Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
Background: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI...
- Autores:
-
Amorim, Robson
Oliveira, Louise
Malbouisson, Luiz Marcelo
Nagumo, Marcia
Simoes, Marcela
Bor-Seng-Shu, Edson
Beer-Furlan, André
Ferreira de Andrade, Almir
Rubiano, Andrés M.
Teixeira, Manoel Jacobsen
Kolias, Angelos
Paiva, Vera
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/2014
- Palabra clave:
- Tomografía computarizada espiral
Escala de coma de glasgow
Pruebas diagnósticas de rutina
LMICs
Machine learning
Mortality
- Rights
- License
- Attribution 4.0 International
id |
UNBOSQUE2_6b3e7992821998d20c394e72ea90a3c3 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/2014 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
title |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
spellingShingle |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population Tomografía computarizada espiral Escala de coma de glasgow Pruebas diagnósticas de rutina LMICs Machine learning Mortality |
title_short |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
title_full |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
title_fullStr |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
title_full_unstemmed |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
title_sort |
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population |
dc.creator.fl_str_mv |
Amorim, Robson Oliveira, Louise Malbouisson, Luiz Marcelo Nagumo, Marcia Simoes, Marcela Bor-Seng-Shu, Edson Beer-Furlan, André Ferreira de Andrade, Almir Rubiano, Andrés M. Teixeira, Manoel Jacobsen Kolias, Angelos Paiva, Vera |
dc.contributor.author.none.fl_str_mv |
Amorim, Robson Oliveira, Louise Malbouisson, Luiz Marcelo Nagumo, Marcia Simoes, Marcela Bor-Seng-Shu, Edson Beer-Furlan, André Ferreira de Andrade, Almir Rubiano, Andrés M. Teixeira, Manoel Jacobsen Kolias, Angelos Paiva, Vera |
dc.contributor.orcid.none.fl_str_mv |
Rubiano, Andrés M. [0000-0001-8931-3254] |
dc.subject.decs.spa.fl_str_mv |
Tomografía computarizada espiral Escala de coma de glasgow Pruebas diagnósticas de rutina |
topic |
Tomografía computarizada espiral Escala de coma de glasgow Pruebas diagnósticas de rutina LMICs Machine learning Mortality |
dc.subject.keywords.spa.fl_str_mv |
LMICs Machine learning Mortality |
description |
Background: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI outcomes from local data in LMICs. Our study aim is to design and compare a series of predictive models for mortality on a new cohort in TBI patients in Brazil using Machine Learning. Methods: A prospective registry was set in São Paulo, Brazil, enrolling all patients with a diagnosis of TBI that require admission to the intensive care unit. We evaluated the following predictors: gender, age, pupil reactivity at admission, Glasgow Coma Scale (GCS), presence of hypoxia and hypotension, computed tomography findings, trauma severity score, and laboratory results. Results: Overall mortality at 14 days was 22.8%. Models had a high prediction performance, with the best prediction for overall mortality achieved through Naive Bayes (area under the curve = 0.906). The most significant predictors were the GCS at admission and prehospital GCS, age, and pupil reaction. When predicting the length of stay at the intensive care unit, the Conditional Inference Tree model had the best performance (root mean square error = 1.011), with the most important variable across all models being the GCS at scene. Conclusions: Models for early mortality and hospital length of stay using Machine Learning can achieve high performance when based on registry data even in LMICs. These models have the potential to inform treatment decisions and counsel family members. Level of evidence: This observational study provides a level IV evidence on prognosis after TBI. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-07T15:42:42Z |
dc.date.available.none.fl_str_mv |
2020-03-07T15:42:42Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.local.spa.fl_str_mv |
artículo |
dc.identifier.issn.none.fl_str_mv |
1664-2295 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/2014 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3389/fneur.2019.01366 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
identifier_str_mv |
1664-2295 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/2014 https://doi.org/10.3389/fneur.2019.01366 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Frontiers in neurology, 1664-2295, Vol. 10, 2020 |
dc.relation.uri.none.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fneur.2019.01366/full |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf437 |
dc.rights.creativecommons.none.fl_str_mv |
2020 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf437 2020 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Frontiers Media S.A. |
dc.publisher.journal.spa.fl_str_mv |
Frontiers in neurology |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/590b0c2a-9aea-4b65-bf60-cfaf9b62c551/download https://repositorio.unbosque.edu.co/bitstreams/3007e559-a7c5-4397-8354-46b6c05dfe15/download https://repositorio.unbosque.edu.co/bitstreams/5134b72b-d04c-4807-ab3a-4a778259ced2/download https://repositorio.unbosque.edu.co/bitstreams/227bff63-c4b8-4776-8042-c71426f70935/download https://repositorio.unbosque.edu.co/bitstreams/9d617b12-178c-4db8-9f34-d660f736c3c7/download |
bitstream.checksum.fl_str_mv |
e1a52b1963068fdfce219daf4fc9fc71 0175ea4a2d4caec4bbcc37e300941108 8a4605be74aa9ea9d79846c1fba20a33 b8b056c0c0990f721d937dbccd09615d 47c437c4fab25b578e372cf8a2c1f682 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100800863993856 |
spelling |
Amorim, RobsonOliveira, LouiseMalbouisson, Luiz MarceloNagumo, MarciaSimoes, MarcelaBor-Seng-Shu, EdsonBeer-Furlan, AndréFerreira de Andrade, AlmirRubiano, Andrés M.Teixeira, Manoel JacobsenKolias, AngelosPaiva, VeraRubiano, Andrés M. [0000-0001-8931-3254]2020-03-07T15:42:42Z2020-03-07T15:42:42Z20201664-2295http://hdl.handle.net/20.500.12495/2014https://doi.org/10.3389/fneur.2019.01366instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengFrontiers Media S.A.Frontiers in neurologyFrontiers in neurology, 1664-2295, Vol. 10, 2020https://www.frontiersin.org/articles/10.3389/fneur.2019.01366/fullAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf4372020http://purl.org/coar/access_right/c_abf2Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Populationarticleartículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Tomografía computarizada espiralEscala de coma de glasgowPruebas diagnósticas de rutinaLMICsMachine learningMortalityBackground: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI outcomes from local data in LMICs. Our study aim is to design and compare a series of predictive models for mortality on a new cohort in TBI patients in Brazil using Machine Learning. Methods: A prospective registry was set in São Paulo, Brazil, enrolling all patients with a diagnosis of TBI that require admission to the intensive care unit. We evaluated the following predictors: gender, age, pupil reactivity at admission, Glasgow Coma Scale (GCS), presence of hypoxia and hypotension, computed tomography findings, trauma severity score, and laboratory results. Results: Overall mortality at 14 days was 22.8%. Models had a high prediction performance, with the best prediction for overall mortality achieved through Naive Bayes (area under the curve = 0.906). The most significant predictors were the GCS at admission and prehospital GCS, age, and pupil reaction. When predicting the length of stay at the intensive care unit, the Conditional Inference Tree model had the best performance (root mean square error = 1.011), with the most important variable across all models being the GCS at scene. Conclusions: Models for early mortality and hospital length of stay using Machine Learning can achieve high performance when based on registry data even in LMICs. These models have the potential to inform treatment decisions and counsel family members. Level of evidence: This observational study provides a level IV evidence on prognosis after TBI.ORIGINALAmorim, R.L._2020.pdfAmorim, R.L._2020.pdfapplication/pdf1208596https://repositorio.unbosque.edu.co/bitstreams/590b0c2a-9aea-4b65-bf60-cfaf9b62c551/downloade1a52b1963068fdfce219daf4fc9fc71MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/3007e559-a7c5-4397-8354-46b6c05dfe15/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/5134b72b-d04c-4807-ab3a-4a778259ced2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAmorim, R.L._2020.pdf.jpgAmorim, R.L._2020.pdf.jpgIM Thumbnailimage/jpeg12541https://repositorio.unbosque.edu.co/bitstreams/227bff63-c4b8-4776-8042-c71426f70935/downloadb8b056c0c0990f721d937dbccd09615dMD54TEXTAmorim, R.L._2020.pdf.txtAmorim, R.L._2020.pdf.txtExtracted texttext/plain42075https://repositorio.unbosque.edu.co/bitstreams/9d617b12-178c-4db8-9f34-d660f736c3c7/download47c437c4fab25b578e372cf8a2c1f682MD5520.500.12495/2014oai:repositorio.unbosque.edu.co:20.500.12495/20142024-02-07 07:26:08.129http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |