodos, soportes y retos. Revista CENIC Ciencias Biológicas, 52(1), 59-78. Epub 01 de abril de 2021. Recuperado en 07 de abril de 2024, de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24502021000100059&lng=es&tlng=es.Millan, K. M., & Mikkelsen, S. R. (1993). Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Analytical Chemistry, 65(17), 2317-2323. https://doi.org/10.1021/ac00065a025Minatogau, L., De Barros, A., Zaparoli, L., Crispilho, C., Merces, L., & Bof, C. (2020). Highly efficient electrochemical energy conversión in a 3D hollow microenvironment: towards on-a-chip sensor applications. Electronic Supplementary Mterial (ESI) for Journal of Materials Chemistry A. https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta05796gMirzaei, S., Mehrdadi, N., Nabi, G., Pourmadadi, M., Ahmadi, M., & Meknatkhah, S. (2024). Novel detection of H. pylori using ultrasensitive electrochemical aptasensor based on surface modified graphene oxide doped gold nanoparticles conjugated polythiophene. Microchemical Journal, Vol. 200, 110279, ISSN 0026-265X. https://doi.org/10.1016/j.microc.2024.110279Mouli, C., & Dhar, B. (2019). Biosensors: Fundamentals and Applications. [eBook]. Gruyter, 2-3, 978-3-11-064108-0Mohammadniaei, M., Koyappayil, A., Sun, Y., Min, J., & Lee, M. (2020). Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosensors And Bioelectronics, 159, 112208. https://doi.org/10.1016/j.bios.2020.112208Mu, Z., Tan, Y., Liu, J., Zhang, B., & Shi, Y. (2023). Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules, 28(12), 4833. https://doi.org/10.3390/molecules28124833Musa, A., Kiely, J., Luxton, R., & Honeychurch, K. (2021). Recent progress in screen-printed electrochemical sensors and biosensors for the detection of estrogens. TrAC Trends in Analytical Chemistry, 139, 116254. https://doi.org/10.1016/j.trac.2021.116254Nayak, P., Jiang, Q., Mohanraman, R., Anjum, D., Hedhili, M. N., & Alshareef, H. N. (2018). Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti3C2TxMXene. Nanoscale, 10(36), 17030-17037. https://doi.org/10.1039/c8nr01883aNational Cancer Institute. (2023). Helicobacter pylori (H. pylori) and Cancer. https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/h-pylori-fact-sheetNesterova, V., Korostelev, V., & Klyukin, K. (2024). Unveiling the role of termination groups in stabilizing MXenes in contact with water. The Journal Of Physical Chemistry Letters. https://doi.org/10.26434/chemrxiv-2024-121k1Nishimura, T., Hifumi, E., Fujii, T., Niimi, Y., Egashira, N., Shimizu, K., & Uda, T. (2000). Measurement of Helicobacter pylori Using Anti Its Urease Monoclonal Antibody by Surface Plasmon Resonance. Electrochemistry, 68(11), 916-919. https://doi.org/10.5796/electrochemistry.68.916Oliveira-Brett, A., Diculescu, V., & Piedade, J. (2002). Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry, 55(1-2), 61-62. https://doi.org/10.1016/s1567-5394(01)00147-5O'Neil, M.J. (2001.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., 804Pei, S., & Cheng, H. (2011). The reduction of graphene oxide. Carbon, 50(9), 3210-3228. https://doi.org/10.1016/j.carbon.2011.11.010Paleček, E. (1996). From polarography of DNA to microanalysis with nucleic acid‐modified electrodes. Electroanalysis, 8(1), 7-14. https://doi.org/10.1002/elan.1140080103Pandey, P., Govind, P., and Roger, J. (2021) Biological sensing mechanisms. Chap. 24.2 in Biomedical Engineering Fundamentals. 3rd ed., edited by Myer Kutz. New York: McGraw Hill.Peng, P. (2017). Fabrication of an Electrochemical Sensor for Helicobacter pylori in Excrement Based on a Gold Electrode. International Journal Of Electrochemical Science, 12(10), 9478-9487. https://doi.org/10.20964/2017.10.19Peralta, S. & Sánchez, Y. (2023). Diseño de la etapa de biorrecepción-transducción de un biosensor para la cuantificación de colesterol LDL [Tesis de pregrado, Universidad El Bosque]. Repositorio Institucional de la Universidad El Bosque. https://repositorio.unbosque.edu.co/items/513221fd-f8fe-4e51-8bc7-3f264f4ad494Perumal, V., & Hashim, U. (2014). Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 12(1), 1-15Piao, X., Sun, L., Zhang, T., Gan, Y., & Guan, Y. (2008). Effects of mismatches and insertions on discrimination accuracy of nucleic acid probes. Acta Biochimica Polonica, 55(4), 713-720. http://www.actabp.pl/Pournaghi-Azar MH, Alipoura E, Zununi S, Froohandeh H, Hejazi MS. (2008). Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Biosens Bioelectron 24:524–530Powell, J., Greenfield, S., & Thompson, R. (1992). Concentrations of metals in gastric juice in health and peptic ulcer disease. Gut. 1992 Dec; 33(12): 1617–1620. doi: 10.1136/gut.33.12.1617Prunet, G., Pawula, F., Fleury, G., Cloutet, E., Robinson, A., Hadziioannou, G., & Pakdel, A. (2021). A review on conductive polymers and their hybrids for flexible and wereable thermoelectric applications. Materials Today Physics, 18, https://doi.org/10.1016/j.mtphys.2021.100402Qu, K., & Dan, D. (2023). Introduction. Enviromental Analytical Chemistry (pp. 1-33). https://doi.org/10.1016/b978-0-443-21966-5.00001-6Qiao W; Chiang H-C; Xie H; Levicky R. (2015). Surface vs. Solution Hybridization: Effects of Salt, Temperature, and Probe Type. Chem. Commun, 51, 17245–17248Rafique, B., Iqbal, M., Mehmood, T. and Shaheen, M.A. (2019), "Electrochemical DNA biosensors: a review", Sensor Review, Vol. 39 No. 1, pp. 34-50. https://doi.org/10.1108/SR-08-2017-0156Rahman MM, Li X-B, Lopa NS, Ahn SJ, Lee J-J. (2015). Electrochemical DNA Hybridization Sensors Based on Conducting Polymers. Sensors. 15(2):3801-3829. https://doi.org/10.3390/s150203801Ramotowska, S., Ciesielska, A., & Makowski, M. (2021). What Can Electrochemical Methods Offer in Determining DNA–Drug Interactions? Molecules, 26(11), 3478. https://doi.org/10.3390/molecules26113478Rashid, J. I. A., & Yusof, N. A. (2017). The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing And Bio-Sensing Research, 16, 19-31. https://doi.org/10.1016/j.sbsr.2017.09.001Rezaei, B., & Irannejad, N. (2019). Chapter 2- Electrochemical detection techniques in biosensor applications. Electrochemical Biosensors, 11-43. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00002-4Rodríguez, D., & Alfaro, A. (2010). Actualización de la Fisiología Gástrica. Medicina Legal de Costa Rica, 27(2), 59-68. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152010000200007&lng=en&tlng=es.Rodríguez Romeu, R., Jaime Infante, R., Triana Dopico, J., & Vázquez Molina, J. (2018). Análisis In Silico de la Viabilidad de la Mutación de Sistemas Biológicos. Revista de Ciencias Médicas de Pinar del Río, 22(4), 719-728. Recuperado de https://revcmpinar.sld.cu/index.php/publicaciones/article/view/3473Sabaté del Río, J., Henry, O. Y. F., Jolly, P., & Ingber, D. E. (2019). An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nature Nanotechnology, 14(12), 1143–1149. doi:10.1038/s41565-019-0566-zSafaeipour, S., & Kalantarian, M. M. (2024). Insight into the origin of electrochemical potential: Fermi vs. Gibbs free energies. Nano-Structures & Nano-Objects, 39, 101213. https://doi.org/10.1016/j.nanoso.2024.101213Salvo, C. (2019). Electrochemical sensors and biosensors: new horizons and challenges in their integration in multisensor systems for food industry applications [Tesis Doctoral, Universidad de Valladolid]. Repositorio Universidad de Valladolid. https://uvadoc.uva.es/bitstream/handle/10324/55199/TESIS-2019-220907.pdf?isAllowed=y&sequence=1Sandhyarani, N. (2019). Chapter 3 – Surface modificationi methods for electrochemical biosensors. Electrochemical Biosensors, 45-75. https://doi-org.ezproxy.unbosque.edu.co/10.1016/B978-0-12-816491-4.00003-6Sawhney, M., Azzopardi, E., Rodrigues, S., Francis, L., Conlan, R., & Gazze, S. (2019). Measuring the impact on impedance spectroscopy of pseudo-reference electrode accumulations. Electrochemistry Communications, 105. https://doi.org/10.1016/j.elecom.2019.106508Saxena, V., & Malhotra, B. D. (2003). Electrochemical biosensors. Advances in Biosensors: Perspectives in Biosensor. JAI Press, Stamford, 63-100Saxena, K., Chauhan, N., & Jain, U. (2021). Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices. Analytical Biochemistry, 630, 114325. https://doi.org/10.1016/j.ab.2021.114325Shanmugam, V., Mensah, R. A., Babu, K., Gawusu, S., Chanda, A., Tu, Y., Neisiany, R. E., Försth, M., Sas, G., & Das, O. (2022). A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 39(6). https://doi.org/10.1002/ppsc.202200031Sharafeldin, M., & Davis, J. J. (2022). Characterising the biosensing interface. Analytica Chimica Acta, 1216, 339759. https://doi.org/10.1016/j.aca.2022.339759Scaranto, J., Mallia, G., & Harrison, N. (2011). An efficient method for computing the binding energy of an adsorbed molecule within a periodic approach. The application to vinyl fluoride at rutile TiO2(1 1 0) surface. Computational Materials Science, 50(7), 2080-2086. https://doi.org/10.1016/j.commatsci.2011.02.011Sevidanes, M. (2022). Biosensores basados en aptámeros: Tipos y aplicaciones en biomedicina. Revisión bibliográfica. [Tesis de finde grado, Universidad de Sevilla]. https://idus.us.es/bitstream/handle/11441/143953/SEVIDANES%20QUINCY%2C%20MIGUEL.pdf?sequence=1Silakari O, Singh P. (2021). Chapter 6 - Molecular docking analysis: Basic technique to predict drug-receptor interactions. Concepts and Experimental Protocols of 62 Modelling and Informatics in Drug Design. [Internet]. Pages 131-155. https://www.sciencedirect.com/science/article/pii/B9780128205464000064Sivasubramaniyam, V., Ramasamy, S., Venkatraman, M., Gatto, G., & Kumar, A. (2023). Carbon Nanotubes as an Alternative to Copper Wires in Electrical Machines: A Review. Energies, 16(9), 3665. https://doi.org/10.3390/en16093665Sophocleous, M., & Atkinson, J. K. (2017). A review of screen-printed silver/silver chloride (Ag/AgCl) reference electrodes potentially suitable for environmental potentiometric sensors. Sensors And Actuators A Physical, 267, 106-120. https://doi.org/10.1016/j.sna.2017.10.013Su, X., & Li, S. (2001). Serological determination of Helicobacter pylori infection using sandwiched and enzymatically amplified piezoelectric biosensor. Analytica Chimica Acta, Vol 429, 27-36, ISSN 0003-2670, DOI 10.1016/S0003-2670(00)01262-9.Sun, W., Li, L., Lei, B., Li, T., Ju, X., Wang, X., Li, G., & Sun, Z. (2013). Fabrication of graphene–platinum nanocomposite for the direct electrochemistry and electrocatalysis of myoglobin. Materials Science And Engineering C, 33(4), 1907-1913. https://doi.org/10.1016/j.msec.2012.12.077Švorc, Ľ., & Kalcher, K. (2014). Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: Simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sensors And Actuators B Chemical, 194, 332-342. https://doi.org/10.1016/j.snb.2013.12.104Taleat, Z., Khoshroo, A., Mazloum-Ardakani, M. (2014). Screen-printer electrodes for biosensing: a review (2008-2012). Microchim Acta 181:865–891. DOI 10.1007/s00604-014-1181-1Tan, Z., & Chen, S. (2005). Nucleic Acid Helix Stability: Effects of Salt Concentration, Cation Valence and Size, and Chain Length. Biophysical Journal, 90(4), 1175-1190. https://doi.org/10.1529/biophysj.105.070904Tang, M., Li, J., Wang, Y., Han, W., Xu, S., Lu, M., Zhang, W., & Li, H. (2022). Surface Terminations of MXene: Synthesis, Characterization, and Properties. Symmetry, 14(11), 2232. https://doi.org/10.3390/sym14112232Teles, F., & Fonseca, L. P. (2008). Trends in DNA biosensors. Talanta, 77(2), 606-623. https://doi.org/10.1016/j.talanta.2008.07.02Tetyana, P., Morgan Shumbula, P., & Njengele-Tetyana, Z. (2021). Biosensors: Design, Development and Applications. IntechOpen. doi: 10.5772/intechopen.97576Thapa, K., Liu, W., & Wang, R. (2022). Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 14(1), e1765. https://doi-org.ezproxy.unbosque.edu.co/10.1002/wnan.1765Ullman, D. G. (2010). The Mechanical Design Process (4th ed.). New York: McGraw‐ Hill. (pp. 15-21)Vargas A., Alvaro., & Fuentes., C. (2021). Estudios in Silico, Simulando Vida en un Entorno Virtual. Gaceta Médica Boliviana, 44(2), 278-279.https://doi.org/10.47993/gmb.v44i2.263Vertzoni, M., Dressman, J., Butler, J., Hempenstall, J., Reppas, C. (2005). Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur. J. Pharm. Biopharm. 60, 413–417Vidic, J., & Manzano, M. (2021). Electrochemical biosensors for rapid pathogen detection. Current Opinion in Electrochemistry. 29, 100750. https://doi-org.ezproxy.unbosque.edu.co/10.1016/j.coelec.2021.100750Wang F, Xie Y, Zhu W, Wei T. (2023). Recent Advances in Functionalization Strategies for Biosensor Interfaces, Especially the Emerging Electro-Click: A Review. Chemosensors. 11(9):481. https://doi.org/10.3390/chemosensors11090481Wang, L., Cui, K., Wang, P., Pei, M., & Guo, W. (2021). A sensitive electrochemical DNA sensor for detecting Helicobacter pylori based on accordion-like Ti3C2Tx: a simple strategy. Analytical And Bioanalytical Chemistry, 413(16), 4353-4362. https://doi.org/10.1007/s00216-021-03391-8Wang, Y., Xu, H., Zhang, J., & Li, G. (2008). Electrochemical sensors for clinic analysis. Sensors, 8(4), 2043-2081.Wei, D., Bailey, M., Andrew, P., & Ryhänen, T. (2009). Electrochemical biosensors at the nanoscale. https://pubs.rsc.org/en/content/articlelanding/2009/lc/b903118aXu, K., Huang, J., Ye, Z., Ying, Y., & Li, Y. (2009). Recent Development of Nano-Materials Used in DNA Biosensors. Sensors, 9(7), 5534-5557; https://doi.org/10.3390/s90705534Yang, C., Kim, E., & Pak, Y. (2015). Free energy landscape and transition pathways from Watson–Crick to Hoogsteen base pairing in free duplex DNA. Nucleic Acids Research, 43(16), 7769-7778. https://doi.org/10.1093/nar/gkv796Yartsev, A. (2021). Composition, volumes and regulation of gastrointestinal secretions. Deranged Physiology. https://derangedphysiology.com/main/cicm-primary-exam/required-reading/gastrointestinal-system/Chapter%20110/composition-volumes-and-regulation-gastrointestinal-secretionsYilmaz, L. S., and D. R. Noguera. (2004). Mechanistic approach to the problem of hybridization efficiency in fluorescent in situ hybridization. Appl. Environ. Microbiol. 70:7126-7139. https://doi.org/10.1128%2FAEM.70.12.7126-7139.2004You, Y., & Hansen, C. (2013). Calculating melting temperature (Tm). Integrated DNA Technologies. https://www.idtdna.com/pages/education/decoded/article/understanding-melting-temperature-(t-sub-m-sub-)Zadeh, J. N., Steenberg, C., Bois, J. S., Wolfe, B. R., Pierce, M. B., Khan, A. R., Dirks, R. M., & Pierce, N. A. (2011). NUPACK: Analysis and design of nucleic acid systems. Journal Of Computational Chemistry, 32(1), 170-173. https://doi.org/10.1002/jcc.21596Zamzami, M., Ahmad, A., Alamoudi, S., Choudhry, H., Hosawi, S., Rabbani, G., Shalaan, E., & Arkook, B. (2024). A highly sensitive and specific Gold Electrode-Based electrochemical immunosensor for rapid On-Site detection of Salmonella entérica. Microchemical Journal, 199, 110190. https://doi.org/10.1016/j.microc.2024.110190Zare, H. R., & Nasirizadeh, N. (2012). Fabrication, characterization and analytical performance of the hydroxylamine sensor based on an oracet blue multi-walled carbon nanotubes film deposited on an electrode surface. Journal Of The Brazilian Chemical Society, 23(6), 1070-1077. https://doi.org/10.1590/s0103-50532012000600011Zhang, J. (2024). Helicobacter pylori: Structure and morphology. Molecular Medical Microbiology. Third Edition, 1133-1159. https://doi.org/10.1016/B978-0-12-818619-0.00120-9Zhang, L., Li, Z., Zhou, X., Yang, G., Yang, J., Wang, H., Wang, M., Liang, C., Wen, Y., & Lu, Y. (2015). Hybridization performance of DNA/mercaptohexanol mixed monolayers on electrodeposited nanoAu and rough Au surfaces. Journal Of Electroanalytical Chemistry, 757, 203-209. https://doi.org/10.1016/j.jelechem.2015.09.032spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf6590239https://repositorio.unbosque.edu.co/bitstreams/ba72f4ad-65ff-4a86-bbc7-aeb4c00ae64e/download502be742e1ffa74dd53b307be0343c64MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/18c249c6-56a6-4ad1-bdfd-5af714a539d0/download17cc15b951e7cc6b3728a574117320f9MD52Carta de autorizacion.pdfapplication/pdf185873https://repositorio.unbosque.edu.co/bitstreams/2828171f-8a9c-4dcf-adb0-7054f6fba9ba/download720cec9983583e5318e4ae864e8d93afMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/45695b89-595b-44d3-b396-7129b699e6b5/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain105959https://repositorio.unbosque.edu.co/bitstreams/adf7e0b0-9b7e-442d-b3e0-db0cf34f2aa6/download90b6785955652a2a4a59605101fbd115MD55THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3413https://repositorio.unbosque.edu.co/bitstreams/9d1a6e57-682f-4c3a-8e38-9d99f2bd9a08/download4c0ec8f7dc5b2ae5576c88f91ab66660MD5620.500.12495/14572oai:repositorio.unbosque.edu.co:20.500.12495/145722025-06-07 05:04:52.961http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2035-06-05https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |