Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris
La astaxantina es un carotenoide ampliamente reconocido por sus potentes propiedades antioxidantes, sintetizado por la microalga Haematococcus pluvialis bajo condiciones de estrés. En estas condiciones, las células se transforman en aplanosporas, desarrollando paredes celulares gruesas que dificulta...
- Autores:
-
Zambrano León, María Paula
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14825
- Palabra clave:
- Biosíntesis
Xantofila
Biopigmento
Algal
Extracción
610.28
Biosynthesis
Xanthophyll
Biopigment
Algal
Extraction
- Rights
- License
- Acceso cerrado
id |
UNBOSQUE2_6dfadea5dd024b8a8e48be8a127fc217 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14825 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
dc.title.translated.none.fl_str_mv |
Development of a methodology for obtaining astaxanthin from liquid cultures of the microalga Haematococcus lacustris |
title |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
spellingShingle |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris Biosíntesis Xantofila Biopigmento Algal Extracción 610.28 Biosynthesis Xanthophyll Biopigment Algal Extraction |
title_short |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
title_full |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
title_fullStr |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
title_full_unstemmed |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
title_sort |
Desarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustris |
dc.creator.fl_str_mv |
Zambrano León, María Paula |
dc.contributor.advisor.none.fl_str_mv |
Acuña Monsalve, Yudtanduly |
dc.contributor.author.none.fl_str_mv |
Zambrano León, María Paula |
dc.subject.none.fl_str_mv |
Biosíntesis Xantofila Biopigmento Algal Extracción |
topic |
Biosíntesis Xantofila Biopigmento Algal Extracción 610.28 Biosynthesis Xanthophyll Biopigment Algal Extraction |
dc.subject.ddc.none.fl_str_mv |
610.28 |
dc.subject.keywords.none.fl_str_mv |
Biosynthesis Xanthophyll Biopigment Algal Extraction |
description |
La astaxantina es un carotenoide ampliamente reconocido por sus potentes propiedades antioxidantes, sintetizado por la microalga Haematococcus pluvialis bajo condiciones de estrés. En estas condiciones, las células se transforman en aplanosporas, desarrollando paredes celulares gruesas que dificultan su extracción, debido a su resistencia tanto mecánica como química. Esta complejidad se acentúa al tratarse de una molécula sensible a diversos factores, lo que convierte su obtención en un proceso desafiante. Con el fin de obtener astaxantina, se diseñó una metodología que abarca las etapas de cultivo, recuperación celular, secado, disrupción y extracción. Durante la fase de acumulación de biomasa, la microalga fue cultivada en medio BBM bajo un fotoperiodo 12:12 h (luz/oscuridad), utilizando luz monocromática roja a una intensidad de 55 µmol/m²·s. Posteriormente, para la inducción de estrés y acumulación de astaxantina, se establecieron experimentalmente las siguientes condiciones: reducción de fósforo al 25% y nitrógeno al 75%, fotoperiodo 16:8 h y luz azul a 120 µmol/m²·s. Bajo estas condiciones, se alcanzó una concentración de astaxantina de 83.48 mg/L. Este proceso fue asistido por un sistema de control lumínico y monitoreo de temperatura diseñado específicamente, el cual presentó un consumo de corriente promedio de 1.762 A. En cuanto a la recuperación celular, se evaluaron concentraciones de Derypol (coagulante comercial a base de taninos) entre 150 y 300 ppm, y sulfato de aluminio entre 300 y 1000 ppm. Donde, la mejor condición fue 500 ppm de sulfato de aluminio a un pH de 4.91, logrando un rendimiento del 97.44%. Para la etapa de secado, se compararon dos métodos: horno (40–60 °C) y microondas (350–700 W). El secado por microondas a 560 W fue el más eficiente, ya que redujo considerablemente el tiempo de proceso sin comprometer la calidad bioquímica de la biomasa. Respecto a la disrupción celular, se ensayaron tres métodos: extracción directa con DMSO, molienda y ultrasonido. La molienda y el DMSO presentaron rendimientos similares, alcanzando aproximadamente 24 mg/g de astaxantina extraída, mientras que el ultrasonido a 70 W y 40 kHz aplicando 5 ciclos de 20 min, permitió solo 2.197 mg/g, evidenciando su limitada eficacia para romper la pared celular a baja potencia. Finalmente, se evaluó el efecto de diferentes solventes de extracción (etanol, acetato de etilo y su mezcla 1:1 v/v). La combinación etanol:acetato de etilo fue la que mejor preservó la estabilidad química de la astaxantina, demostrando una fuerte capacidad antioxidante (CI50 = 42.55 μg/mL) determinada mediante el ensayo DPPH. Finalmente, empleando la metodología definida se alcanzó un rendimiento de extracción de astaxantina de 26,485 mg/g, con un rendimiento total de 79.46%. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-06-27T17:27:29Z |
dc.date.available.none.fl_str_mv |
2025-06-27T17:27:29Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14825 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14825 https://repositorio.unbosque.edu.co |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Acedo Sanchez, J. (2013). Instrumentación y control avanzado de procesos. Ediciones Díaz y Santos, 626 páginas. Adafruit Industries. (2024). DHT11, DHT22 and AM2302 sensors. https://cdn-learn.adafruit.com/downloads/pdf/dht.pdf Agbede, O. O., Oke, E. O., Akinfenwa, S. I., Wahab, K. T., Ogundipe, S., Aworanti, O. A., ... & Babatunde, K. A. (2020). Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling. Bioresource Technology Reports, 11, 100467. Ahangar, A. K., Yaqoubnejad, P., Divsalar, K., Mousavi, S., & Taghavijeloudar, M. (2023). Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. Bioresource Technology, 387, 129577. Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... & Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707. Ahmed, F., Li, Y., Fanning, K., Netzel, M., & Schenk, P. M. (2015). Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Research International, 74, 231-236. Ahn, B. L., Jang, C. Y., Leigh, S. B., Yoo, S., & Jeong, H. (2014). Effect of LED lighting on the cooling and heating loads in office buildings. Applied Energy, 113, 1484-1489. An, Y., Kim, T., Byeon, H., Rayamajhi, V., Lee, J., Jung, S., & Shin, H. (2024). Improved Production of Astaxanthin from Haematococcus pluvialis Using a Hybrid Open–Closed Cultivation System. Applied Sciences, 14(3), 1104. Andonova, A., Kim, N., & Vakrilov, N. (2016). Estimation the amount of heat generated by LEDs under different operating conditions. Elektronika ir Elektrotechnika, 22(2), 49-53. Ariza, H. M., Santa, F. M., & Ramírez, D. A. G. (2015). Uso de redes neuronales para el reconocimiento de rostros en ambientes controlados. Tecnura, 19, 67-77. ARNAIZ C, ISAC,L, Y LEBRATO, J. (2000). Determinación de la biomasa en procesos biológicos. Sevilla. GIL E. (2003), Elementos clave en la uniformidad de distribución de abonos. Escuela superior de agricultura de Barcelona. Astroc, N. C., Reyes, N. A., Buitrago, L. D., Aguilar, J. J., & Jiménez, J. A. S. (2015). Obtención y caracterización de astaxantina de la microalga Haematococcus pluvialis. UGCiencia, 21, 73-82. AVAGO Technologies. (2014). APDS-9960 Digital Proximity, Ambient Light, RGB and Gesture Sensor. https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdf Azetsu, T., y Suetake, N. (2021). Mejora de croma en el espacio de color CIELAB mediante una tabla de búsqueda. Designs , 5 (2), 32. Ballesteros Barragán, M. A. (2014). Sistema de monitoreo de variables en un biorreactor para la producción de enzimas humanas. Baudelet, P. H., Ricochon, G., Linder, M., & Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371. Bauer, A., & Minceva, M. (2021). Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresources and Bioprocessing, 8(1), 1-18. Behera, B., & Balasubramanian, P. (2021). Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresource technology, 340, 125721. Berthomieu, C., y Hienerwadel, R. (2009). Espectroscopía infrarroja por transformada de Fourier (FTIR). Photosynthesis research , 101 , 157-170. Burgess, P. (2013). Adafruit NeoPixel überguide. Adafruit. Butler, T. O., & Guimarães, B. (2021). Industrial perspective on downstream processing of Haematococcus pluvialis. In Global Perspectives on Astaxanthin (pp. 283-311). Academic Press. Camacho, J. E. K., Lancheros, A. G., Huerfano, M. J. (2017). Condiciones de cultivo estándar relacionados con la producción de Astaxantina en Haematococcus pluvialis. @ limentech, Ciencia y Tecnología Alimentaria, 14(1), 95-105. Camacho Kurmen, J. E. ., & Lancheros, A. G. (2020). Expresión de genes en la ruta biosintética para la producción de astaxantina en Haematococcus pluvialis utilizando diferentes factores de estrés. Campo, 41. Cameron, N. (2018). SD Card Module. In Arduino Applied: Comprehensive Projects for Everyday Electronics (pp. 219-236). Berkeley, CA: Apress. ChemSpider | Astaxanthin | C40H52O4. (2023). http://www.chemspider.com/Chemical-Structure.4444636.html?rid=87986d7f-639c-480d-83ab-1a833c4cd1ad&page_num=0 Cheng, X., & Shah, M. (2021). Bioextraction of astaxanthin adopting varied techniques and downstream processing mChintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., & Klaypradit, W. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants, 8(5), 128. ethodologies. In Global Perspectives on Astaxanthin (pp. 313-339). Academic Press. COLOMBIA. MINISTERIO DE SALUD. Resolución 10593 (1985). Bogotá: El Ministerio, 1985. Cong, X. Y., Miao, J. K., Zhang, H. Z., Sun, W. H., Xing, L. H., Sun, L. R., ... & Leng, K. L. (2019). Effects of drying methods on the content, structural isomers, and composition of astaxanthin in Antarctic krill. ACS omega, 4(19), 17972-17980. Congreso de la República. Ley 165 de 1994. Por la cual se aprueba el “Convenio sobre la diversidad biológica”, hecho en Río de Janeiro el 5 de junio de 1992. Diario Oficial No. 41.427, de 9 de noviembre de 1994. Congreso de la República. Ley 99 de 1993. Diario Oficial No. 41.146, de 22 de diciembre de 1993. Córdoba-Castro, NM., AceroReyes, N.L., Duque-Buitrago, L.F., Jiménez-Aguilar, L.J., Serna-Jiménez, J.A. (2015) Obtención y caracterización de astaxantina de la microalga Haematococcus pluvialis. UGCiencia 21, 73-82. Dadi, M., & Yasir, M. (2022). Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric. Colorimetry, 81. Dallas semiconductor. (2008). DS18B20 Programmable Resolution1-Wire Digital Thermometer. Maxim Integrated Products. https://www.alldatasheet.es/datasheet-pdf/view/230838/DALLAS/DS18B20.html Deepa, P., Sowndhararajan, K., & Kim, S. (2023). A Review of the Harvesting Techniques of Microalgae. Water, 15(17), 3074. Dewati, P. R., Rohman, A., & Budiman, A. (2020, April). A Preliminary Study of Extraction and Purification Processes of Astaxanthin from Haematococcus pluvialis as a Natural Antioxidant. In IOP Conference Series: Materials Science and Engineering (Vol. 778, No. 1, p. 012032). IOP Publishing. DFRobot. (2017). Ambient Light Sensor SKU: DFR0026. https://cdn.ozdisan.com/ETicaret_Dosya/727127_172431.pdf Dieter, G. E., & Schmidt, L. C. (2013). Engineering design. McGraw Hill. 5th edition. Dikshit, R., & Tallapragada, P. (2018). Comparative study of natural and artificial flavoring agents and dyes. In Natural and artificial flavoring agents and food dyes (pp. 83-111). Academic Press. Do, T. T., Tran-Thi, B. H., Ong, B. N., Le, T. L., Nguyen, T. C., Quan, Q. D., ... & Tran, H. D. (2021). Effects of red and blue light emitting diodes on biomass and astaxanthin of Haematococcus pluvialis in pilot scale angled twin-layer porous substrate photobioreactors. Vietnam Journal of Science, Technology and Engineering, 63(2), 81-88. Domínguez, A., Pereira, S., & Otero, A. (2019). Does Haematococcus pluvialis need to sleep?. Algal research, 44, 101722. Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 2014. Dutta, S., Kumar, S. J., & Banerjee, R. (2023). A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Research, 103168. EBSCO Connect. (2025). Searching with Boolean Operators https://connect.ebsco.com/s/article/Searching-with-Boolean-Operators?language=en_US#:~:text=The%20Boolean%20search%20operators%20are,contain%20both%20travel%20and%20Europe. Esteves, A. F., Almeida, C. J., Gonçalves, A. L., & Pires, J. C. (2020). Microalgae harvesting techniques. In Handbook of microalgae-based processes and products (pp. 225-281). Academic Press. Espressif. (2023). ESP32-S3 Series Datasheet (Version 1.9) [Software]. Espressif Systems. https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf FAIRCHILD SEMICONDUCTOR. (2001). MC78XX/LM78XX/MC78XXA 3 Terminal 1A Positive Voltage Regulator. https://www.alldatasheet.com/html-pdf/82833/FAIRCHILD/LM7805/405/1/LM7805.html FAO [Food and Agriculture Organization]. (2014). CAPITULO 3 - EFICIENCIA BIOLOGICA EN LA PRODUCCION ANIMAL. Food And Agriculture Organization (FAO). https://www.fao.org/4/w7452s/w7452s03.htm Fezari, M., & Al Dahoud, A. (2019). Exploring One-wire Temperature sensor “DS18B20” with Microcontrollers. Badji Mokhtar Annaba University, University of Al-Zaytoonah Faculty of IT, Jordan. Fernández Cordero, B. (2013). Producción de carotenoides por microalgas y caracterización de la ruta carotenogénica en Chlorella zofingiensis. Fernández-Lozano, Javier & Guillén, Antonio & Gutierrez-Alonso, Gabriel & Abel-Flores, José & Pérez-Turrado, Joaquín. (2015). Revealing the presence of Haematococcus pluvialis (Flotow, 1844) in Zamora province (Haematococcaceae). Boletín de la Real Sociedad Española de Historia Natural. Sección biológica. 109. 103-109. Fernando, J. S. R., Premaratne, M., Dinalankara, D. M. S. D., Perera, G. L. N. J., & Ariyadasa, T. U. (2021). Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. Journal of Environmental Chemical Engineering, 9(4), 105375. Garcia Martin, L. (2018). Producción biotecnológica de Astaxantina a partir de Haematococcus Pluvialis en biorreactor Tec-ferm de 5 litros. Geankoplis, C. J. (2003). Transport Processes and Separation Process Principles (4th ed.). Prentice Hall. Gijón, J. M. (2023). Diseño y Simulación de un Proceso de Producción de Astaxantina y Biogás a partir de microalgas. Gil, M. (22 de noviembre de 2019). Medios de cultivo: historia, función, tipos, preparación. Recuperado de: https://www.lifeder.com/medios-de-cultivo/. Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., ... & Camacho, J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia. Revista Mutis, 9(2), 7-24. Granić, A. (2017, December). Technology in use: The importance of good interface design. In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)(ICTUS) (pp. 43-49). IEEE. Gu, Y., Teo, M. Y. M., In, L. L. A., Shimizu, K., Chae, K. J., Tran, T. N. T., & Khoo, K. S. (2024). Genetic engineering of Haematococcus pluvialis microalgae for the enhancement of astaxanthin production: A review. Biocatalysis and Agricultural Biotechnology, 60, 103298. Gutierrez, B. S. H., Miranda, A., Meneses, D., Vargas, G., & Sáez, A. (2021). The Effect of Different Concentrations of Nitrogen and Phosphorous on the Production of Lipid Metabolites in Haematococcus pluvialis UTEX 25051 Gutierrez, M., & Iturralde, S. (2017). Manual de instrumentación [Electrónico]. Universidad Estatal Península de Santa Elena. https://www.academia.edu/39608720/Guti%C3%A9rrez_and_Iturralde_2017_Manual_de_Instrumentaci%C3%B3n Haematococcus lacustris (Girod-Chantrans) Rostafinski in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-09-17. Han, D., Li, Y., & Hu, Q. (2013). Astaxanthin in microalgae: Pathways, functions, and biotechnological implications. Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2017). Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Safety and Environmental Protection, 111, 128-137. Hébert, M., Hersch, R. D., & Emmel, P. (2015). Fundamentals of optics and radiometry for color reproduction. Handbook of Digital Imaging, 1-57. Hernández, A., González-Moya, M., Márquez, A., & Acevedo, L. E. (2024). Review Microalgae Drying: A Comprehensive Exploration from Conventional Air Drying to Microwave Drying Methods. Future Foods, 100420. Herrera-Andrade, M. H. (2011). Extracción de la astaxantina y su estabilidad. Revista Latinoamericana de Recursos Naturales, 7(1), 21-27. Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F. (2006). Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 2006;46:185–96. Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research, 46, 101768. Hu, J., Lu, W., Lv, M., Wang, Y., Ding, R., & Wang, L. (2019). Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content. Revista Brasileira de Farmacognosia, 29, 24-29. Huang, J. J., Xie, Q., Lin, S., Xu, W., & Cheung, P. C. K. (2025). Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Critical Reviews in Food Science and Nutrition, 1-35. International Commission on Illumination (CIE). (2004). Photometry - The CIE System of Physical Photometry (CIE 018.2:1983/E). CIE Central Bureau, Vienna. Irshad, M., Hong, M. E., Myint, A. A., Kim, J., & Sim, S. J. (2019a). Safe and complete extraction of astaxanthin from Haematococcus pluvialis by efficient mechanical disruption of cyst cell wall. International Journal of Food Engineering, 15(10), 20190128. Irshad, M., Myint, A. A., Hong, M. E., Kim, J., & Sim, S. J. (2019b). One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustainable Chemistry & Engineering, 7(16), 13898-13910. Jain, V., Patidar, Y., Jain, U., Parwal, V., Kumawat, A. K., & Sureliya, S. (2024, August). Automate Personal Voice Based Assistant Using Python. In 2024 4th Asian Conference on Innovation in Technology (ASIANCON) (pp. 1-5). IEEE. Jin, C., Zhou, Z., Zhu, Y., Liu, Q., & Zhou, X. (2024). Photosynthetic activity and astaxanthin production of Haematococcus pluvialis regulated by manipulated light quality. Aquaculture International, 1-19. Karim, M., Boikess, R. S., Schwartz, R. A., & Cohen, P. J. (2023). Dimethyl sulfoxide (DMSO): a solvent that may solve selected cutaneous clinical challenges. Archives of dermatological research, 315(6), 1465-1472. Khoo, K. S., Chew, K. W., Yew, G. Y., Manickam, S., Ooi, C. W., & Show, P. L. (2020). Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrasonics sonochemistry, 67, 105052. Kim, B., Lee, S. Y., Narasimhan, A. L., Kim, S., & Oh, Y. K. (2022). Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Bioresource Technology, 343, 126124. Krishnamurthi, M. C., Ravi, S., & Chauhan, V. S. (2023). Valorising Haematococcus Biomass for Commercial Applications. In Haematococcus: Biochemistry, Biotechnology and Biomedical Applications (pp. 273-291). Singapore: Springer Nature Singapore. Koopmann, I. K., Möller, S., Elle, C., Hindersin, S., Kramer, A., & Labes, A. (2022). Optimization of astaxanthin recovery in the downstream process of Haematococcus pluvialis. Foods, 11(9), 1352. Kumar, S., Kumar, R., Diksha, Kumari, A., & Panwar, A. (2022). Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. Journal of basic microbiology, 62(9), 1064-1082. Lafarga, T. (2013). ASPECTOS PRÁCTICOS DE LA PRODUCCIÓN DE MICROALGAS: OBJETIVOS Y NECESIDADES. Universidad de Almeira, 20011. Lee, C. C. (2023). Astaxanthin: Sources, Properties and Benefits. In Handbook of Food Bioactive Ingredients: Properties and Applications (pp. 1-41). Cham: Springer International Publishing. Lee, J. Y., Lee, J. S., & Sim, S. J. (2024). Enhanced toxicity-free astaxanthin extraction from Haematococcus pluvialis via concurrent cell disruption and demulsification. Bioresource Technology, 130974. Leiton Arcos, Y. A. (2018). Producción de Haematococcus pluvialis en un biorreactor tecferm de 5 l en medios de cultivo RM y BBM. Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis research, 106(1), 155-177. Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology advances, 29(6), 568-574. Li, L., Wang, Y., Zhou, W., Yu, Z., Luan, G., Chen, L., ... & Lu, X. (2024). Light footprint of microalgae cultivation system addressed by modified Cornet model. Bioresource Technology, 411, 131295. Li, L., Wu, Y., Acheampong, A., & Huang, Q. (2023). Red light promotes autotrophic growth of Haematococcus pluvialis with improved carbonic anhydrase activity and CO2 utilization. Aquaculture, 571, 739462. Li, T., Hu, J., & Zhu, L. (2021). Self-flocculation as an efficient method to harvest microalgae: A mini-review. Water, 13(18), 2585. Liu, J., Chen, X., Yang, X., Chen, J., & Qi, Z. (2019). Astaxanthin accumulation in Haematococcus pluvialis observed through Fourier-transform infrared microspectroscopy imaging. Journal of Molecular Structure, 1182, 119-122. Liu, L.; Ying, K.; Wu, K.; Tang, S.; Zhou, J.; Cai, Z. (2022a). Promoting the Growth of Haematococcus lacustris under High Light Intensity through the Combination of Light/Dark Cycle and Light Color. J. Mar. Sci. Eng., 10, 839. https://doi.org/ 10.3390/jmse10070839 Liu, X. J., Wu, Y. H., Zhao, L. C., Xiao, S. Y., Zhou, A. M., & Liu, X. (2011). Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry. Journal of AOAC International, 94(6), 1752-1757. Liu, Y., Liu, X., Cui, Y., & Yuan, W. (2022b). Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry, 87, 106054. Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538. Llamas, L. (2023, 18 agosto). Pinout y detalles del hardware del ESP32-S3. Luis Llamas. https://www.luisllamas.es/en/esp32-s3-hardware-details-pinout/ Luo, F., Wang, S., Zhang, X., Liu, Z., Zhu, R., & Xue, W. (2024). Extraction of Astaxanthin from Haematococcus pluvialis and Preparation of Astaxanthin Liposomes. Molecules, 29(14), 3320. Macías Villamizar, V. E. : B. P. R., Rodríguez Ochoa, J., & Silva Román, H. (2021). Metabolitos secundarios, actividad biológica y etnobotánica de plantas de Santa Marta. Editorial Unimagdalena. Marinho, Y. F., Malafaia, C. B., De Araújo, K. S., Da Silva, T. D., Dos Santos, A. P. F., De Moraes, L. B., & Gálvez, A. O. (2021). Evaluation of the influence of different culture media on growth, life cycle, biochemical composition, and astaxanthin production in Haematococcus pluvialis. Aquaculture International, 29, 757-778. Marinho, Y. F., Oliveira, C. Y. B., Malafaia, C. B., Cahú, T. B., Oliveira, A. P. S., Napoleão, T. H., ... & Gálvez, A. O. (2022). A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. Science of The Total Environment, 841, 156795. Marrakchi, D. (2024, 14 septiembre). Las 5 reglas de diseño de PCB más importantes que debes conocer. Altium. https://resources.altium.com/es/p/pcb-layout-guidelines Martín, J. F., Casqueiro, J., & Liras, P. (2005). Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Current opinion in microbiology, 8(3), 282-293. Martínez-Delgado, A. A., Khandual, S., & Villanueva–Rodríguez, S. J. (2017). Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry, 225, 23-30. Maxim Integrated. (2018). DS18B20: Programmable resolution 1-Wire digital thermometer (Rev. 6). https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf Matter, I. A., Bui, V. K. H., Jung, M., Seo, J. Y., Kim, Y. E., Lee, Y. C., & Oh, Y. K. (2019). Flocculation harvesting techniques for microalgae: a review. Applied Sciences, 9(15), 3069. Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2004). Estabilidad de los pigmentos carotenoides en los alimentos. Archivos latinoamericanos de nutrición, 54(2), 209-215. Merck. All-Cis-Astaxanthin Analytical Standard 472-61-7. (s. f.). https://www.sigmaaldrich.com/CO/es/product/sial/41659 Mills, E. L., Harmon, C., Jedrychowski, M. P., Xiao, H., Garrity, R., Tran, N. V., ... & Chouchani, E. T. (2021). UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature metabolism, 3(5), 604-617. Min, K. H., Kim, D. H., Ki, M. R., & Pack, S. P. (2022). Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresource Technology, 344, 126404. Mina, A. R., Tecson, B., Virtucio, D. V., Felix, C., Ubando, A., Madrazo, C., ... & Garibay, S. (2017, December). Optimization of microwave drying of microalgae Nannochloropsis sp. for biofuel production. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-5). IEEE. Ministerio de Salud. Decreto 1594 de 1984. Diario Oficial No. 38.110, de 29 de julio de 1984. Miranda, A. M., Ossa, E. A., Vargas, G. J., & Sáez, A. A. (2019). Efecto de las Bajas Concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32. Molino, A., Rimauro, J., Casella, P., Cerbone, A., Larocca, V., Chianese, S., ... & Musmarra, D. (2018). Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of biotechnology, 283, 51-61. Muylaert, K., Bastiaens, L., Vandamme, D., & Gouveia, L. (2017). Harvesting of microalgae: Overview of process options and their strengths and drawbacks. Microalgae-based biofuels and bioproducts, 113-132. Myint, A. A., Hariyanto, P., Irshad, M., Ruqian, C., Wulandari, S., Hong, M. E., ... & Kim, J. (2022). Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. Bioresource technology, 346, 126616. NASA. (1999). OPTICS: light, color and their uses. En NASA - National Aeronautics And Space Administration (EG-2000-10-64-MSFC). NASA - National aeronautics and space administration. Nemani, N., Dehnavi, S. M., & Pazuki, G. (2024). Extraction and separation of astaxanthin with the help of pre-treatment of Haematococcus pluvialis microalgae biomass using aqueous two-phase systems based on deep eutectic solvents. Scientific Reports, 14(1), 5420. Núñez Igartua, Á. (2025). Encastre, envolvente y entrega: armonía natural en las torres de Alberto Kalach (Master's thesis, Universitat Politècnica de Catalunya). Nurdianti, L., Sari, D. A., & Yulianti, R. (2018). Formulation and evaluation of astaxanthin lotions as natural antioxidants for the skin. Oliver, N. A., & Cervera, J. G. (2018). Caracterización del crecimiento de Haematococcus pluvialis con vistas a la producción de inóculos para cultivos en fotobiorreactores para la obtención de astaxantina. ON Semiconductor. (2012). TIP31A, TIP31B, TIP31C — NPN Power Transistors. Recuperado de: https://www.onsemi.com/pdf/datasheet/tip31c-d.pdf Oslan, S.N.H.; Oslan, S.N.; Mohamad, R.; Tan, J.S.; Yusoff, A.H.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. Fermentation (2022), 8, 179. https://doi.org/10.3390/ fermentation8040179 Oslan, S.N.H.; Tan, J.S.; Oslan, S.N.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules (2021), 26, 6470. https://doi.org/10.3390/ molecules26216470 Pan-utai, W., Boonpok, S., & Pornpukdeewattana, S. (2021). Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 33, 101979. Patel, A. K., Tambat, V. S., Chen, C. W., Chauhan, A. S., Kumar, P., Vadrale, A. P., ... & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 128030. Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027 Peterson, Z. (2024, 1 julio). Tabla de anchos de pistas de una PCB en función de la corriente para diseños de alta potencia. Altium. https://resources.altium.com/es/p/pcb-trace-width-vs-current-table-high-voltage-design Phaniendra Alugoju, V. K. D. Krishna Swamy, Naga Venkata Anusha Anthikapalli & Tewin Tencomnao (16 Jun 2022): Health benefits of astaxanthin against agerelated diseases of multiple organs: A comprehensive review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2022.2084600 Pistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A., Reklaitis, G. V., ... & Gani, R. (2021). Process systems engineering–the generation next?. Computers & Chemical Engineering, 147, 107252. Porto, B., Silva, T. F., Goncalves, A. L., Esteves, A. F., de Souza, S. M. G. U., de Souza, A. A., ... & Vilar, V. J. (2022). Tubular photobioreactors illuminated with LEDs to boost microalgal biomass production. Chemical Engineering Journal, 435, 134747. Praveenkumar, R., Lee, J., Vijayan, D., Lee, S. Y., Lee, K., Sim, S. J., ... & Oh, Y. K. (2020). Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences, 10(2), 513. Putri, D. S., & Alaa, S. (2019). The growth comparison of Haematococcus pluvialis in two different medium. Biota: Biologi dan Pendidikan Biologi, 12(2), 90-97. Putri, D. S., Sari, D. A., & Zuhdia, L. D. (2020). Flocculants optimization in harvesting freshwater microalgae Haematococcus pluvialis. J. Kim. Ris. Sci. J. Chem. Res, 5, 49-54. Raposo, M.F.J., Morais, A.M.M.B. & Morais, R.M.S.C. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World J Microbiol Biotechnol 28, 1253–1257 (2012). https://doi.org/10.1007/s11274-011-0929-6 Rodríguez-Sifuentes, L., Marszalek, J. E., Hernández-Carbajal, G., & Chuck-Hernández, C. (2021). Importance of downstream processing of natural astaxanthin for pharmaceutical application. Frontiers in Chemical Engineering, 2, 601483. ROHM. (2012). Digital 16bit Serial Output Type Ambient Light Sensor IC. https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf?srsltid=AfmBOopekXGEn545BST9VRkNDZ1X_UueOrfYF5uRsEKFbUqH-uxgx5bp Saini, D. K., Chakdar, H., Pabbi, S., & Shukla, P. (2020). Enhancing production of microalgal biopigments through metabolic and genetic engineering. Critical Reviews in Food Science and Nutrition, 60(3), 391-405. Salazar Rodriguez, A. A. (2016). Estandarización de técnicas de análisis para el seguimiento del crecimiento de la microalga Chaetoceros muelleri. Salgueiro, J. L., Pérez, L., Sanchez, Á., Cancela, Á., & Míguez, C. (2022). Microalgal biomass quantification from the non-invasive technique of image processing through red–green–blue (RGB) analysis. Journal of Applied Phycology, 34(2), 871-881. Samhat, K., Kazbar, A., Takache, H., Ismail, A., & Pruvost, J. (2023). Influence of light absorption rate on the astaxanthin production by the microalga Haematococcus pluvialis during nitrogen starvation. Bioresources and Bioprocessing, 10(1), 78. Santos, B., da Conceição, D.P., Corrêa, D.O. et al. Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. J Appl Phycol 34, 729–743 (2022). https://doi.org/10.1007/s10811-022-02696-0 Santos Montes, A. M., González Arechavala, Y., & Martín Sastre, C. (2014). Uso y aplicaciones potenciales de las microalgas. Scherz, P. (2006). Practical electronics for inventors. McGraw-Hill, Inc. Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in plant science, 7, 531. Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of environmental management, 217, 499-508. Silva, D. L. B., de Moraes, L. B. S., Oliveira, C. Y. B., da Silva Campos, C. V. F., de Souza Bezerra, R., & Gálvez, A. O. (2022). Influence of culture medium on growth and protein production by Haematococcus pluvialis. Acta Scientiarum. Technology, 44, e59590-e59590. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundamentos de química analítica (9.ª ed.). Cengage Learning. Stange, C. (Ed.). (2016). Carotenoids in nature: biosynthesis, regulation and function (Vol. 79). Springer. Soni, M., Widhya, A., Tina, R., Jutti, L. (2021). Factors Affecting the Production of Astaxanthin in the Microalgae Haematococcus pluvialis: A Review International Journal of Current Research and Review. 14(11), June, 37-46 Su, W., Xu, W., & Su, W. (2023). One-pot, water-based disruption of cell walls and astaxanthin extraction from Haematococcus pluvialis by mechanochemistry. ACS Sustainable Chemistry & Engineering, 11(13), 5023-5031. Sudhakar, M. P., Vidya, D., Dharani, G., & Arunkumar, K. (2023). Bottlenecks in the Cultivation Processes of Haematococcus pluvialis. In Haematococcus: Biochemistry, Biotechnology and Biomedical Applications (pp. 69-77). Singapore: Springer Nature Singapore. Tambat, V. S., Singhania, R. R., Chen, C. W., Dong, C. D., Michaud, P., & Patel, A. K. (2025). Unexplored potential of brine-derived salts in microalgal bioprocess for enhanced astaxanthin yield and sustainable biorefinery. Journal of Applied Phycology, 1-14. Tan, Y., Ye, Z., Wang, M., Manzoor, M. F., Aadil, R. M., Tan, X., & Liu, Z. (2021). Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules, 26(12), 3569. Teixeira, M. S., Speranza, L. G., da Silva, I. C., Moruzzi, R. B., & Silva, G. H. R. (2022). Tannin-based coagulant for harvesting microalgae cultivated in wastewater: Efficiency, floc morphology and products characterization. Science of The Total Environment, 807, 150776. Texas Instruments. (2015). I2C bus pullup resistor calculation. https://www.ti.com/lit/an/slva689/slva689.pdf?ts=1744613553017 Texas instruments. (2017). LM35 Precision Centigrade Temperature Sensors. Texas Instruments. https://www.ti.com/lit/ds/symlink/lm35.pdf Texas instruments. (2023). TMP61 ±1% 10-kΩ Linear Thermistor With 0402 and 0603 Package Options. https://www.ti.com/lit/ds/symlink/tmp61.pdf?ts=1730050775542&ref_url=https%253A%252F%252Fwww.google.com%252 Texas Instruments. (2024). TCA9548A Low-Voltage 8-Channel I²C Switch With Reset Function (Rev. U) [Datasheet]. https://www.ti.com/lit/ds/symlink/tca9548a.pdf Tipler, P. A., & Mosca, G. (2007). Física para la ciencia y la tecnología (6.ª ed.). Editorial Reverté. Torres Ospina, T. y Camacho Kurmen, J. E. (2022). Modelos matemáticos y parámetros cinéticos relacionados con la producción de astaxantina en Haematococcus pluvialis. Mutis, 12(1). https://doi.org/10.21789/22561498.1743 TT Electronics. (2018). PT100 Sensor [Software]. TT electronics. https://www.alldatasheet.com/datasheet-pdf/view/1114159/TTELEC/DS2532.html Üçüncüoğlu, D. (2023). Food grade microalgae-based biopigments and their production technique versus synthetic colorants. Biotech Studies, 32(2), 59-64. Universidad Miguel Hernández de Elche. (2014, 19 noviembre). Preparación del BBM (Bold’s Basal Medium) [Vídeo]. YouTube. https://www.youtube.com/watch?v=aF_P7fGi8PY Ushakumari, U. N., & Ramanujan, R. (2012). Astaxanthin from shrimp shell waste. International journal of pharmaceutical chemistry research, 1(3), 1-6. Valdés, Y. N. (2021). Determinación de los parámetros adecuados para la simulación del proceso de crecimiento de la microalga: e25. Revista Estudiantil Nacional de Ingeniería y Arquitectura, 2(3). Vega, A. A., & Lemus, R. A. (2006). Modelado de la cinética de secado de la papaya chilena (Vasconcellea pubescens). Información tecnológica, 17(3), 23-31. Verma, R., Kumari, K. K., Srivastava, A., & Kumar, A. (2020). Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. Journal of Environmental Chemical Engineering, 8(5), 104149. Verma, S. K., Sasikala, R., Kishore, P., Mohan, C. O., Ganesan, P., Padmavathy, P., ... & Benjakul, S. (2024). Effects of different microwave power on the drying kinetics and physicochemical quality of brown shrimp (Metapenaeus dobsoni). Sustainable Food Technology, 2(1), 141-151. Wang, B., Pan, X., Wang, F., Liu, L., & Jia, J. (2022). Photoprotective carbon redistribution in mixotrophic Haematococcus pluvialis under high light stress. Bioresource Technology, 362, 127761. Wang, X., Ding, S., Wang, M., Ma, X., Li, H., Zhang, Y., ... & Lu, J. (2022). Effects of light source and inter-species mixed culture on the growth of microalgae and bacteria for nutrient recycling and microalgae harvesting using black odorous water as the medium. Environmental Science and Pollution Research, 29(52), 78542-78554. Wilawan, B., Chan, S. S., Ling, T. C., Show, P. L., Ng, E. P., Jonglertjunya, W., ... & Khoo, K. S. (2023). Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Molecular Biotechnology, 1-22. Wooldridge, M., & Luebbers, R.H. (2020). Heat transfer. AccessScience. Retrieved April 20, 2025, from https://doi.org/10.1036/1097-8542.311100. https://www.accessscience.com/content/article/a311100 World Wide Web Consortium. (2008). Web content accessibility guidelines (WCAG) 2.0. Yumbolon. (2020, 14 julio). Colchoneta Térmica - Yumbolon. https://yumbolon.com/portfolio/colchoneta-termica/ Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R. A., & Nizam, M. (2020, February). Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method. In Journal of Physics: Conference Series (Vol. 1462, No. 1, p. 012026). IOP Publishing. Zhang, L., Zhang, C., Xu, R., Yu, W., & Liu, J. (2022). A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis. Bioresource Technology, 344, 126275. Zhang, Y., Takahama, K., Osawa, Y., Kuwahara, D., Yamada, R., Oyama, K. I., & Honda, M. (2023). Characteristics of LED light-induced geometrical isomerization and degradation of astaxanthin and improvement of the color value and crystallinity of astaxanthin utilizing the photoisomerization. Food Research International, 174, 113553. Zhao, Y., Yue, C., Geng, S., Ning, D., Ma, T., & Yu, X. (2019). Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess and biosystems engineering, 42, 593-602. Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., & Wu, H. F. (2013). Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Marine drugs, 11(5), 1644-1655. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bioingeniería |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/561deb23-4f58-4209-99f5-235241acd399/download https://repositorio.unbosque.edu.co/bitstreams/9460d785-1f7f-4817-98bb-b8af7a9f5e04/download https://repositorio.unbosque.edu.co/bitstreams/b0f85aaa-7587-4ac9-b023-1c0ff5851f05/download https://repositorio.unbosque.edu.co/bitstreams/f2730ffe-e300-4115-84c8-267ade66c00c/download https://repositorio.unbosque.edu.co/bitstreams/bea18753-7a93-4d11-8528-ede25f0ec77a/download https://repositorio.unbosque.edu.co/bitstreams/f76bd17a-7553-4c00-b6cc-bcb293b925c2/download https://repositorio.unbosque.edu.co/bitstreams/ae6a1c75-ead4-4672-98de-706fb921e508/download https://repositorio.unbosque.edu.co/bitstreams/28eb11e7-0c07-4e87-9cac-2db2d4e74bb0/download https://repositorio.unbosque.edu.co/bitstreams/8d662d13-4a2c-40cd-bee8-440858723e4b/download |
bitstream.checksum.fl_str_mv |
d272d3ab080f0a8369bd72afd7e71e38 758754573c3540c851ddfb29e37c2587 17cc15b951e7cc6b3728a574117320f9 aa356395942dbab47d3170d2718112d4 3b6ce8e9e36c89875e8cf39962fe8920 634f416ab01690ae9a79fe4d87d9405b d97f45a51c3658d146cb98f8d1f78fe1 60a299e6086132278876473574fd7777 389b8e47ab43497cd3e927eb5db9f6e0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1836752108645253120 |
spelling |
Acuña Monsalve, YudtandulyZambrano León, María Paula2025-06-27T17:27:29Z2025-06-27T17:27:29Z2025-05https://hdl.handle.net/20.500.12495/14825instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coLa astaxantina es un carotenoide ampliamente reconocido por sus potentes propiedades antioxidantes, sintetizado por la microalga Haematococcus pluvialis bajo condiciones de estrés. En estas condiciones, las células se transforman en aplanosporas, desarrollando paredes celulares gruesas que dificultan su extracción, debido a su resistencia tanto mecánica como química. Esta complejidad se acentúa al tratarse de una molécula sensible a diversos factores, lo que convierte su obtención en un proceso desafiante. Con el fin de obtener astaxantina, se diseñó una metodología que abarca las etapas de cultivo, recuperación celular, secado, disrupción y extracción. Durante la fase de acumulación de biomasa, la microalga fue cultivada en medio BBM bajo un fotoperiodo 12:12 h (luz/oscuridad), utilizando luz monocromática roja a una intensidad de 55 µmol/m²·s. Posteriormente, para la inducción de estrés y acumulación de astaxantina, se establecieron experimentalmente las siguientes condiciones: reducción de fósforo al 25% y nitrógeno al 75%, fotoperiodo 16:8 h y luz azul a 120 µmol/m²·s. Bajo estas condiciones, se alcanzó una concentración de astaxantina de 83.48 mg/L. Este proceso fue asistido por un sistema de control lumínico y monitoreo de temperatura diseñado específicamente, el cual presentó un consumo de corriente promedio de 1.762 A. En cuanto a la recuperación celular, se evaluaron concentraciones de Derypol (coagulante comercial a base de taninos) entre 150 y 300 ppm, y sulfato de aluminio entre 300 y 1000 ppm. Donde, la mejor condición fue 500 ppm de sulfato de aluminio a un pH de 4.91, logrando un rendimiento del 97.44%. Para la etapa de