Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano
Actualmente la actividad antioxidante se ha convertido en un atributo altamente demandado en la industria alimentaria, farmacéutica y cosmética, razón por la cual se están buscando cada vez más compuestos que tengan un potencial efecto antioxidante. En este contexto, el fruto de la palma Oenocarpus...
- Autores:
-
Gaitán Blanco, Sara
Barrero Echeverria, Juan Pablo
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14391
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14391
- Palabra clave:
- Antioxidantes
Aceites Esenciales
Especies Reactivas de Oxígeno
Estrés Oxidativo
615.19
Antioxidants
Essential Oils
Reactive Oxygen Species
Oxidative Stress
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
UNBOSQUE2_5c59962464de5cec304a7abfb00cd0ac |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14391 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
dc.title.translated.none.fl_str_mv |
Evaluation of the cytotoxic and antioxidant activity of oils derived from seje fruit (oenocarpus bataua) in an in vitro model of human hepatocarcinoma |
title |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
spellingShingle |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano Antioxidantes Aceites Esenciales Especies Reactivas de Oxígeno Estrés Oxidativo 615.19 Antioxidants Essential Oils Reactive Oxygen Species Oxidative Stress |
title_short |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
title_full |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
title_fullStr |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
title_full_unstemmed |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
title_sort |
Evaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humano |
dc.creator.fl_str_mv |
Gaitán Blanco, Sara Barrero Echeverria, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Morantes Medina, Sandra Johanna Ballesteros Vivas, Diego |
dc.contributor.author.none.fl_str_mv |
Gaitán Blanco, Sara Barrero Echeverria, Juan Pablo |
dc.contributor.orcid.none.fl_str_mv |
Gaitan Blanco, Sara [0009-0005-0171-7657] Barrero Echeverria, Juan Pablo [0009-0007-1605-1426] |
dc.subject.none.fl_str_mv |
Antioxidantes Aceites Esenciales Especies Reactivas de Oxígeno Estrés Oxidativo |
topic |
Antioxidantes Aceites Esenciales Especies Reactivas de Oxígeno Estrés Oxidativo 615.19 Antioxidants Essential Oils Reactive Oxygen Species Oxidative Stress |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Antioxidants Essential Oils Reactive Oxygen Species Oxidative Stress |
description |
Actualmente la actividad antioxidante se ha convertido en un atributo altamente demandado en la industria alimentaria, farmacéutica y cosmética, razón por la cual se están buscando cada vez más compuestos que tengan un potencial efecto antioxidante. En este contexto, el fruto de la palma Oenocarpus bataua, más conocida como seje, se presenta como un candidato ideal ya que en anteriores estudios se ha demostrado actividad antioxidante, sin embargo, dichos estudios no proporcionan información en condiciones biológicas. En este sentido, el objetivo del presente trabajo fue evaluar en un modelo in vitro de hepatocarcinoma humano, la actividad citotóxica y antioxidante celular de aceites derivados del seje. Los aceites fueron extraídos mediante dos metodologías diferentes: soxhlet (SOX) y fluidos supercríticos (FSC), debido a la naturaleza oleosa del aceite fue necesario realizar una emulsificación con lecitina de soya y buffer de fosfatos. Los resultados del ensayo de citotoxicidad demostraron que las emulsiones SOX y FSC fueron seguras en todas las concentraciones evaluadas tras una exposición de 24 horas en células L929 y HepG2, observándose mayores porcentajes de viabilidad celular con la emulsión FSC en ambos modelos celulares. Posteriormente, se evaluó la actividad antioxidante celular (CAA) en la línea HepG2 empleando DCFH-DA. Como control positivo se utilizó quercetina, la cual mostró un efecto dosis-dependiente al reducir tanto los niveles basales de ROS como los inducidos por un prooxidante, en contraste, la emulsión FSC no mostró efecto antioxidante. Por otro lado, la emulsión extraída por Soxhlet sí presentó actividad antioxidante en el rango de concentraciones de 5000 - 1250 μg/mL. En conclusión, los ensayos realizados demuestran que, aunque el aceite extraído por FSC ofrece un perfil de seguridad superior, no demuestra un efecto antioxidante notable. Por el contrario, el aceite obtenido mediante Soxhlet garantiza la seguridad celular y reduce la producción inducida de ROS, posicionándose como una fuente potencial de compuestos bioactivos para diversas aplicaciones. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-19T17:12:45Z |
dc.date.available.none.fl_str_mv |
2025-05-19T17:12:45Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14391 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14391 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Tauffenberger, A., & Magistretti, P. J. (2021). Reactive oxygen species: beyond their reactive behavior. Neurochemical Research, 46(1), 77-87. 2. Brillo, V., Chieregato, L., Leanza, L., Muccioli, S., & Costa, R. (2021). Mitochondrial dynamics, ROS, and cell signaling: a blended overview. Life, 11(4), 332. 3. Kozlov, A. V., Javadov, S., & Sommer, N. (2024). Cellular ROS and antioxidants: physiological and pathological role. Antioxidants, 13(5), 602. 4. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., ... & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11, 1158198. 5. Zhou, Y., Zhen, Y., Wang, G., & Liu, B. (2022). Deconvoluting the complexity of reactive oxygen species (ROS) in neurodegenerative diseases. Frontiers in Neuroanatomy, 16, 910427. 6. Irato, P., & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants, 10(4), 579. 7. Raj Rai, S., Bhattacharyya, C., Sarkar, A., Chakraborty, S., Sircar, E., Dutta, S., & Sengupta, R. (2021). Glutathione: role in oxidative/nitrosative stress, antioxidant defense, and treatments. ChemistrySelect, 6(18), 4566-4590. 8. Mirończuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in medical sciences, 63(1), 68-78. 9. Jaramillo-Vivanco, T., Balslev, H., Montúfar, R., Cámara, R., Giampieri, F., Battino, M., & Alvarez-Suarez, J. (2022). Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chemistry, 372, 131273. 10. Ocampo, Á., Fernández, A., & Castro, F. (2013). Aceite de palma de seje Oenocarpus bataua Mart. por su calidad nutricional puede contribuir a la conservación y uso sostenible de los bosques de galería en la Orinoquia Colombiana. Orinoquia, 17(2), 215-229. 11. Morales–Muñoz, R. (2016). Extracción artesanal del aceite de trupa (oenocarpus bataua, mart.) en Panamá. Ciencia Agropecuaria, (25), 147-154. 12. Cardona J., Carrillo M., Mosquera D., Gutierrez R. & Hernandez M. (2012) Evaluación de métodos de extracción del aceite de milpesillos (oenocarpus mapora). (Vitae - Revista de la Facultad de química farmacéutica. Universidad de Antioquia. Medellín, Colombia ISSN 0121- 4004 – ISSNe 2145-2660) Volumen 19 Suplemento 1, (183-185). 13. Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies (pp. 171-189). Elsevier. 14. Aboagye, E. A., Chea, J. D., & Yenkie, K. M. (2021). Systems level roadmap for solvent recovery and reuse in industries. Iscience, 24(10). 15. Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H., Clark, J. H., Farmer, T. J., ... & Sherwood, J. (2016). Tools and techniques for solvent selection: green solvent selection guides. Sustainable chemical processes, 4, 1-24. 16. Instituto Nacional de Seguridad y Salud en el Trabajo. (2007). Documentación toxicológica para el establecimiento del límite de exposición profesional del n-hexano. DLEP 36. https://www.insst.es/documents/94886/290254/DLEP+36.pdf/339c2750-1059-4cc0-b214-4f71f405f5fb?version=1.0&t=1528396291901 17. Chaudhary, A., Dwivedi, A., & Upadhyayula, S. (2021). Supercritical fluids as green solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 891-916). Elsevier. 18. Camacho, R. (2015). Evaluación de la actividad antioxidante e irritabilidad dérmica del aceite de ungurahui Oenocarpus bataua para uso cosmético (Universidad Nacional Mayor de San Marcos. Maestría Facultad de Farmacia y Bioquímica). 19. Sandoval, E. (2016). Determinación de la Actividad antioxidante en polifenoles y la Digestibilidad gastrointestinal in vitro en proteínas de la cáscara de Ungurahua (Oenocarpus bataua) (Bachelor's thesis, Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos. Carrera de Ingeniería en Alimentos.). 20. Quispe, H., Paredes, Y., Cahuana, P., Valles, M., Caviedes, W. (2022). Capacidad antioxidante del néctar de Ungurahui (Oenocarpus bataua). Nutrición clínica y dietética hospitalaria, Volumen 42 #01 (80-86). 21. Tovar, J., (2013). Determinación de la actividad antioxidante por DPPH y ABTS de 30 plantas recolectadas en la ecorregión cafetera (Universidad Tecnológica de Pereira. Facultad de Química. Escuela de Tecnología Química ). 22. Hafer, K., Iwamoto, K. S., & Schiestl, R. H. (2008). Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiation research, 169(4), 460-468. 23. Eruslanov, E., & Kusmartsev, S. (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. Advanced protocols in oxidative stress II, 57-72. 24. Li, J., Zhuang, Z., Zhao, Z., & Tang, B. Z. (2022). Type I AIE photosensitizers: Mechanism and application. View, 3(2), 20200121. 25. Girard-Lalancette, K., Pichette, A., & Legault, J. (2009). Sensitive cell-based assay using DCFH oxidation for the determination of pro-and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chemistry, 115(2), 720-726. 26. Ruijter, N., van der Zee, M., Katsumiti, A., Boyles, M., Cassee, F. R., & Braakhuis, H. (2024). Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NanoImpact, 35, 100521. 27. Chaudhry, H., & Rangra, N. K. (2023). Development and validation of a stability indicating green analytical method for the simultaneous estimation of l-glutathione, n-acetyl l-cysteine and Vitamin C in marketed formulation using UV–visible spectroscopy. Future Journal of Pharmaceutical Sciences, 9(1), 74. 28. Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of agricultural and food chemistry, 55(22), 8896-8907. 29. Xu, X. T., Huang, H., Tian, M. X., Hu, R. C., Dai, Z., & Jin, X. (2021). A four-oil intravenous lipid emulsion improves markers of liver function, triglyceride levels and shortens length of hospital stay in adults: a systematic review and meta-analysis. Nutrition Research, 92, 1-11. 30. Li, L., He, M., Yang, H., Wang, N., Kong, Y., Li, Y., & Teng, F. (2021). Effect of soybean lipophilic protein–methyl cellulose complex on the stability and digestive properties of water–in–oil–in–water emulsion containing vitamin B12. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127364. 31. International Organization for Standardization. (2011). Biological evaluation of medical devices 10993-5-12. 9-10 https://www.iso.org/standard/36406.html 32. Cell Biolabs, Inc (2024). OxiSelect™ Cellular Antioxidant Activity Assay Kit (Green Fluorescence). STA-349. Recuperado online: https://www.cellbiolabs.com/sites/default/files/STA-349-cellular-antioxidant-activity-assay-kit.pdf 33. Ibiapina, A., Gualberto, L. da S., Dias, B. B., Freitas, B. C. B., Martins, G. A. de S., & Melo Filho, A. A. (2021). Essential and fixed oils from Amazonian fruits: proprieties and applications. Critical Reviews in Food Science and Nutrition, 62(32), 8842–8854. https://doi.org/10.1080/10408398.2021.1935702 34. Tauchen, J., Bortl, L., Huml, L., Miksatkova, P., Doskocil, I., Marsik, P., ... & Kokoska, L. (2016). Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Revista Brasileira de Farmacognosia, 26, 728-737. 35. Vargas-Arana, G., Merino-Zegarra, C., Del-Castillo, Á. M. R., Quispe, C., Viveros-Valdez, E., & Simirgiotis, M. J. (2022). Antioxidant, Antiproliferative and Anti-Enzymatic Capacities, Nutritional Analysis and UHPLC-PDA-MS Characterization of Ungurahui Palm Fruits (Oenocarpus bataua Mart) from the Peruvian Amazon. Antioxidants, 11(8), 1598. 36. Liao, J., Wang, J., Lu, H., Sheng, G., Peng, P. A., & Hsu, C. S. (2025). Solvent effect in Soxhlet extraction of source rocks. Organic Geochemistry, 200, 104917. 37. Rajesh, Y., Khan, N. M., Shaikh, A. R., Mane, V. S., Daware, G., & Dabhade, G. (2023). Investigation of geranium oil extraction performance by using soxhlet extraction. Materials Today: Proceedings, 72, 2610-2617. 38. Cao, S., Liang, J., Chen, M., Xu, C., Wang, X., Qiu, L., ... & Hu, W. (2025). Comparative analysis of extraction technologies for plant extracts and absolutes. Frontiers in Chemistry, 13, 1536590. 39. Herzyk, F., Piłakowska-Pietras, D., & Korzeniowska, M. (2024). Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts. Foods, 13(11), 1713. 40. Dashtian, K., Kamalabadi, M., Ghoorchian, A., Ganjali, M. R., & Rahimi-Nasrabadi, M. (2024). Integrated supercritical fluid extraction of essential oils. Journal of Chromatography A, 465240. 41. Henao-Ardila, A., Quintanilla-Carvajal, M. X., & Moreno, F. L. (2024). Emulsification and stabilization technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon. 42. Pino, J. A. (2021). Lecitina: Química, bioquímica y uso en la industria alimentaria: Lecithin: Chemistry, biochemistry and uses in the food industry. Ciencia y Tecnología de Alimentos, 31(1), 68-77. 43. Ahmed, E. A., Omar, H. M., Ragb, S. M., & Nasser, A. Y. (2011). The antioxidant activity of vitamin C, DPPD and L-cysteine against cisplatin-induced testicular oxidative damage in rats. Food and Chemical Toxicology, 49(5), 1115-1121. 44. Judde, A., Villeneuve, P., Rossignol‐Castera, A., & Le Guillou, A. (2003). Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. Journal of the American Oil Chemists' Society, 80(12), 1209-1215. 45. Atkinson, J., Epand, R. F., & Epand, R. M. (2008). Tocopherols and tocotrienols in membranes: a critical review. Free radical biology and medicine, 44(5), 739-764. 46. Petiti, J., Caria, S., Revel, L., Pegoraro, M., & Divieto, C. (2024). Standardized Protocol for Resazurin-Based Viability Assays on A549 Cell Line for Improving Cytotoxicity Data Reliability. Cells, 13(23), 1959. 47. Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food frontiers, 1(3), 332-349. 48. Jiao, H. L., & Zhao, B. L. (2002). Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms. Toxicology and applied pharmacology, 185(3), 172-179. 49. McMillian, M. K., Grant, E. R., Zhong, Z., Parker, J. B., Li, L., Zivin, R. A., ... & Johnson, M. D. (2001). Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis. In Vitro & Molecular Toxicology: A Journal of Basic and Applied Research, 14(3), 177-190. 50. Arzumanian, V. A., Kiseleva, O. I., & Poverennaya, E. V. (2021). The curious case of the HepG2 cell line: 40 years of expertise. International journal of molecular sciences, 22(23), 13135. 51. Wu, Y., Geng, X. C., Wang, J. F., Miao, Y. F., Lu, Y. L., & Li, B. (2016). The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell biology and toxicology, 32, 37-59. 52. Chen, X. Y., Li, J. S., Ma, J., Duan, F. L., & Zhong, P. (2006). Potential role of novel hepatocellular carcinoma-associated gene IDD01 in promoting tumorigenesis of HepG2 cell line. Chinese medical journal, 119(20), 1709-1714. 53. Maseko, T. E., Elkalaf, M., Peterová, E., Lotková, H., Staňková, P., Melek, J., ... & Kučera, O. (2023). Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non-alcoholic fatty liver disease. International journal of molecular medicine, 53(2), 18. 54. Reiniers, M.J. et al. (2022). Optimal Use of 2′,7′-Dichlorofluorescein Diacetate in Cultured Hepatocytes. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY. 55. Ruijter, N., van der Zee, M., Katsumiti, A., Boyles, M., Cassee, F. R., & Braakhuis, H. (2024). Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NanoImpact, 35, 100521. 56. Soares, T., Rodrigues, D., Sarraguça, M., Rocha, S., Lima, J. L., Ribeiro, D., ... & Freitas, M. (2019). Optimization of experimental settings for the assessment of reactive oxygen species production by human blood. Oxidative Medicine and Cellular Longevity, 2019(1), 7198484. 57. Kim, H., & Xue, X. (2020). Detection of total reactive oxygen species in adherent cells by 2’, 7’-dichlorodihydrofluorescein diacetate staining. Journal of visualized experiments: JoVE, (160), 10-3791. 58. Vicente, N. B., Zamboni, J. E. D., Adur, J. F., Paravani, E. V., & Casco, V. H. (2007, November). Photobleaching correction in fluorescence microscopy images. In Journal of Physics: Conference Series (Vol. 90, No. 1, p. 012068). IOP Publishing. 59. Descriptores en Ciencias de la Salud (DeCS/MeSH). (2016). Photobleaching 37671. https://id.nlm.nih.gov/mesh/D038761 60. Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60-69. 61. Barygina, V., Becatti, M., Lotti, T., Moretti, S., Taddei, N., & Fiorillo, C. (2019). ROS‐challenged keratinocytes as a new model for oxidative stress‐mediated skin diseases. Journal of cellular biochemistry, 120(1), 28-36. 62. Wu, J., Sun, B., Luo, X., Zhao, M., Zheng, F., Sun, J., ... & Huang, M. (2018). Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling. RSC advances, 8(20), 10898-10906. 63. Wu, J., Huo, J., Huang, M., Zhao, M., Luo, X., & Sun, B. (2017). Structural characterization of a tetrapeptide from sesame flavor-type Baijiu and its preventive effects against AAPH-induced oxidative stress in HepG2 cells. Journal of Agricultural and Food Chemistry, 65(48), 10495-10504. 64. Hu, J., Li, X., Wu, N., Zhu, C., Jiang, X., Yuan, K., ... & Bai, W. (2023). Anthocyanins prevent AAPH-induced steroidogenesis disorder in leydig cells by counteracting oxidative stress and StAR abnormal expression in a structure-dependent manner. Antioxidants, 12(2), 508. 65. Zimowska, W., Motyl, T., Skierski, J., Balasinska, B., Ploszaj, T., Orzechowski, A., & Filipecki, M. (1997). Apoptosis and Bcl-2 protein changes in L1210 leukaemic cells exposed to oxidative stress. Apoptosis, 2, 529-539. 66. Kellett, M. E., Greenspan, P., & Pegg, R. B. (2018). Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food chemistry, 244, 359-363. 67. Qi, W., Qi, W., Xiong, D., & Long, M. (2022). Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 27(19), 6545. 68. Gao, W.; Pu, L.; Chen, M.; Wei, J.; Xin, Z.; Wang, Y.; Yao, Z.; Shi, T.; Guo, C. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J. Clin. Biochem. Nutr. 2018, 62, 56–62. 69. García-Muentes, S. A., Lafargue-Pérez, F., Labrada-Vázquez, B., Díaz-Velázquez, M., & Sánchez del Campo-Lafita, A. E. (2018). Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador. Revista Cubana de Química, 30(1), 142-158. 70. Waraho, T., McClements, D. J., & Decker, E. A. (2011). Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food chemistry, 129(3), 854-859. 71. Talley, J. T., & Mohiuddin, S. S. (2023). Biochemistry, fatty acid oxidation. In StatPearls [Internet]. 72. Sosa, M. & Juárez, S (2022) Ácidos Grasos Libres (AGL). Estrategias para la Reducción de Grasa en Productos Cárnicos Fritos. Universidad de Guanajuato XXVII Verano de la Ciencia UG. Vol 16, 1-2 73. Onu, P., & Mbohwa, C. (2021). New approach and prospects of agrowaste resources conversion for energy systems performance and development. Agricultural Waste Diversity and Sustainability, (2021), 97-118. 74. Tiefenbacher, K. F. (2017). Technology of main ingredients—sweeteners and lipids. Wafer and waffle, 123-225. 75. Sajjadi, B., Raman, A. & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92. 76. Irwin, J. W., & Hedges, N. (2004). Measuring lipid oxidation. Understanding and measuring the shelf-life of food, 289-316. 77. Alajtal, A. I., Sherami, F. E., & Elbagermi, M. A. (2018). Acid, peroxide, ester and saponification values for some vegetable oils before and after frying. AASCIT Journal of Materials, 4(2), 43-47. 78. The International Fragrance Association (2019). Determination of the peroxide value. IFRA Analytical Method. Rue de la Fontaine 15. Switzerland. Recuperado online: https://ifrafragrance.org/safe-use/scientific-guidance 79. Calder, P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochemical Society Transactions, 33(2), 423-427. 80. Du, M., Ahn, D. U., & Sell, J. L. (2000). Effects of dietary conjugated linoleic acid and linoleic: linolenic acid ratio on polyunsaturated fatty acid status in laying hens. Poultry Science, 79(12), 1749-1756. 81. Palomino, O. M., Giordani, V., Chowen, J., Fernández-Alfonso, M. S., & Goya, L. (2022). Physiological doses of oleic and palmitic acids protect human endothelial cells from oxidative stress. Molecules, 27(16), 5217. 82. Alconchel-Gago, F., Santamaría, A., & Túnez, I. (2014). Antioxidant effect of oleic acid and hydroxytyrosol in an experimental model similar to Huntington’s disease. Actual Med, 99, 60-4. 83. Marsoul, A., Ijjaali, M., Oumous, I., Bennani, B., & Boukir, A. (2020). Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Materials Today: Proceedings, 31, S183-S189. |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/4c7ba6ee-25b3-4ec7-9c48-d10d64b958ad/download https://repositorio.unbosque.edu.co/bitstreams/5bbdcb8e-4345-4272-bbde-113d19601c40/download https://repositorio.unbosque.edu.co/bitstreams/0ee6ceed-64cc-469f-bb9b-dde446290155/download https://repositorio.unbosque.edu.co/bitstreams/1162d2fc-ca4c-4e8d-94ef-90e8d2b7f38b/download https://repositorio.unbosque.edu.co/bitstreams/1c1e4859-15a5-4d95-903b-025f0dde1b4f/download https://repositorio.unbosque.edu.co/bitstreams/cd707db0-2d33-4e54-a403-5c49122a70e3/download https://repositorio.unbosque.edu.co/bitstreams/12bdb396-e016-4126-8732-eb0e035adfd1/download |
bitstream.checksum.fl_str_mv |
057063876bbed7ab662f69f6f328ab8a 17cc15b951e7cc6b3728a574117320f9 81da00f9265431747eb0cb9e6dc12cb4 4ca9f671b682e9e9d78c40adfebfd23d 3b6ce8e9e36c89875e8cf39962fe8920 6abaf4b3a7c6d1a0595e9a3b7be225af e83765eae62cddcbb06bd371dee3a2ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834107920009134080 |
spelling |
Morantes Medina, Sandra JohannaBallesteros Vivas, DiegoGaitán Blanco, SaraBarrero Echeverria, Juan PabloGaitan Blanco, Sara [0009-0005-0171-7657]Barrero Echeverria, Juan Pablo [0009-0007-1605-1426]2025-05-19T17:12:45Z2025-05-19T17:12:45Z2025-05https://hdl.handle.net/20.500.12495/14391Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coActualmente la actividad antioxidante se ha convertido en un atributo altamente demandado en la industria alimentaria, farmacéutica y cosmética, razón por la cual se están buscando cada vez más compuestos que tengan un potencial efecto antioxidante. En este contexto, el fruto de la palma Oenocarpus bataua, más conocida como seje, se presenta como un candidato ideal ya que en anteriores estudios se ha demostrado actividad antioxidante, sin embargo, dichos estudios no proporcionan información en condiciones biológicas. En este sentido, el objetivo del presente trabajo fue evaluar en un modelo in vitro de hepatocarcinoma humano, la actividad citotóxica y antioxidante celular de aceites derivados del seje. Los aceites fueron extraídos mediante dos metodologías diferentes: soxhlet (SOX) y fluidos supercríticos (FSC), debido a la naturaleza oleosa del aceite fue necesario realizar una emulsificación con lecitina de soya y buffer de fosfatos. Los resultados del ensayo de citotoxicidad demostraron que las emulsiones SOX y FSC fueron seguras en todas las concentraciones evaluadas tras una exposición de 24 horas en células L929 y HepG2, observándose mayores porcentajes de viabilidad celular con la emulsión FSC en ambos modelos celulares. Posteriormente, se evaluó la actividad antioxidante celular (CAA) en la línea HepG2 empleando DCFH-DA. Como control positivo se utilizó quercetina, la cual mostró un efecto dosis-dependiente al reducir tanto los niveles basales de ROS como los inducidos por un prooxidante, en contraste, la emulsión FSC no mostró efecto antioxidante. Por otro lado, la emulsión extraída por Soxhlet sí presentó actividad antioxidante en el rango de concentraciones de 5000 - 1250 μg/mL. En conclusión, los ensayos realizados demuestran que, aunque el aceite extraído por FSC ofrece un perfil de seguridad superior, no demuestra un efecto antioxidante notable. Por el contrario, el aceite obtenido mediante Soxhlet garantiza la seguridad celular y reduce la producción inducida de ROS, posicionándose como una fuente potencial de compuestos bioactivos para diversas aplicaciones.Pontificia Universidad JaverianaPregradoQuímico FarmacéuticoCurrently, antioxidant activity has become a highly sought-after attribute in the food, pharmaceutical, and cosmetic industries, which is why compounds with potential antioxidant effects are increasingly being sought. In this context, the fruit of the palm Oenocarpus bataua, better known as seje, is presented as an ideal candidate since previous studies have demonstrated antioxidant activity; however, these studies do not provide information under biological conditions. In this sense, the objective of the present study was to evaluate the cellular cytotoxic and antioxidant activity of seje-derived oils in an in vitro model of human hepatocarcinoma. The oils were extracted using two different methodologies: Soxhlet extraction (SOX) and supercritical fluid extraction (SCF). Due to the oil's oily nature, emulsification with soy lecithin and phosphate buffer was necessary. The results of the cytotoxicity assay demonstrated that SOX and FSC emulsions were safe at all concentrations tested after a 24-hour exposure to L929 and HepG2 cells, with higher percentages of cell viability observed with the FSC emulsion in both cell models. Cellular antioxidant activity (CAA) was subsequently evaluated in the HepG2 cell line using DCFH-DA. Quercetin was used as a positive control, showing a dose-dependent effect by reducing both basal and pro-oxidant-induced ROS levels; in contrast, the FSC emulsion did not exhibit an antioxidant effect. On the other hand, the Soxhlet-extracted emulsion did exhibit antioxidant activity in the concentration range of 5000–1250 μg/mL. In conclusion, the assays performed demonstrate that, although the FSC-extracted oil offers a superior safety profile, it does not demonstrate a notable antioxidant effect. In contrast, the oil obtained by Soxhlet ensures cellular safety and reduces induced ROS production, positioning itself as a potential source of bioactive compounds for various applications.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2AntioxidantesAceites EsencialesEspecies Reactivas de OxígenoEstrés Oxidativo615.19AntioxidantsEssential OilsReactive Oxygen SpeciesOxidative StressEvaluación de la actividad citotóxica y antioxidante de aceites derivados del fruto de seje (oenocarpus bataua) en un modelo in vitro de hepatocarcinoma humanoEvaluation of the cytotoxic and antioxidant activity of oils derived from seje fruit (oenocarpus bataua) in an in vitro model of human hepatocarcinomaQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Tauffenberger, A., & Magistretti, P. J. (2021). Reactive oxygen species: beyond their reactive behavior. Neurochemical Research, 46(1), 77-87.2. Brillo, V., Chieregato, L., Leanza, L., Muccioli, S., & Costa, R. (2021). Mitochondrial dynamics, ROS, and cell signaling: a blended overview. Life, 11(4), 332.3. Kozlov, A. V., Javadov, S., & Sommer, N. (2024). Cellular ROS and antioxidants: physiological and pathological role. Antioxidants, 13(5), 602.4. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., ... & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Frontiers in chemistry, 11, 1158198.5. Zhou, Y., Zhen, Y., Wang, G., & Liu, B. (2022). Deconvoluting the complexity of reactive oxygen species (ROS) in neurodegenerative diseases. Frontiers in Neuroanatomy, 16, 910427.6. Irato, P., & Santovito, G. (2021). Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants, 10(4), 579.7. Raj Rai, S., Bhattacharyya, C., Sarkar, A., Chakraborty, S., Sircar, E., Dutta, S., & Sengupta, R. (2021). Glutathione: role in oxidative/nitrosative stress, antioxidant defense, and treatments. ChemistrySelect, 6(18), 4566-4590.8. Mirończuk-Chodakowska, I., Witkowska, A. M., & Zujko, M. E. (2018). Endogenous non-enzymatic antioxidants in the human body. Advances in medical sciences, 63(1), 68-78.9. Jaramillo-Vivanco, T., Balslev, H., Montúfar, R., Cámara, R., Giampieri, F., Battino, M., & Alvarez-Suarez, J. (2022). Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chemistry, 372, 131273.10. Ocampo, Á., Fernández, A., & Castro, F. (2013). Aceite de palma de seje Oenocarpus bataua Mart. por su calidad nutricional puede contribuir a la conservación y uso sostenible de los bosques de galería en la Orinoquia Colombiana. Orinoquia, 17(2), 215-229.11. Morales–Muñoz, R. (2016). Extracción artesanal del aceite de trupa (oenocarpus bataua, mart.) en Panamá. Ciencia Agropecuaria, (25), 147-154.12. Cardona J., Carrillo M., Mosquera D., Gutierrez R. & Hernandez M. (2012) Evaluación de métodos de extracción del aceite de milpesillos (oenocarpus mapora). (Vitae - Revista de la Facultad de química farmacéutica. Universidad de Antioquia. Medellín, Colombia ISSN 0121- 4004 – ISSNe 2145-2660) Volumen 19 Suplemento 1, (183-185).13. Garcia-Vaquero, M., Rajauria, G., & Tiwari, B. (2020). Conventional extraction techniques: Solvent extraction. In Sustainable seaweed technologies (pp. 171-189). Elsevier.14. Aboagye, E. A., Chea, J. D., & Yenkie, K. M. (2021). Systems level roadmap for solvent recovery and reuse in industries. Iscience, 24(10).15. Byrne, F. P., Jin, S., Paggiola, G., Petchey, T. H., Clark, J. H., Farmer, T. J., ... & Sherwood, J. (2016). Tools and techniques for solvent selection: green solvent selection guides. Sustainable chemical processes, 4, 1-24.16. Instituto Nacional de Seguridad y Salud en el Trabajo. (2007). Documentación toxicológica para el establecimiento del límite de exposición profesional del n-hexano. DLEP 36. https://www.insst.es/documents/94886/290254/DLEP+36.pdf/339c2750-1059-4cc0-b214-4f71f405f5fb?version=1.0&t=152839629190117. Chaudhary, A., Dwivedi, A., & Upadhyayula, S. (2021). Supercritical fluids as green solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 891-916). Elsevier.18. Camacho, R. (2015). Evaluación de la actividad antioxidante e irritabilidad dérmica del aceite de ungurahui Oenocarpus bataua para uso cosmético (Universidad Nacional Mayor de San Marcos. Maestría Facultad de Farmacia y Bioquímica).19. Sandoval, E. (2016). Determinación de la Actividad antioxidante en polifenoles y la Digestibilidad gastrointestinal in vitro en proteínas de la cáscara de Ungurahua (Oenocarpus bataua) (Bachelor's thesis, Universidad Técnica de Ambato. Facultad de Ciencia e Ingeniería en Alimentos. Carrera de Ingeniería en Alimentos.).20. Quispe, H., Paredes, Y., Cahuana, P., Valles, M., Caviedes, W. (2022). Capacidad antioxidante del néctar de Ungurahui (Oenocarpus bataua). Nutrición clínica y dietética hospitalaria, Volumen 42 #01 (80-86).21. Tovar, J., (2013). Determinación de la actividad antioxidante por DPPH y ABTS de 30 plantas recolectadas en la ecorregión cafetera (Universidad Tecnológica de Pereira. Facultad de Química. Escuela de Tecnología Química ).22. Hafer, K., Iwamoto, K. S., & Schiestl, R. H. (2008). Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiation research, 169(4), 460-468.23. Eruslanov, E., & Kusmartsev, S. (2010). Identification of ROS using oxidized DCFDA and flow-cytometry. Advanced protocols in oxidative stress II, 57-72.24. Li, J., Zhuang, Z., Zhao, Z., & Tang, B. Z. (2022). Type I AIE photosensitizers: Mechanism and application. View, 3(2), 20200121.25. Girard-Lalancette, K., Pichette, A., & Legault, J. (2009). Sensitive cell-based assay using DCFH oxidation for the determination of pro-and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chemistry, 115(2), 720-726.26. Ruijter, N., van der Zee, M., Katsumiti, A., Boyles, M., Cassee, F. R., & Braakhuis, H. (2024). Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NanoImpact, 35, 100521.27. Chaudhry, H., & Rangra, N. K. (2023). Development and validation of a stability indicating green analytical method for the simultaneous estimation of l-glutathione, n-acetyl l-cysteine and Vitamin C in marketed formulation using UV–visible spectroscopy. Future Journal of Pharmaceutical Sciences, 9(1), 74.28. Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of agricultural and food chemistry, 55(22), 8896-8907.29. Xu, X. T., Huang, H., Tian, M. X., Hu, R. C., Dai, Z., & Jin, X. (2021). A four-oil intravenous lipid emulsion improves markers of liver function, triglyceride levels and shortens length of hospital stay in adults: a systematic review and meta-analysis. Nutrition Research, 92, 1-11.30. Li, L., He, M., Yang, H., Wang, N., Kong, Y., Li, Y., & Teng, F. (2021). Effect of soybean lipophilic protein–methyl cellulose complex on the stability and digestive properties of water–in–oil–in–water emulsion containing vitamin B12. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629, 127364.31. International Organization for Standardization. (2011). Biological evaluation of medical devices 10993-5-12. 9-10 https://www.iso.org/standard/36406.html32. Cell Biolabs, Inc (2024). OxiSelect™ Cellular Antioxidant Activity Assay Kit (Green Fluorescence). STA-349. Recuperado online: https://www.cellbiolabs.com/sites/default/files/STA-349-cellular-antioxidant-activity-assay-kit.pdf33. Ibiapina, A., Gualberto, L. da S., Dias, B. B., Freitas, B. C. B., Martins, G. A. de S., & Melo Filho, A. A. (2021). Essential and fixed oils from Amazonian fruits: proprieties and applications. Critical Reviews in Food Science and Nutrition, 62(32), 8842–8854. https://doi.org/10.1080/10408398.2021.193570234. Tauchen, J., Bortl, L., Huml, L., Miksatkova, P., Doskocil, I., Marsik, P., ... & Kokoska, L. (2016). Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the Peruvian Amazon. Revista Brasileira de Farmacognosia, 26, 728-737.35. Vargas-Arana, G., Merino-Zegarra, C., Del-Castillo, Á. M. R., Quispe, C., Viveros-Valdez, E., & Simirgiotis, M. J. (2022). Antioxidant, Antiproliferative and Anti-Enzymatic Capacities, Nutritional Analysis and UHPLC-PDA-MS Characterization of Ungurahui Palm Fruits (Oenocarpus bataua Mart) from the Peruvian Amazon. Antioxidants, 11(8), 1598.36. Liao, J., Wang, J., Lu, H., Sheng, G., Peng, P. A., & Hsu, C. S. (2025). Solvent effect in Soxhlet extraction of source rocks. Organic Geochemistry, 200, 104917.37. Rajesh, Y., Khan, N. M., Shaikh, A. R., Mane, V. S., Daware, G., & Dabhade, G. (2023). Investigation of geranium oil extraction performance by using soxhlet extraction. Materials Today: Proceedings, 72, 2610-2617.38. Cao, S., Liang, J., Chen, M., Xu, C., Wang, X., Qiu, L., ... & Hu, W. (2025). Comparative analysis of extraction technologies for plant extracts and absolutes. Frontiers in Chemistry, 13, 1536590.39. Herzyk, F., Piłakowska-Pietras, D., & Korzeniowska, M. (2024). Supercritical extraction techniques for obtaining biologically active substances from a variety of plant byproducts. Foods, 13(11), 1713.40. Dashtian, K., Kamalabadi, M., Ghoorchian, A., Ganjali, M. R., & Rahimi-Nasrabadi, M. (2024). Integrated supercritical fluid extraction of essential oils. Journal of Chromatography A, 465240.41. Henao-Ardila, A., Quintanilla-Carvajal, M. X., & Moreno, F. L. (2024). Emulsification and stabilization technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon.42. Pino, J. A. (2021). Lecitina: Química, bioquímica y uso en la industria alimentaria: Lecithin: Chemistry, biochemistry and uses in the food industry. Ciencia y Tecnología de Alimentos, 31(1), 68-77.43. Ahmed, E. A., Omar, H. M., Ragb, S. M., & Nasser, A. Y. (2011). The antioxidant activity of vitamin C, DPPD and L-cysteine against cisplatin-induced testicular oxidative damage in rats. Food and Chemical Toxicology, 49(5), 1115-1121.44. Judde, A., Villeneuve, P., Rossignol‐Castera, A., & Le Guillou, A. (2003). Antioxidant effect of soy lecithins on vegetable oil stability and their synergism with tocopherols. Journal of the American Oil Chemists' Society, 80(12), 1209-1215.45. Atkinson, J., Epand, R. F., & Epand, R. M. (2008). Tocopherols and tocotrienols in membranes: a critical review. Free radical biology and medicine, 44(5), 739-764.46. Petiti, J., Caria, S., Revel, L., Pegoraro, M., & Divieto, C. (2024). Standardized Protocol for Resazurin-Based Viability Assays on A549 Cell Line for Improving Cytotoxicity Data Reliability. Cells, 13(23), 1959.47. Kamiloglu, S., Sari, G., Ozdal, T., & Capanoglu, E. (2020). Guidelines for cell viability assays. Food frontiers, 1(3), 332-349.48. Jiao, H. L., & Zhao, B. L. (2002). Cytotoxic effect of peroxisome proliferator fenofibrate on human HepG2 hepatoma cell line and relevant mechanisms. Toxicology and applied pharmacology, 185(3), 172-179.49. McMillian, M. K., Grant, E. R., Zhong, Z., Parker, J. B., Li, L., Zivin, R. A., ... & Johnson, M. D. (2001). Nile Red binding to HepG2 cells: an improved assay for in vitro studies of hepatosteatosis. In Vitro & Molecular Toxicology: A Journal of Basic and Applied Research, 14(3), 177-190.50. Arzumanian, V. A., Kiseleva, O. I., & Poverennaya, E. V. (2021). The curious case of the HepG2 cell line: 40 years of expertise. International journal of molecular sciences, 22(23), 13135.51. Wu, Y., Geng, X. C., Wang, J. F., Miao, Y. F., Lu, Y. L., & Li, B. (2016). The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell biology and toxicology, 32, 37-59.52. Chen, X. Y., Li, J. S., Ma, J., Duan, F. L., & Zhong, P. (2006). Potential role of novel hepatocellular carcinoma-associated gene IDD01 in promoting tumorigenesis of HepG2 cell line. Chinese medical journal, 119(20), 1709-1714.53. Maseko, T. E., Elkalaf, M., Peterová, E., Lotková, H., Staňková, P., Melek, J., ... & Kučera, O. (2023). Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non-alcoholic fatty liver disease. International journal of molecular medicine, 53(2), 18.54. Reiniers, M.J. et al. (2022). Optimal Use of 2′,7′-Dichlorofluorescein Diacetate in Cultured Hepatocytes. In: Broekgaarden, M., Zhang, H., Korbelik, M., Hamblin, M.R., Heger, M. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 2451. Humana, New York, NY.55. Ruijter, N., van der Zee, M., Katsumiti, A., Boyles, M., Cassee, F. R., & Braakhuis, H. (2024). Improving the dichloro-dihydro-fluorescein (DCFH) assay for the assessment of intracellular reactive oxygen species formation by nanomaterials. NanoImpact, 35, 100521.56. Soares, T., Rodrigues, D., Sarraguça, M., Rocha, S., Lima, J. L., Ribeiro, D., ... & Freitas, M. (2019). Optimization of experimental settings for the assessment of reactive oxygen species production by human blood. Oxidative Medicine and Cellular Longevity, 2019(1), 7198484.57. Kim, H., & Xue, X. (2020). Detection of total reactive oxygen species in adherent cells by 2’, 7’-dichlorodihydrofluorescein diacetate staining. Journal of visualized experiments: JoVE, (160), 10-3791.58. Vicente, N. B., Zamboni, J. E. D., Adur, J. F., Paravani, E. V., & Casco, V. H. (2007, November). Photobleaching correction in fluorescence microscopy images. In Journal of Physics: Conference Series (Vol. 90, No. 1, p. 012068). IOP Publishing.59. Descriptores en Ciencias de la Salud (DeCS/MeSH). (2016). Photobleaching 37671. https://id.nlm.nih.gov/mesh/D03876160. Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60-69.61. Barygina, V., Becatti, M., Lotti, T., Moretti, S., Taddei, N., & Fiorillo, C. (2019). ROS‐challenged keratinocytes as a new model for oxidative stress‐mediated skin diseases. Journal of cellular biochemistry, 120(1), 28-36.62. Wu, J., Sun, B., Luo, X., Zhao, M., Zheng, F., Sun, J., ... & Huang, M. (2018). Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling. RSC advances, 8(20), 10898-10906.63. Wu, J., Huo, J., Huang, M., Zhao, M., Luo, X., & Sun, B. (2017). Structural characterization of a tetrapeptide from sesame flavor-type Baijiu and its preventive effects against AAPH-induced oxidative stress in HepG2 cells. Journal of Agricultural and Food Chemistry, 65(48), 10495-10504.64. Hu, J., Li, X., Wu, N., Zhu, C., Jiang, X., Yuan, K., ... & Bai, W. (2023). Anthocyanins prevent AAPH-induced steroidogenesis disorder in leydig cells by counteracting oxidative stress and StAR abnormal expression in a structure-dependent manner. Antioxidants, 12(2), 508.65. Zimowska, W., Motyl, T., Skierski, J., Balasinska, B., Ploszaj, T., Orzechowski, A., & Filipecki, M. (1997). Apoptosis and Bcl-2 protein changes in L1210 leukaemic cells exposed to oxidative stress. Apoptosis, 2, 529-539.66. Kellett, M. E., Greenspan, P., & Pegg, R. B. (2018). Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. Food chemistry, 244, 359-363.67. Qi, W., Qi, W., Xiong, D., & Long, M. (2022). Quercetin: Its antioxidant mechanism, antibacterial properties and potential application in prevention and control of toxipathy. Molecules, 27(19), 6545.68. Gao, W.; Pu, L.; Chen, M.; Wei, J.; Xin, Z.; Wang, Y.; Yao, Z.; Shi, T.; Guo, C. Glutathione homeostasis is significantly altered by quercetin via the Keap1/Nrf2 and MAPK signaling pathways in rats. J. Clin. Biochem. Nutr. 2018, 62, 56–62.69. García-Muentes, S. A., Lafargue-Pérez, F., Labrada-Vázquez, B., Díaz-Velázquez, M., & Sánchez del Campo-Lafita, A. E. (2018). Propiedades fisicoquímicas del aceite y biodiesel producidos de la Jatropha curcas L. en la provincia de Manabí, Ecuador. Revista Cubana de Química, 30(1), 142-158.70. Waraho, T., McClements, D. J., & Decker, E. A. (2011). Impact of free fatty acid concentration and structure on lipid oxidation in oil-in-water emulsions. Food chemistry, 129(3), 854-859.71. Talley, J. T., & Mohiuddin, S. S. (2023). Biochemistry, fatty acid oxidation. In StatPearls [Internet].72. Sosa, M. & Juárez, S (2022) Ácidos Grasos Libres (AGL). Estrategias para la Reducción de Grasa en Productos Cárnicos Fritos. Universidad de Guanajuato XXVII Verano de la Ciencia UG. Vol 16, 1-273. Onu, P., & Mbohwa, C. (2021). New approach and prospects of agrowaste resources conversion for energy systems performance and development. Agricultural Waste Diversity and Sustainability, (2021), 97-118.74. Tiefenbacher, K. F. (2017). Technology of main ingredients—sweeteners and lipids. Wafer and waffle, 123-225.75. Sajjadi, B., Raman, A. & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models. Renewable and Sustainable Energy Reviews, 63, 62-92.76. Irwin, J. W., & Hedges, N. (2004). Measuring lipid oxidation. Understanding and measuring the shelf-life of food, 289-316.77. Alajtal, A. I., Sherami, F. E., & Elbagermi, M. A. (2018). Acid, peroxide, ester and saponification values for some vegetable oils before and after frying. AASCIT Journal of Materials, 4(2), 43-47.78. The International Fragrance Association (2019). Determination of the peroxide value. IFRA Analytical Method. Rue de la Fontaine 15. Switzerland. Recuperado online: https://ifrafragrance.org/safe-use/scientific-guidance79. Calder, P. C. (2005). Polyunsaturated fatty acids and inflammation. Biochemical Society Transactions, 33(2), 423-427.80. Du, M., Ahn, D. U., & Sell, J. L. (2000). Effects of dietary conjugated linoleic acid and linoleic: linolenic acid ratio on polyunsaturated fatty acid status in laying hens. Poultry Science, 79(12), 1749-1756.81. Palomino, O. M., Giordani, V., Chowen, J., Fernández-Alfonso, M. S., & Goya, L. (2022). Physiological doses of oleic and palmitic acids protect human endothelial cells from oxidative stress. Molecules, 27(16), 5217.82. Alconchel-Gago, F., Santamaría, A., & Túnez, I. (2014). Antioxidant effect of oleic acid and hydroxytyrosol in an experimental model similar to Huntington’s disease. Actual Med, 99, 60-4.83. Marsoul, A., Ijjaali, M., Oumous, I., Bennani, B., & Boukir, A. (2020). Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Materials Today: Proceedings, 31, S183-S189.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf3925042https://repositorio.unbosque.edu.co/bitstreams/4c7ba6ee-25b3-4ec7-9c48-d10d64b958ad/download057063876bbed7ab662f69f6f328ab8aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/5bbdcb8e-4345-4272-bbde-113d19601c40/download17cc15b951e7cc6b3728a574117320f9MD56Carta de autorizacion.pdfapplication/pdf388327https://repositorio.unbosque.edu.co/bitstreams/0ee6ceed-64cc-469f-bb9b-dde446290155/download81da00f9265431747eb0cb9e6dc12cb4MD58Anexo 1 acta de aprobacion.pdfapplication/pdf681664https://repositorio.unbosque.edu.co/bitstreams/1162d2fc-ca4c-4e8d-94ef-90e8d2b7f38b/download4ca9f671b682e9e9d78c40adfebfd23dMD59CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/1c1e4859-15a5-4d95-903b-025f0dde1b4f/download3b6ce8e9e36c89875e8cf39962fe8920MD57TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain70094https://repositorio.unbosque.edu.co/bitstreams/cd707db0-2d33-4e54-a403-5c49122a70e3/download6abaf4b3a7c6d1a0595e9a3b7be225afMD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5273https://repositorio.unbosque.edu.co/bitstreams/12bdb396-e016-4126-8732-eb0e035adfd1/downloade83765eae62cddcbb06bd371dee3a2eaMD51120.500.12495/14391oai:repositorio.unbosque.edu.co:20.500.12495/143912025-05-20 05:04:24.707http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalembargo2027-05-18https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |