Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population

Background: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI...

Full description

Autores:
Amorim, Robson
Oliveira, Louise
Malbouisson, Luiz Marcelo
Nagumo, Marcia
Simoes, Marcela
Bor-Seng-Shu, Edson
Beer-Furlan, André
Ferreira de Andrade, Almir
Rubiano, Andrés M.
Teixeira, Manoel Jacobsen
Kolias, Angelos
Paiva, Vera
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/2014
Acceso en línea:
http://hdl.handle.net/20.500.12495/2014
https://doi.org/10.3389/fneur.2019.01366
Palabra clave:
Tomografía computarizada espiral
Escala de coma de glasgow
Pruebas diagnósticas de rutina
LMICs
Machine learning
Mortality
Rights
License
Attribution 4.0 International
id UNBOSQUE2_6b3e7992821998d20c394e72ea90a3c3
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/2014
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
title Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
spellingShingle Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
Tomografía computarizada espiral
Escala de coma de glasgow
Pruebas diagnósticas de rutina
LMICs
Machine learning
Mortality
title_short Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
title_full Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
title_fullStr Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
title_full_unstemmed Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
title_sort Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population
dc.creator.fl_str_mv Amorim, Robson
Oliveira, Louise
Malbouisson, Luiz Marcelo
Nagumo, Marcia
Simoes, Marcela
Bor-Seng-Shu, Edson
Beer-Furlan, André
Ferreira de Andrade, Almir
Rubiano, Andrés M.
Teixeira, Manoel Jacobsen
Kolias, Angelos
Paiva, Vera
dc.contributor.author.none.fl_str_mv Amorim, Robson
Oliveira, Louise
Malbouisson, Luiz Marcelo
Nagumo, Marcia
Simoes, Marcela
Bor-Seng-Shu, Edson
Beer-Furlan, André
Ferreira de Andrade, Almir
Rubiano, Andrés M.
Teixeira, Manoel Jacobsen
Kolias, Angelos
Paiva, Vera
dc.contributor.orcid.none.fl_str_mv Rubiano, Andrés M. [0000-0001-8931-3254]
dc.subject.decs.spa.fl_str_mv Tomografía computarizada espiral
Escala de coma de glasgow
Pruebas diagnósticas de rutina
topic Tomografía computarizada espiral
Escala de coma de glasgow
Pruebas diagnósticas de rutina
LMICs
Machine learning
Mortality
dc.subject.keywords.spa.fl_str_mv LMICs
Machine learning
Mortality
description Background: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI outcomes from local data in LMICs. Our study aim is to design and compare a series of predictive models for mortality on a new cohort in TBI patients in Brazil using Machine Learning. Methods: A prospective registry was set in São Paulo, Brazil, enrolling all patients with a diagnosis of TBI that require admission to the intensive care unit. We evaluated the following predictors: gender, age, pupil reactivity at admission, Glasgow Coma Scale (GCS), presence of hypoxia and hypotension, computed tomography findings, trauma severity score, and laboratory results. Results: Overall mortality at 14 days was 22.8%. Models had a high prediction performance, with the best prediction for overall mortality achieved through Naive Bayes (area under the curve = 0.906). The most significant predictors were the GCS at admission and prehospital GCS, age, and pupil reaction. When predicting the length of stay at the intensive care unit, the Conditional Inference Tree model had the best performance (root mean square error = 1.011), with the most important variable across all models being the GCS at scene. Conclusions: Models for early mortality and hospital length of stay using Machine Learning can achieve high performance when based on registry data even in LMICs. These models have the potential to inform treatment decisions and counsel family members. Level of evidence: This observational study provides a level IV evidence on prognosis after TBI.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-03-07T15:42:42Z
dc.date.available.none.fl_str_mv 2020-03-07T15:42:42Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.local.spa.fl_str_mv artículo
dc.identifier.issn.none.fl_str_mv 1664-2295
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/2014
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fneur.2019.01366
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
identifier_str_mv 1664-2295
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/2014
https://doi.org/10.3389/fneur.2019.01366
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Frontiers in neurology, 1664-2295, Vol. 10, 2020
dc.relation.uri.none.fl_str_mv https://www.frontiersin.org/articles/10.3389/fneur.2019.01366/full
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf437
dc.rights.creativecommons.none.fl_str_mv 2020
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf437
2020
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media S.A.
dc.publisher.journal.spa.fl_str_mv Frontiers in neurology
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/590b0c2a-9aea-4b65-bf60-cfaf9b62c551/download
https://repositorio.unbosque.edu.co/bitstreams/3007e559-a7c5-4397-8354-46b6c05dfe15/download
https://repositorio.unbosque.edu.co/bitstreams/5134b72b-d04c-4807-ab3a-4a778259ced2/download
https://repositorio.unbosque.edu.co/bitstreams/227bff63-c4b8-4776-8042-c71426f70935/download
https://repositorio.unbosque.edu.co/bitstreams/9d617b12-178c-4db8-9f34-d660f736c3c7/download
bitstream.checksum.fl_str_mv e1a52b1963068fdfce219daf4fc9fc71
0175ea4a2d4caec4bbcc37e300941108
8a4605be74aa9ea9d79846c1fba20a33
b8b056c0c0990f721d937dbccd09615d
47c437c4fab25b578e372cf8a2c1f682
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100800863993856
spelling Amorim, RobsonOliveira, LouiseMalbouisson, Luiz MarceloNagumo, MarciaSimoes, MarcelaBor-Seng-Shu, EdsonBeer-Furlan, AndréFerreira de Andrade, AlmirRubiano, Andrés M.Teixeira, Manoel JacobsenKolias, AngelosPaiva, VeraRubiano, Andrés M. [0000-0001-8931-3254]2020-03-07T15:42:42Z2020-03-07T15:42:42Z20201664-2295http://hdl.handle.net/20.500.12495/2014https://doi.org/10.3389/fneur.2019.01366instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengFrontiers Media S.A.Frontiers in neurologyFrontiers in neurology, 1664-2295, Vol. 10, 2020https://www.frontiersin.org/articles/10.3389/fneur.2019.01366/fullAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf4372020http://purl.org/coar/access_right/c_abf2Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Populationarticleartículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Tomografía computarizada espiralEscala de coma de glasgowPruebas diagnósticas de rutinaLMICsMachine learningMortalityBackground: In a time when the incidence of severe traumatic brain injury (TBI) is increasing in low- to middle-income countries (LMICs), it is important to understand the behavior of predictive variables in an LMIC’s population. There are few previous attempts to generate prediction models for TBI outcomes from local data in LMICs. Our study aim is to design and compare a series of predictive models for mortality on a new cohort in TBI patients in Brazil using Machine Learning. Methods: A prospective registry was set in São Paulo, Brazil, enrolling all patients with a diagnosis of TBI that require admission to the intensive care unit. We evaluated the following predictors: gender, age, pupil reactivity at admission, Glasgow Coma Scale (GCS), presence of hypoxia and hypotension, computed tomography findings, trauma severity score, and laboratory results. Results: Overall mortality at 14 days was 22.8%. Models had a high prediction performance, with the best prediction for overall mortality achieved through Naive Bayes (area under the curve = 0.906). The most significant predictors were the GCS at admission and prehospital GCS, age, and pupil reaction. When predicting the length of stay at the intensive care unit, the Conditional Inference Tree model had the best performance (root mean square error = 1.011), with the most important variable across all models being the GCS at scene. Conclusions: Models for early mortality and hospital length of stay using Machine Learning can achieve high performance when based on registry data even in LMICs. These models have the potential to inform treatment decisions and counsel family members. Level of evidence: This observational study provides a level IV evidence on prognosis after TBI.ORIGINALAmorim, R.L._2020.pdfAmorim, R.L._2020.pdfapplication/pdf1208596https://repositorio.unbosque.edu.co/bitstreams/590b0c2a-9aea-4b65-bf60-cfaf9b62c551/downloade1a52b1963068fdfce219daf4fc9fc71MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/3007e559-a7c5-4397-8354-46b6c05dfe15/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/5134b72b-d04c-4807-ab3a-4a778259ced2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAmorim, R.L._2020.pdf.jpgAmorim, R.L._2020.pdf.jpgIM Thumbnailimage/jpeg12541https://repositorio.unbosque.edu.co/bitstreams/227bff63-c4b8-4776-8042-c71426f70935/downloadb8b056c0c0990f721d937dbccd09615dMD54TEXTAmorim, R.L._2020.pdf.txtAmorim, R.L._2020.pdf.txtExtracted texttext/plain42075https://repositorio.unbosque.edu.co/bitstreams/9d617b12-178c-4db8-9f34-d660f736c3c7/download47c437c4fab25b578e372cf8a2c1f682MD5520.500.12495/2014oai:repositorio.unbosque.edu.co:20.500.12495/20142024-02-07 07:26:08.129http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=