secado, se compararon dos métodos: horno (40–60 °C) y microondas (350–700 W). El secado por microondas a 560 W fue el más eficiente, ya que redujo considerablemente el tiempo de proceso sin comprometer la calidad bioquímica de la biomasa. Respecto a la disrupción celular, se ensayaron tres métodos: extracción directa con DMSO, molienda y ultrasonido. La molienda y el DMSO presentaron rendimientos similares, alcanzando aproximadamente 24 mg/g de astaxantina extraída, mientras que el ultrasonido a 70 W y 40 kHz aplicando 5 ciclos de 20 min, permitió solo 2.197 mg/g, evidenciando su limitada eficacia para romper la pared celular a baja potencia. Finalmente, se evaluó el efecto de diferentes solventes de extracción (etanol, acetato de etilo y su mezcla 1:1 v/v). La combinación etanol:acetato de etilo fue la que mejor preservó la estabilidad química de la astaxantina, demostrando una fuerte capacidad antioxidante (CI50 = 42.55 μg/mL) determinada mediante el ensayo DPPH. Finalmente, empleando la metodología definida se alcanzó un rendimiento de extracción de astaxantina de 26,485 mg/g, con un rendimiento total de 79.46%.BioingenieroPregradoAstaxanthin is a carotenoid widely recognized for its potent antioxidant properties, produced by the microalga Haematococcus pluvialis under stress conditions. Under these conditions, cells transform into aplanospores, forming thick cell walls that make extraction difficult due to their mechanical and chemical resistance. This complexity is accentuated by the sensitivity of the molecule to many factors, making its extraction a challenging process. To obtain astaxanthin, a methodology was designed that includes the stages of culture, cell recovery, drying, disruption, and extraction. During the biomass accumulation phase, the microalgae were grown in BBM medium under a 12:12 h photoperiod (light/dark), using red monochromatic light, at an intensity of 55 µmol/m² s. Then, to induce stress and accumulate astaxanthin, the following conditions were experimentally defined: phosphorus reduction to 25% and nitrogen to 75%, a 16:8 h photoperiod, and blue light at 120 µmol/m² s. Under these conditions, an astaxanthin concentration of 83.48 mg/L was achieved. This process was assisted by a specifically designed lighting control and temperature monitoring system, which presented an average current consumption of 1.762 A. As to cell recovery, concentrations of Derypol (a commercial tannin-based coagulant) between 150 and 300 ppm and aluminum sulfate between 300 and 1000 ppm were evaluated. The best condition was 500 ppm of aluminum sulfate at a pH of 4.91, achieving a yield of 97.44%. For the drying stage, two methods were compared: oven (40–60°C) and microwave (350–700 W). Microwave drying at 560 W was the most efficient, as it significantly reduced the processing time without compromising the biochemical quality of the biomass. Regarding cell disruption, three methods were tested: direct extraction with DMSO, grinding, and ultrasound. Grinding and DMSO showed similar yields, reaching approximately 24 mg/g of extracted astaxanthin, whereas ultrasound at 70 W and 40 kHz applying 5 cycles of 20 min, allowed only 2,197 mg/g, evidencing its limited efficacy in disrupting the cell wall at low power. Finally, the effect of different extraction solvents (ethanol, ethyl acetate and their 1:1 v/v mixture) was evaluated. The ethanol:ethyl acetate combination was the one that best preserved the chemical stability of astaxanthin, demonstrating a strong antioxidant capacity (IC50 = 42.55 μg/mL) determined by the DPPH assay. Finally, using the defined methodology, an astaxanthin extraction yield of 26,485 mg/g was achieved, with a total yield of 79.46%.application/pdfBiosíntesisXantofilaBiopigmentoAlgalExtracción610.28BiosynthesisXanthophyllBiopigmentAlgalExtractionDesarrollo de una metodología para la obtención de astaxantina a partir de cultivos líquidos de la microalga Haematococcus lacustrisDevelopment of a methodology for obtaining astaxanthin from liquid cultures of the microalga Haematococcus lacustrisBioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Acedo Sanchez, J. (2013). Instrumentación y control avanzado de procesos. Ediciones Díaz y Santos, 626 páginas.Adafruit Industries. (2024). DHT11, DHT22 and AM2302 sensors. https://cdn-learn.adafruit.com/downloads/pdf/dht.pdfAgbede, O. O., Oke, E. O., Akinfenwa, S. I., Wahab, K. T., Ogundipe, S., Aworanti, O. A., ... & Babatunde, K. A. (2020). Thin layer drying of green microalgae (Chlorella sp.) paste biomass: Drying characteristics, energy requirement and mathematical modeling. Bioresource Technology Reports, 11, 100467.Ahangar, A. K., Yaqoubnejad, P., Divsalar, K., Mousavi, S., & Taghavijeloudar, M. (2023). Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. Bioresource Technology, 387, 129577.Ahirwar, A., Meignen, G., Khan, M. J., Sirotiya, V., Scarsini, M., Roux, S., ... & Vinayak, V. (2021). Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: A review. Bioresource Technology, 340, 125707.Ahmed, F., Li, Y., Fanning, K., Netzel, M., & Schenk, P. M. (2015). Effect of drying, storage temperature and air exposure on astaxanthin stability from Haematococcus pluvialis. Food Research International, 74, 231-236.Ahn, B. L., Jang, C. Y., Leigh, S. B., Yoo, S., & Jeong, H. (2014). Effect of LED lighting on the cooling and heating loads in office buildings. Applied Energy, 113, 1484-1489.An, Y., Kim, T., Byeon, H., Rayamajhi, V., Lee, J., Jung, S., & Shin, H. (2024). Improved Production of Astaxanthin from Haematococcus pluvialis Using a Hybrid Open–Closed Cultivation System. Applied Sciences, 14(3), 1104.Andonova, A., Kim, N., & Vakrilov, N. (2016). Estimation the amount of heat generated by LEDs under different operating conditions. Elektronika ir Elektrotechnika, 22(2), 49-53.Ariza, H. M., Santa, F. M., & Ramírez, D. A. G. (2015). Uso de redes neuronales para el reconocimiento de rostros en ambientes controlados. Tecnura, 19, 67-77.ARNAIZ C, ISAC,L, Y LEBRATO, J. (2000). Determinación de la biomasa en procesos biológicos. Sevilla. GIL E. (2003), Elementos clave en la uniformidad de distribución de abonos. Escuela superior de agricultura de Barcelona.Astroc, N. C., Reyes, N. A., Buitrago, L. D., Aguilar, J. J., & Jiménez, J. A. S. (2015). Obtención y caracterización de astaxantina de la microalga Haematococcus pluvialis. UGCiencia, 21, 73-82.AVAGO Technologies. (2014). APDS-9960 Digital Proximity, Ambient Light, RGB and Gesture Sensor. https://cdn.sparkfun.com/assets/learn_tutorials/3/2/1/Avago-APDS-9960-datasheet.pdfAzetsu, T., y Suetake, N. (2021). Mejora de croma en el espacio de color CIELAB mediante una tabla de búsqueda. Designs , 5 (2), 32.Ballesteros Barragán, M. A. (2014). Sistema de monitoreo de variables en un biorreactor para la producción de enzimas humanas.Baudelet, P. H., Ricochon, G., Linder, M., & Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371.Bauer, A., & Minceva, M. (2021). Techno-economic analysis of a new downstream process for the production of astaxanthin from the microalgae Haematococcus pluvialis. Bioresources and Bioprocessing, 8(1), 1-18.Behera, B., & Balasubramanian, P. (2021). Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresource technology, 340, 125721.Berthomieu, C., y Hienerwadel, R. (2009). Espectroscopía infrarroja por transformada de Fourier (FTIR). Photosynthesis research , 101 , 157-170.Burgess, P. (2013). Adafruit NeoPixel überguide. Adafruit.Butler, T. O., & Guimarães, B. (2021). Industrial perspective on downstream processing of Haematococcus pluvialis. In Global Perspectives on Astaxanthin (pp. 283-311). Academic Press.Camacho, J. E. K., Lancheros, A. G., Huerfano, M. J. (2017). Condiciones de cultivo estándar relacionados con la producción de Astaxantina en Haematococcus pluvialis. @ limentech, Ciencia y Tecnología Alimentaria, 14(1), 95-105.Camacho Kurmen, J. E. ., & Lancheros, A. G. (2020). Expresión de genes en la ruta biosintética para la producción de astaxantina en Haematococcus pluvialis utilizando diferentes factores de estrés. Campo, 41.Cameron, N. (2018). SD Card Module. In Arduino Applied: Comprehensive Projects for Everyday Electronics (pp. 219-236). Berkeley, CA: Apress.ChemSpider | Astaxanthin | C40H52O4. (2023). http://www.chemspider.com/Chemical-Structure.4444636.html?rid=87986d7f-639c-480d-83ab-1a833c4cd1ad&page_num=0Cheng, X., & Shah, M. (2021). Bioextraction of astaxanthin adopting varied techniques and downstream processing mChintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., & Klaypradit, W. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants, 8(5), 128. ethodologies. In Global Perspectives on Astaxanthin (pp. 313-339). Academic Press.COLOMBIA. MINISTERIO DE SALUD. Resolución 10593 (1985). Bogotá: El Ministerio, 1985.Cong, X. Y., Miao, J. K., Zhang, H. Z., Sun, W. H., Xing, L. H., Sun, L. R., ... & Leng, K. L. (2019). Effects of drying methods on the content, structural isomers, and composition of astaxanthin in Antarctic krill. ACS omega, 4(19), 17972-17980.Congreso de la República. Ley 165 de 1994. Por la cual se aprueba el “Convenio sobre la diversidad biológica”, hecho en Río de Janeiro el 5 de junio de 1992. Diario Oficial No. 41.427, de 9 de noviembre de 1994.Congreso de la República. Ley 99 de 1993. Diario Oficial No. 41.146, de 22 de diciembre de 1993.Córdoba-Castro, NM., AceroReyes, N.L., Duque-Buitrago, L.F., Jiménez-Aguilar, L.J., Serna-Jiménez, J.A. (2015) Obtención y caracterización de astaxantina de la microalga Haematococcus pluvialis. UGCiencia 21, 73-82.Dadi, M., & Yasir, M. (2022). Spectroscopy and Spectrophotometry: Principles and Applications for Colorimetric. Colorimetry, 81.Dallas semiconductor. (2008). DS18B20 Programmable Resolution1-Wire Digital Thermometer. Maxim Integrated Products. https://www.alldatasheet.es/datasheet-pdf/view/230838/DALLAS/DS18B20.htmlDeepa, P., Sowndhararajan, K., & Kim, S. (2023). A Review of the Harvesting Techniques of Microalgae. Water, 15(17), 3074.Dewati, P. R., Rohman, A., & Budiman, A. (2020, April). A Preliminary Study of Extraction and Purification Processes of Astaxanthin from Haematococcus pluvialis as a Natural Antioxidant. In IOP Conference Series: Materials Science and Engineering (Vol. 778, No. 1, p. 012032). IOP Publishing.DFRobot. (2017). Ambient Light Sensor SKU: DFR0026. https://cdn.ozdisan.com/ETicaret_Dosya/727127_172431.pdfDieter, G. E., & Schmidt, L. C. (2013). Engineering design. McGraw Hill. 5th edition.Dikshit, R., & Tallapragada, P. (2018). Comparative study of natural and artificial flavoring agents and dyes. In Natural and artificial flavoring agents and food dyes (pp. 83-111). Academic Press.Do, T. T., Tran-Thi, B. H., Ong, B. N., Le, T. L., Nguyen, T. C., Quan, Q. D., ... & Tran, H. D. (2021). Effects of red and blue light emitting diodes on biomass and astaxanthin of Haematococcus pluvialis in pilot scale angled twin-layer porous substrate photobioreactors. Vietnam Journal of Science, Technology and Engineering, 63(2), 81-88.Domínguez, A., Pereira, S., & Otero, A. (2019). Does Haematococcus pluvialis need to sleep?. Algal research, 44, 101722.Dong, S., Huang, Y., Zhang, R., Wang, S., & Liu, Y. (2014). Four different methods comparison for extraction of astaxanthin from green alga Haematococcus pluvialis. The Scientific World Journal, 2014.Dutta, S., Kumar, S. J., & Banerjee, R. (2023). A comprehensive review on astaxanthin sources, structure, biochemistry and applications in the cosmetic industry. Algal Research, 103168.EBSCO Connect. (2025). Searching with Boolean Operators https://connect.ebsco.com/s/article/Searching-with-Boolean-Operators?language=en_US#:~:text=The%20Boolean%20search%20operators%20are,contain%20both%20travel%20and%20Europe.Esteves, A. F., Almeida, C. J., Gonçalves, A. L., & Pires, J. C. (2020). Microalgae harvesting techniques. In Handbook of microalgae-based processes and products (pp. 225-281). Academic Press.Espressif. (2023). ESP32-S3 Series Datasheet (Version 1.9) [Software]. Espressif Systems. https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdfFAIRCHILD SEMICONDUCTOR. (2001). MC78XX/LM78XX/MC78XXA 3 Terminal 1A Positive Voltage Regulator. https://www.alldatasheet.com/html-pdf/82833/FAIRCHILD/LM7805/405/1/LM7805.htmlFAO [Food and Agriculture Organization]. (2014). CAPITULO 3 - EFICIENCIA BIOLOGICA EN LA PRODUCCION ANIMAL. Food And Agriculture Organization (FAO). https://www.fao.org/4/w7452s/w7452s03.htmFezari, M., & Al Dahoud, A. (2019). Exploring One-wire Temperature sensor “DS18B20” with Microcontrollers. Badji Mokhtar Annaba University, University of Al-Zaytoonah Faculty of IT, Jordan.Fernández Cordero, B. (2013). Producción de carotenoides por microalgas y caracterización de la ruta carotenogénica en Chlorella zofingiensis.Fernández-Lozano, Javier & Guillén, Antonio & Gutierrez-Alonso, Gabriel & Abel-Flores, José & Pérez-Turrado, Joaquín. (2015). Revealing the presence of Haematococcus pluvialis (Flotow, 1844) in Zamora province (Haematococcaceae). Boletín de la Real Sociedad Española de Historia Natural. Sección biológica. 109. 103-109.Fernando, J. S. R., Premaratne, M., Dinalankara, D. M. S. D., Perera, G. L. N. J., & Ariyadasa, T. U. (2021). Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. Journal of Environmental Chemical Engineering, 9(4), 105375.Garcia Martin, L. (2018). Producción biotecnológica de Astaxantina a partir de Haematococcus Pluvialis en biorreactor Tec-ferm de 5 litros.Geankoplis, C. J. (2003). Transport Processes and Separation Process Principles (4th ed.). Prentice Hall.Gijón, J. M. (2023). Diseño y Simulación de un Proceso de Producción de Astaxantina y Biogás a partir de microalgas.Gil, M. (22 de noviembre de 2019). Medios de cultivo: historia, función, tipos, preparación. Recuperado de: https://www.lifeder.com/medios-de-cultivo/.Gómez, L., Orozco, M. I., Quiroga, C., Díaz, J. C., Huérfano, J., Díaz, L. E., ... & Camacho, J. E. (2019). Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia. Revista Mutis, 9(2), 7-24.Granić, A. (2017, December). Technology in use: The importance of good interface design. In 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)(ICTUS) (pp. 43-49). IEEE.Gu, Y., Teo, M. Y. M., In, L. L. A., Shimizu, K., Chae, K. J., Tran, T. N. T., & Khoo, K. S. (2024). Genetic engineering of Haematococcus pluvialis microalgae for the enhancement of astaxanthin production: A review. Biocatalysis and Agricultural Biotechnology, 60, 103298.Gutierrez, B. S. H., Miranda, A., Meneses, D., Vargas, G., & Sáez, A. (2021). The Effect of Different Concentrations of Nitrogen and Phosphorous on the Production of Lipid Metabolites in Haematococcus pluvialis UTEX 25051Gutierrez, M., & Iturralde, S. (2017). Manual de instrumentación [Electrónico]. Universidad Estatal Península de Santa Elena. https://www.academia.edu/39608720/Guti%C3%A9rrez_and_Iturralde_2017_Manual_de_Instrumentaci%C3%B3nHaematococcus lacustris (Girod-Chantrans) Rostafinski in GBIF Secretariat. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2023-09-17.Han, D., Li, Y., & Hu, Q. (2013). Astaxanthin in microalgae: Pathways, functions, and biotechnological implications.Haque, F., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2017). Integrated Haematococcus pluvialis biomass production and nutrient removal using bioethanol plant waste effluent. Process Safety and Environmental Protection, 111, 128-137.Hébert, M., Hersch, R. D., & Emmel, P. (2015). Fundamentals of optics and radiometry for color reproduction. Handbook of Digital Imaging, 1-57.Hernández, A., González-Moya, M., Márquez, A., & Acevedo, L. E. (2024). Review Microalgae Drying: A Comprehensive Exploration from Conventional Air Drying to Microwave Drying Methods. Future Foods, 100420.Herrera-Andrade, M. H. (2011). Extracción de la astaxantina y su estabilidad. Revista Latinoamericana de Recursos Naturales, 7(1), 21-27.Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F. (2006). Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 2006;46:185–96.Hu, C., Cui, D., Sun, X., Shi, J., & Xu, N. (2020). Primary metabolism is associated with the astaxanthin biosynthesis in the green algae Haematococcus pluvialis under light stress. Algal Research, 46, 101768.Hu, J., Lu, W., Lv, M., Wang, Y., Ding, R., & Wang, L. (2019). Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content. Revista Brasileira de Farmacognosia, 29, 24-29.Huang, J. J., Xie, Q., Lin, S., Xu, W., & Cheung, P. C. K. (2025). Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Critical Reviews in Food Science and Nutrition, 1-35.International Commission on Illumination (CIE). (2004). Photometry - The CIE System of Physical Photometry (CIE 018.2:1983/E). CIE Central Bureau, Vienna.Irshad, M., Hong, M. E., Myint, A. A., Kim, J., & Sim, S. J. (2019a). Safe and complete extraction of astaxanthin from Haematococcus pluvialis by efficient mechanical disruption of cyst cell wall. International Journal of Food Engineering, 15(10), 20190128.Irshad, M., Myint, A. A., Hong, M. E., Kim, J., & Sim, S. J. (2019b). One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustainable Chemistry & Engineering, 7(16), 13898-13910.Jain, V., Patidar, Y., Jain, U., Parwal, V., Kumawat, A. K., & Sureliya, S. (2024, August). Automate Personal Voice Based Assistant Using Python. In 2024 4th Asian Conference on Innovation in Technology (ASIANCON) (pp. 1-5). IEEE.Jin, C., Zhou, Z., Zhu, Y., Liu, Q., & Zhou, X. (2024). Photosynthetic activity and astaxanthin production of Haematococcus pluvialis regulated by manipulated light quality. Aquaculture International, 1-19.Karim, M., Boikess, R. S., Schwartz, R. A., & Cohen, P. J. (2023). Dimethyl sulfoxide (DMSO): a solvent that may solve selected cutaneous clinical challenges. Archives of dermatological research, 315(6), 1465-1472.Khoo, K. S., Chew, K. W., Yew, G. Y., Manickam, S., Ooi, C. W., & Show, P. L. (2020). Integrated ultrasound-assisted liquid biphasic flotation for efficient extraction of astaxanthin from Haematococcus pluvialis. Ultrasonics sonochemistry, 67, 105052.Kim, B., Lee, S. Y., Narasimhan, A. L., Kim, S., & Oh, Y. K. (2022). Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Bioresource Technology, 343, 126124.Krishnamurthi, M. C., Ravi, S., & Chauhan, V. S. (2023). Valorising Haematococcus Biomass for Commercial Applications. In Haematococcus: Biochemistry, Biotechnology and Biomedical Applications (pp. 273-291). Singapore: Springer Nature Singapore.Koopmann, I. K., Möller, S., Elle, C., Hindersin, S., Kramer, A., & Labes, A. (2022). Optimization of astaxanthin recovery in the downstream process of Haematococcus pluvialis. Foods, 11(9), 1352.Kumar, S., Kumar, R., Diksha, Kumari, A., & Panwar, A. (2022). Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. Journal of basic microbiology, 62(9), 1064-1082.Lafarga, T. (2013). ASPECTOS PRÁCTICOS DE LA PRODUCCIÓN DE MICROALGAS: OBJETIVOS Y NECESIDADES. Universidad de Almeira, 20011.Lee, C. C. (2023). Astaxanthin: Sources, Properties and Benefits. In Handbook of Food Bioactive Ingredients: Properties and Applications (pp. 1-41). Cham: Springer International Publishing.Lee, J. Y., Lee, J. S., & Sim, S. J. (2024). Enhanced toxicity-free astaxanthin extraction from Haematococcus pluvialis via concurrent cell disruption and demulsification. Bioresource Technology, 130974.Leiton Arcos, Y. A. (2018). Producción de Haematococcus pluvialis en un biorreactor tecferm de 5 l en medios de cultivo RM y BBM.Lemoine, Y., & Schoefs, B. (2010). Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynthesis research, 106(1), 155-177.Li, J., Zhu, D., Niu, J., Shen, S., & Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology advances, 29(6), 568-574.Li, L., Wang, Y., Zhou, W., Yu, Z., Luan, G., Chen, L., ... & Lu, X. (2024). Light footprint of microalgae cultivation system addressed by modified Cornet model. Bioresource Technology, 411, 131295.Li, L., Wu, Y., Acheampong, A., & Huang, Q. (2023). Red light promotes autotrophic growth of Haematococcus pluvialis with improved carbonic anhydrase activity and CO2 utilization. Aquaculture, 571, 739462.Li, T., Hu, J., & Zhu, L. (2021). Self-flocculation as an efficient method to harvest microalgae: A mini-review. Water, 13(18), 2585.Liu, J., Chen, X., Yang, X., Chen, J., & Qi, Z. (2019). Astaxanthin accumulation in Haematococcus pluvialis observed through Fourier-transform infrared microspectroscopy imaging. Journal of Molecular Structure, 1182, 119-122.Liu, L.; Ying, K.; Wu, K.; Tang, S.; Zhou, J.; Cai, Z. (2022a). Promoting the Growth of Haematococcus lacustris under High Light Intensity through the Combination of Light/Dark Cycle and Light Color. J. Mar. Sci. Eng., 10, 839. https://doi.org/ 10.3390/jmse10070839Liu, X. J., Wu, Y. H., Zhao, L. C., Xiao, S. Y., Zhou, A. M., & Liu, X. (2011). Determination of astaxanthin in Haematococcus pluvialis by first-order derivative spectrophotometry. Journal of AOAC International, 94(6), 1752-1757.Liu, Y., Liu, X., Cui, Y., & Yuan, W. (2022b). Ultrasound for microalgal cell disruption and product extraction: A review. Ultrasonics Sonochemistry, 87, 106054.Liyanaarachchi, V. C., Nishshanka, G. K. S. H., Premaratne, R. G. M. M., Ariyadasa, T. U., Nimarshana, P. H. V., & Malik, A. (2020). Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 28, e00538.Llamas, L. (2023, 18 agosto). Pinout y detalles del hardware del ESP32-S3. Luis Llamas. https://www.luisllamas.es/en/esp32-s3-hardware-details-pinout/Luo, F., Wang, S., Zhang, X., Liu, Z., Zhu, R., & Xue, W. (2024). Extraction of Astaxanthin from Haematococcus pluvialis and Preparation of Astaxanthin Liposomes. Molecules, 29(14), 3320.Macías Villamizar, V. E. : B. P. R., Rodríguez Ochoa, J., & Silva Román, H. (2021). Metabolitos secundarios, actividad biológica y etnobotánica de plantas de Santa Marta. Editorial Unimagdalena.Marinho, Y. F., Malafaia, C. B., De Araújo, K. S., Da Silva, T. D., Dos Santos, A. P. F., De Moraes, L. B., & Gálvez, A. O. (2021). Evaluation of the influence of different culture media on growth, life cycle, biochemical composition, and astaxanthin production in Haematococcus pluvialis. Aquaculture International, 29, 757-778.Marinho, Y. F., Oliveira, C. Y. B., Malafaia, C. B., Cahú, T. B., Oliveira, A. P. S., Napoleão, T. H., ... & Gálvez, A. O. (2022). A circular approach for the efficient recovery of astaxanthin from Haematococcus pluvialis biomass harvested by flocculation and water reusability. Science of The Total Environment, 841, 156795.Marrakchi, D. (2024, 14 septiembre). Las 5 reglas de diseño de PCB más importantes que debes conocer. Altium. https://resources.altium.com/es/p/pcb-layout-guidelinesMartín, J. F., Casqueiro, J., & Liras, P. (2005). Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Current opinion in microbiology, 8(3), 282-293.Martínez-Delgado, A. A., Khandual, S., & Villanueva–Rodríguez, S. J. (2017). Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation. Food Chemistry, 225, 23-30.Maxim Integrated. (2018). DS18B20: Programmable resolution 1-Wire digital thermometer (Rev. 6). https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdfMatter, I. A., Bui, V. K. H., Jung, M., Seo, J. Y., Kim, Y. E., Lee, Y. C., & Oh, Y. K. (2019). Flocculation harvesting techniques for microalgae: a review. Applied Sciences, 9(15), 3069.Meléndez-Martínez, A. J., Vicario, I. M., & Heredia, F. J. (2004). Estabilidad de los pigmentos carotenoides en los alimentos. Archivos latinoamericanos de nutrición, 54(2), 209-215.Merck. All-Cis-Astaxanthin Analytical Standard 472-61-7. (s. f.). https://www.sigmaaldrich.com/CO/es/product/sial/41659Mills, E. L., Harmon, C., Jedrychowski, M. P., Xiao, H., Garrity, R., Tran, N. V., ... & Chouchani, E. T. (2021). UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature metabolism, 3(5), 604-617.Min, K. H., Kim, D. H., Ki, M. R., & Pack, S. P. (2022). Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresource Technology, 344, 126404.Mina, A. R., Tecson, B., Virtucio, D. V., Felix, C., Ubando, A., Madrazo, C., ... & Garibay, S. (2017, December). Optimization of microwave drying of microalgae Nannochloropsis sp. for biofuel production. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-5). IEEE.Ministerio de Salud. Decreto 1594 de 1984. Diario Oficial No. 38.110, de 29 de julio de 1984.Miranda, A. M., Ossa, E. A., Vargas, G. J., & Sáez, A. A. (2019). Efecto de las Bajas Concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Información tecnológica, 30(1), 23-32.Molino, A., Rimauro, J., Casella, P., Cerbone, A., Larocca, V., Chianese, S., ... & Musmarra, D. (2018). Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. Journal of biotechnology, 283, 51-61.Muylaert, K., Bastiaens, L., Vandamme, D., & Gouveia, L. (2017). Harvesting of microalgae: Overview of process options and their strengths and drawbacks. Microalgae-based biofuels and bioproducts, 113-132.Myint, A. A., Hariyanto, P., Irshad, M., Ruqian, C., Wulandari, S., Hong, M. E., ... & Kim, J. (2022). Strategy for high-yield astaxanthin recovery directly from wet Haematococcus pluvialis without pretreatment. Bioresource technology, 346, 126616.NASA. (1999). OPTICS: light, color and their uses. En NASA - National Aeronautics And Space Administration (EG-2000-10-64-MSFC). NASA - National aeronautics and space administration.Nemani, N., Dehnavi, S. M., & Pazuki, G. (2024). Extraction and separation of astaxanthin with the help of pre-treatment of Haematococcus pluvialis microalgae biomass using aqueous two-phase systems based on deep eutectic solvents. Scientific Reports, 14(1), 5420.Núñez Igartua, Á. (2025). Encastre, envolvente y entrega: armonía natural en las torres de Alberto Kalach (Master's thesis, Universitat Politècnica de Catalunya).Nurdianti, L., Sari, D. A., & Yulianti, R. (2018). Formulation and evaluation of astaxanthin lotions as natural antioxidants for the skin.Oliver, N. A., & Cervera, J. G. (2018). Caracterización del crecimiento de Haematococcus pluvialis con vistas a la producción de inóculos para cultivos en fotobiorreactores para la obtención de astaxantina.ON Semiconductor. (2012). TIP31A, TIP31B, TIP31C — NPN Power Transistors. Recuperado de: https://www.onsemi.com/pdf/datasheet/tip31c-d.pdfOslan, S.N.H.; Oslan, S.N.; Mohamad, R.; Tan, J.S.; Yusoff, A.H.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. Fermentation (2022), 8, 179. https://doi.org/10.3390/ fermentation8040179Oslan, S.N.H.; Tan, J.S.; Oslan, S.N.; Matanjun, P.; Mokhtar, R.A.M.; Shapawi, R.; Huda, N. Haematococcus pluvialis as a Potential Source of Astaxanthin with Diverse Applications in Industrial Sectors: Current Research and Future Directions. Molecules (2021), 26, 6470. https://doi.org/10.3390/ molecules26216470Pan-utai, W., Boonpok, S., & Pornpukdeewattana, S. (2021). Combination of mechanical and chemical extraction of astaxanthin from Haematococcus pluvialis and its properties of microencapsulation. Biocatalysis and Agricultural Biotechnology, 33, 101979.Patel, A. K., Tambat, V. S., Chen, C. W., Chauhan, A. S., Kumar, P., Vadrale, A. P., ... & Singhania, R. R. (2022). Recent advancements in astaxanthin production from microalgae: A review. Bioresource Technology, 128030.Pereira, S., & Otero, A. (2020). Haematococcus pluvialis bioprocess optimization: Effect of light quality, temperature and irradiance on growth, pigment content and photosynthetic response. Algal Research, 51, 102027Peterson, Z. (2024, 1 julio). Tabla de anchos de pistas de una PCB en función de la corriente para diseños de alta potencia. Altium. https://resources.altium.com/es/p/pcb-trace-width-vs-current-table-high-voltage-designPhaniendra Alugoju, V. K. D. Krishna Swamy, Naga Venkata Anusha Anthikapalli & Tewin Tencomnao (16 Jun 2022): Health benefits of astaxanthin against agerelated diseases of multiple organs: A comprehensive review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2022.2084600Pistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A., Reklaitis, G. V., ... & Gani, R. (2021). Process systems engineering–the generation next?. Computers & Chemical Engineering, 147, 107252.Porto, B., Silva, T. F., Goncalves, A. L., Esteves, A. F., de Souza, S. M. G. U., de Souza, A. A., ... & Vilar, V. J. (2022). Tubular photobioreactors illuminated with LEDs to boost microalgal biomass production. Chemical Engineering Journal, 435, 134747.Praveenkumar, R., Lee, J., Vijayan, D., Lee, S. Y., Lee, K., Sim, S. J., ... & Oh, Y. K. (2020). Morphological change and cell disruption of Haematococcus pluvialis cyst during high-pressure homogenization for astaxanthin recovery. Applied Sciences, 10(2), 513.Putri, D. S., & Alaa, S. (2019). The growth comparison of Haematococcus pluvialis in two different medium. Biota: Biologi dan Pendidikan Biologi, 12(2), 90-97.Putri, D. S., Sari, D. A., & Zuhdia, L. D. (2020). Flocculants optimization in harvesting freshwater microalgae Haematococcus pluvialis. J. Kim. Ris. Sci. J. Chem. Res, 5, 49-54.Raposo, M.F.J., Morais, A.M.M.B. & Morais, R.M.S.C. Effects of spray-drying and storage on astaxanthin content of Haematococcus pluvialis biomass. World J Microbiol Biotechnol 28, 1253–1257 (2012). https://doi.org/10.1007/s11274-011-0929-6Rodríguez-Sifuentes, L., Marszalek, J. E., Hernández-Carbajal, G., & Chuck-Hernández, C. (2021). Importance of downstream processing of natural astaxanthin for pharmaceutical application. Frontiers in Chemical Engineering, 2, 601483.ROHM. (2012). Digital 16bit Serial Output Type Ambient Light Sensor IC. https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf?srsltid=AfmBOopekXGEn545BST9VRkNDZ1X_UueOrfYF5uRsEKFbUqH-uxgx5bpSaini, D. K., Chakdar, H., Pabbi, S., & Shukla, P. (2020). Enhancing production of microalgal biopigments through metabolic and genetic engineering. Critical Reviews in Food Science and Nutrition, 60(3), 391-405.Salazar Rodriguez, A. A. (2016). Estandarización de técnicas de análisis para el seguimiento del crecimiento de la microalga Chaetoceros muelleri.Salgueiro, J. L., Pérez, L., Sanchez, Á., Cancela, Á., & Míguez, C. (2022). Microalgal biomass quantification from the non-invasive technique of image processing through red–green–blue (RGB) analysis. Journal of Applied Phycology, 34(2), 871-881.Samhat, K., Kazbar, A., Takache, H., Ismail, A., & Pruvost, J. (2023). Influence of light absorption rate on the astaxanthin production by the microalga Haematococcus pluvialis during nitrogen starvation. Bioresources and Bioprocessing, 10(1), 78.Santos, B., da Conceição, D.P., Corrêa, D.O. et al. Changes in gene expression and biochemical composition of Haematococcus pluvialis grown under different light colors. J Appl Phycol 34, 729–743 (2022). https://doi.org/10.1007/s10811-022-02696-0Santos Montes, A. M., González Arechavala, Y., & Martín Sastre, C. (2014). Uso y aplicaciones potenciales de las microalgas.Scherz, P. (2006). Practical electronics for inventors. McGraw-Hill, Inc.Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Frontiers in plant science, 7, 531.Singh, G., & Patidar, S. K. (2018). Microalgae harvesting techniques: A review. Journal of environmental management, 217, 499-508.Silva, D. L. B., de Moraes, L. B. S., Oliveira, C. Y. B., da Silva Campos, C. V. F., de Souza Bezerra, R., & Gálvez, A. O. (2022). Influence of culture medium on growth and protein production by Haematococcus pluvialis. Acta Scientiarum. Technology, 44, e59590-e59590.Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2014). Fundamentos de química analítica (9.ª ed.). Cengage Learning.Stange, C. (Ed.). (2016). Carotenoids in nature: biosynthesis, regulation and function (Vol. 79). Springer.Soni, M., Widhya, A., Tina, R., Jutti, L. (2021). Factors Affecting the Production of Astaxanthin in the Microalgae Haematococcus pluvialis: A Review International Journal of Current Research and Review. 14(11), June, 37-46Su, W., Xu, W., & Su, W. (2023). One-pot, water-based disruption of cell walls and astaxanthin extraction from Haematococcus pluvialis by mechanochemistry. ACS Sustainable Chemistry & Engineering, 11(13), 5023-5031.Sudhakar, M. P., Vidya, D., Dharani, G., & Arunkumar, K. (2023). Bottlenecks in the Cultivation Processes of Haematococcus pluvialis. In Haematococcus: Biochemistry, Biotechnology and Biomedical Applications (pp. 69-77). Singapore: Springer Nature Singapore.Tambat, V. S., Singhania, R. R., Chen, C. W., Dong, C. D., Michaud, P., & Patel, A. K. (2025). Unexplored potential of brine-derived salts in microalgal bioprocess for enhanced astaxanthin yield and sustainable biorefinery. Journal of Applied Phycology, 1-14.Tan, Y., Ye, Z., Wang, M., Manzoor, M. F., Aadil, R. M., Tan, X., & Liu, Z. (2021). Comparison of different methods for extracting the astaxanthin from Haematococcus pluvialis: Chemical composition and biological activity. Molecules, 26(12), 3569.Teixeira, M. S., Speranza, L. G., da Silva, I. C., Moruzzi, R. B., & Silva, G. H. R. (2022). Tannin-based coagulant for harvesting microalgae cultivated in wastewater: Efficiency, floc morphology and products characterization. Science of The Total Environment, 807, 150776.Texas Instruments. (2015). I2C bus pullup resistor calculation. https://www.ti.com/lit/an/slva689/slva689.pdf?ts=1744613553017Texas instruments. (2017). LM35 Precision Centigrade Temperature Sensors. Texas Instruments. https://www.ti.com/lit/ds/symlink/lm35.pdfTexas instruments. (2023). TMP61 ±1% 10-kΩ Linear Thermistor With 0402 and 0603 Package Options. https://www.ti.com/lit/ds/symlink/tmp61.pdf?ts=1730050775542&ref_url=https%253A%252F%252Fwww.google.com%252Texas Instruments. (2024). TCA9548A Low-Voltage 8-Channel I²C Switch With Reset Function (Rev. U) [Datasheet]. https://www.ti.com/lit/ds/symlink/tca9548a.pdfTipler, P. A., & Mosca, G. (2007). Física para la ciencia y la tecnología (6.ª ed.). Editorial Reverté.Torres Ospina, T. y Camacho Kurmen, J. E. (2022). Modelos matemáticos y parámetros cinéticos relacionados con la producción de astaxantina en Haematococcus pluvialis. Mutis, 12(1). https://doi.org/10.21789/22561498.1743TT Electronics. (2018). PT100 Sensor [Software]. TT electronics. https://www.alldatasheet.com/datasheet-pdf/view/1114159/TTELEC/DS2532.htmlÜçüncüoğlu, D. (2023). Food grade microalgae-based biopigments and their production technique versus synthetic colorants. Biotech Studies, 32(2), 59-64.Universidad Miguel Hernández de Elche. (2014, 19 noviembre). Preparación del BBM (Bold’s Basal Medium) [Vídeo]. YouTube. https://www.youtube.com/watch?v=aF_P7fGi8PYUshakumari, U. N., & Ramanujan, R. (2012). Astaxanthin from shrimp shell waste. International journal of pharmaceutical chemistry research, 1(3), 1-6.Valdés, Y. N. (2021). Determinación de los parámetros adecuados para la simulación del proceso de crecimiento de la microalga: e25. Revista Estudiantil Nacional de Ingeniería y Arquitectura, 2(3).Vega, A. A., & Lemus, R. A. (2006). Modelado de la cinética de secado de la papaya chilena (Vasconcellea pubescens). Información tecnológica, 17(3), 23-31.Verma, R., Kumari, K. K., Srivastava, A., & Kumar, A. (2020). Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. Journal of Environmental Chemical Engineering, 8(5), 104149.Verma, S. K., Sasikala, R., Kishore, P., Mohan, C. O., Ganesan, P., Padmavathy, P., ... & Benjakul, S. (2024). Effects of different microwave power on the drying kinetics and physicochemical quality of brown shrimp (Metapenaeus dobsoni). Sustainable Food Technology, 2(1), 141-151.Wang, B., Pan, X., Wang, F., Liu, L., & Jia, J. (2022). Photoprotective carbon redistribution in mixotrophic Haematococcus pluvialis under high light stress. Bioresource Technology, 362, 127761.Wang, X., Ding, S., Wang, M., Ma, X., Li, H., Zhang, Y., ... & Lu, J. (2022). Effects of light source and inter-species mixed culture on the growth of microalgae and bacteria for nutrient recycling and microalgae harvesting using black odorous water as the medium. Environmental Science and Pollution Research, 29(52), 78542-78554.Wilawan, B., Chan, S. S., Ling, T. C., Show, P. L., Ng, E. P., Jonglertjunya, W., ... & Khoo, K. S. (2023). Advancement of Carotenogenesis of Astaxanthin from Haematococcus pluvialis: Recent Insight and Way Forward. Molecular Biotechnology, 1-22.Wooldridge, M., & Luebbers, R.H. (2020). Heat transfer. AccessScience. Retrieved April 20, 2025, from https://doi.org/10.1036/1097-8542.311100. https://www.accessscience.com/content/article/a311100World Wide Web Consortium. (2008). Web content accessibility guidelines (WCAG) 2.0.Yumbolon. (2020, 14 julio). Colchoneta Térmica - Yumbolon. https://yumbolon.com/portfolio/colchoneta-termica/Yuniarti, R., Nadia, S., Alamanda, A., Zubir, M., Syahputra, R. A., & Nizam, M. (2020, February). Characterization, phytochemical screenings and antioxidant activity test of kratom leaf ethanol extract (Mitragyna speciosa Korth) using DPPH method. In Journal of Physics: Conference Series (Vol. 1462, No. 1, p. 012026). IOP Publishing.Zhang, L., Zhang, C., Xu, R., Yu, W., & Liu, J. (2022). A strategy for promoting carbon flux into fatty acid and astaxanthin biosynthesis by inhibiting the alternative oxidase respiratory pathway in Haematococcus pluvialis. Bioresource Technology, 344, 126275.Zhang, Y., Takahama, K., Osawa, Y., Kuwahara, D., Yamada, R., Oyama, K. I., & Honda, M. (2023). Characteristics of LED light-induced geometrical isomerization and degradation of astaxanthin and improvement of the color value and crystallinity of astaxanthin utilizing the photoisomerization. Food Research International, 174, 113553.Zhao, Y., Yue, C., Geng, S., Ning, D., Ma, T., & Yu, X. (2019). Role of media composition in biomass and astaxanthin production of Haematococcus pluvialis under two-stage cultivation. Bioprocess and biosystems engineering, 42, 593-602.Zou, T. B., Jia, Q., Li, H. W., Wang, C. X., & Wu, H. F. (2013). Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Marine drugs, 11(5), 1644-1655.Acceso cerradohttp://purl.org/coar/access_right/c_14cb http://purl.org/coar/access_right/c_14cbspaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf14765054https://repositorio.unbosque.edu.co/bitstreams/561deb23-4f58-4209-99f5-235241acd399/downloadd272d3ab080f0a8369bd72afd7e71e38MD51Anexos.pdfAnexos.pdfapplication/pdf820836https://repositorio.unbosque.edu.co/bitstreams/9460d785-1f7f-4817-98bb-b8af7a9f5e04/download758754573c3540c851ddfb29e37c2587MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/b0f85aaa-7587-4ac9-b023-1c0ff5851f05/download17cc15b951e7cc6b3728a574117320f9MD53Carta de autorizacion.pdfapplication/pdf202773https://repositorio.unbosque.edu.co/bitstreams/f2730ffe-e300-4115-84c8-267ade66c00c/downloadaa356395942dbab47d3170d2718112d4MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/bea18753-7a93-4d11-8528-ede25f0ec77a/download3b6ce8e9e36c89875e8cf39962fe8920MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101833https://repositorio.unbosque.edu.co/bitstreams/f76bd17a-7553-4c00-b6cc-bcb293b925c2/download634f416ab01690ae9a79fe4d87d9405bMD56Anexos.pdf.txtAnexos.pdf.txtExtracted texttext/plain15075https://repositorio.unbosque.edu.co/bitstreams/ae6a1c75-ead4-4672-98de-706fb921e508/downloadd97f45a51c3658d146cb98f8d1f78fe1MD58THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg2520https://repositorio.unbosque.edu.co/bitstreams/28eb11e7-0c07-4e87-9cac-2db2d4e74bb0/download60a299e6086132278876473574fd7777MD57Anexos.pdf.jpgAnexos.pdf.jpgGenerated Thumbnailimage/jpeg5820https://repositorio.unbosque.edu.co/bitstreams/8d662d13-4a2c-40cd-bee8-440858723e4b/download389b8e47ab43497cd3e927eb5db9f6e0MD5920.500.12495/14825oai:repositorio.unbosque.edu.co:20.500.12495/148252025-06-28 05:04:11.597restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |