Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria
Colombia es uno de los países con mayor biodiversidad de flora en el mundo, dentro de esta se destaca el uso tradicional en el tratamiento en infecciones virales. El objetivo de este trabajo fue analizar la información publicada en bases de datos (PubMed, EMBASE, LILACS) entre los años 2000 a 2023,...
- Autores:
-
Mayorga Amar, Angie Daniela
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2025
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/14395
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/14395
- Palabra clave:
- Extractos de plantas
Antiviral
Plantas medicinales
Bioprospección
615.19
Plant extracts
Antiviral
Medicinal plants
Bioprospecting
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
UNBOSQUE2_47ed77b3e73e3ced38aa573495751314 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/14395 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
dc.title.translated.none.fl_str_mv |
Extracts of colombian plants with antiviral activity: an scoping review |
title |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
spellingShingle |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria Extractos de plantas Antiviral Plantas medicinales Bioprospección 615.19 Plant extracts Antiviral Medicinal plants Bioprospecting |
title_short |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
title_full |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
title_fullStr |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
title_full_unstemmed |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
title_sort |
Extractos de plantas colombianas con actividad antiviral: una revisión exploratoria |
dc.creator.fl_str_mv |
Mayorga Amar, Angie Daniela |
dc.contributor.advisor.none.fl_str_mv |
Delgado Tiria, Félix Giovanni Morantes Medina, Sandra Johanna |
dc.contributor.author.none.fl_str_mv |
Mayorga Amar, Angie Daniela |
dc.subject.none.fl_str_mv |
Extractos de plantas Antiviral Plantas medicinales Bioprospección |
topic |
Extractos de plantas Antiviral Plantas medicinales Bioprospección 615.19 Plant extracts Antiviral Medicinal plants Bioprospecting |
dc.subject.ddc.none.fl_str_mv |
615.19 |
dc.subject.keywords.none.fl_str_mv |
Plant extracts Antiviral Medicinal plants Bioprospecting |
description |
Colombia es uno de los países con mayor biodiversidad de flora en el mundo, dentro de esta se destaca el uso tradicional en el tratamiento en infecciones virales. El objetivo de este trabajo fue analizar la información publicada en bases de datos (PubMed, EMBASE, LILACS) entre los años 2000 a 2023, respecto al estudio de la actividad antiviral de extractos de plantas colombianas. Siguiendo la metodología del Instituto Joanna Briggs, se obtuvieron 212 artículos, de estos, 25 cumplían con los criterios de inclusión y fueron seleccionados para extraer su información. Se identificaron 63 plantas, en su mayoría del género Lippia. Entre las técnicas de preparación del material vegetal se destacó el uso de la hidrodestilación y la extracción con etanol. Los virus que más se investigaron fueron el dengue en sus serotipos 1, 2, 3 y 4 (DENV) y el SARS-CoV-2. El tipo de estudio experimental en su mayoría fue in vitro, y sólo seis de los artículos revisados incluían ensayos in silico para determinar el mecanismo de acción de los metabolitos de los extractos. La mayoría de los estudios revisados reportan haber evidenciado actividad antiviral, lo que demuestra el potencial antiviral de plantas encontradas en el país. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-05-19T17:53:26Z |
dc.date.available.none.fl_str_mv |
2025-05-19T17:53:26Z |
dc.date.issued.none.fl_str_mv |
2025-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/14395 |
dc.identifier.instname.spa.fl_str_mv |
Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/14395 |
identifier_str_mv |
Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
1. Angulo, C.A.F.; Rosero, R.R.A.; González Insuasti, M.S. Estudio etnobotánico de las plantas medicinales utilizadas por los habitantes del corregimiento de Genoy, Municipio de Pasto, Colombia. Univ Salud 2012, 14(2), 168-185. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-71072012000200007 11. Pabón, L.C.; Rodríguez, M.F.; Hernández Rodríguez, P. Plantas medicinales que se comercializan en Bogotá (Colombia) para el tratamiento de enfermedades infecciosas. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2017, 16(6), 529-546. https://www.redalyc.org/pdf/856/85653615002.pdf 2. Adeosun, W.B.; Loots, D.T. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024, 16(2), 218. https://doi.org/10.3390/v16020218 3. Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. https://doi.org/10.3389/fphar.2013.00177 4. Tran, J. Green Tea: A Potential Alternative Anti-Infectious Agent Catechins and Viral Infections. Advances in Anthropology 2013, 3, 198–202. https://doi.org/10.4236/aa.2013.34028 5. Hudson, J.; Vimalanathan, S. Echinacea-A Source of Potent Antivirals for Respiratory Virus Infections. Pharmaceuticals 2011, 4, 1019–1031. https://doi.org/10.3390/ph4071019 6. Rangel, O. La biodiversidad de Colombia: significado y distribución regional. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 2015. https://doi.org/10.18257/raccefyn.136 7. Bernal, H.Y.; Mesa, C. Chapter 3: Endemic Medicinal Plants of Colombia. In Catalogue of Useful Plants Colombia, Royal Botanic Gardens Kew, 2022; pp. 48-61. https://www.researchgate.net/publication/364317564_Chapter_3_Endemic_Medicinal_Plants_of_Colombia 8. Chitalia, V.C.; Munawar, A.H. A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals. J Transl Med 2020, 18(1), 390. https://doi.org/10.1186/s12967-020-02476-9 9. Villena Tejada, M.; Vera Ferchau, I.; Cardona Rivero, A.; Zamalloa Cornejo, R.; Quispe Florez, M.; Frisancho Triveño, Z.; Abarca Meléndez, R.C.; Alvarez Sucari, S.G.; Mejia, C.R.; Yañez, J.A. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One 2021, 16(9), e0257165. https://doi.org/10.1371/journal.pone.0257165 10. He, H. Vaccines and Antiviral Agents. In Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications, 2013; pp. 239–250. https://www.intechopen.com/chapters/45649 12. Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Research 2008, 131(2), 111-120. https://doi.org/10.1016/j.virusres.2007.09.008 13. COLOMBIA CO. Colombia, líder en diversidad de Flora. Disponible en: https://www.colombia.co/pais-colombia/hechos/colombia-lider-en-diversidad-de-flora/#:~:text=Las%20m%C3%A1s%20de%2045.000%20especies,superficie%206%2C5%20veces%20mayor (consultado el 25 de enero de 2025) 14. Ehrich, K.; Freeman, G.K.; Richards, S.C.; Robinson, I.C., Shepperd, S. How to do a scoping exercise: continuity of care. Research Policy and Planning 2002, 20(1), 25–29. https://eprints.soton.ac.uk/33560/ 15. Pham, M.; Raji, A.; Greig, J.; Sargeant, J.; Papadopoulos, A.; McEwen, S. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Research Synthesis Methods 2014, 5(4), 371–385. https://doi.org/10.1002/jrsm.1123 16. Grimshaw, J. A Guide to Knowledge Synthesis: A Knowledge Synthesis Chapter, 2020. Disponible en: https://cihr-irsc.gc.ca/e/41382.html 16. (consultado el 25 de enero de 2025) 17. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Kastner, M.; Levac, D., Ng, C., Pearson Sharpe, J., Wilson, K., Kenny, M., Warren, R., Wilson, C., Stelfox, H.T., Straus, S.E. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol 2016, 16, 15. https://doi.org/10.1186/s12874-016-0116-4 18. Tricco, A., Zarin, W.; Ghassemi, M.; Nincic, V.; Lillie, E.; Page, M., Shamseer, L., Antony, J., Rios, P., Hwee, J., Veroniki, A.A., Moher, D., Hartling, L., Pham, B., Straus, S.E. Same family, different species: methodological conduct and quality varies according to purpose for five types of knowledge synthesis. Journal of Clinical Epidemiology 2018, 96, 133–142. https://doi.org/10.1016/j.jclinepi.2017.10.014 19. Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping Reviews. In Aromataris E, Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.), JBI Manual for Evidence Synthesis, 2020; JBI; 2024. https://synthesismanual.jbi.global 20. Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D., Horsley, T., Weeks, L., Hempel, S. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018, 169(7), 467-473. doi: 10.7326/M18-0850 21. Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022, 27(20), 6844. https://doi.org/10.3390/molecules27206844 22. Parra Acevedo, V.; Ocazionez, R.E.; Stashenko E.E.; Silva Trujillo, L.; Rondón Villarreal, P. Comparative Virucidal Activities of Essential Oils and Alcohol-Based Solutions Against Enveloped Virus Surrogates: In Vitro and In Silico Analyses. Molecules 2023, 28(10), 4156. https://doi.org/10.3390/molecules28104156 23. Prieto, K.; Arévalo, C.; Lasso, P.; Carlosama, C.; Urueña, C.; Fiorentino, S.; Barreto, A. Plant extracts modulate cellular stress to inhibit replication of mouse Coronavirus MHV-A59. Heliyon 2023, 10(1), e23403. https://doi.org/10.1016/j.heliyon.2023.e23403 24. Betancur Galvis, L.; Jimenez Jarava, O.J.; Rivas, F.; Mendoza Hernández, W.E.; González Cardenete, M.A. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2 yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals 2023, 16(11), 1602. https://doi.org/10.3390/ph16111602 25. Betancur Galvis, L.A.; Morales, G.E.; Forero, J.E.; Roldan, J. Cytotoxic and Antiviral Activities of Colombian Medicinal Plant Extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz 2002, 97(4), 541–546. https://doi.org/10.1590/s0074-02762002000400017 26. Meneses, R.; Ocazionez, R.E.; Martinez, J.R.; Stashenko, E.E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Ann Clin Microbiol Antimicrob 2009, 8(1), 8. https://doi.org/10.1186/1476-0711-8-8 27. Forero, J.E.; Avila, L.; Taborda, N.; Tabares, P.; López, A.; Torres, F.; Quiñones, W.; Bucio, M.A.; Mora Pérez, Y.; Rugeles, M.T.; Joseph Nathan, P.; Echeverri, F. In vitro anti-influenza screening of several Euphorbiaceae species: Structure of a bioactive Cyanoglucoside from Codiaeum variegatum. Phytochemistry 2008, 69(16), 2815–2819. https://doi.org/10.1016/j.phytochem.2008.09.003 28. Téllez, M.A.; Téllez, A.N.; Vélez, F.; Ulloa, J.C. In vitro antiviral activity against rotavirus and astrovirus infection exerted by substances obtained from Achyrocline bogotensis (Kunth) DC. (Compositae). BMC Complement Altern Med 2015, 15(1). https://doi.org/10.1186/s12906-015-0949-0 29. Avila, L.; Perez, M.; Sanchez Duffhues, G.; Hernández Galán, R.; Muñoz, E.; Cabezas, F.; Quiñones, W.; Torres, F.; Echeverri, F. Effects of diterpenes from latex of Euphorbia lactea and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry 2010, 71(2–3), 243–248. https://doi.org/10.1016/j.phytochem.2009.10.005 30. Gómez, L.A.; Stashenko, E.; Ocazionez, R.E. Comparative Study on In Vitro Activities of Citral, Limonene and Essential Oils from Lippia citriodora and L. alba on Yellow Fever Virus. Natural Product Communications 2013, 8(2). https://doi.org/10.1177/1934578X1300800230 31. Quintero Rueda, E.; Velandia, S.A.; Ocazionez, R.E.; Stashenko, E.E.; Rondón Villarreal, P. Comparative Anti-dengue Activities of Ethanolic and Supercritical Extracts of Lippia origanoides Kunth: in-vitro and in-silico Analyses. Records of Natural Products 2023, 4, 1–18. http://doi.org/10.25135/rnp.401.2303.2720 32. Velandia, S.A.; Quintero Rueda, E.; Rondon Villarreal, P.; Silva, L.M.; Stashenko, E.E.; Ocazionez, R.E. Essential oil of Cordia curassavica (Jacq) Roem. & Schult: in vitro and in silico evaluation of effects on dengue virus replication and cytokines production. Bol Latinoam Caribe Plant Med Aromat 2023, 22(6), 848–863. https://doi.org/10.37360/blacpma.23.22.6.57 33. Ramírez, M.C.; Méndez, K.; Castelblanco Mora, A.; Quijano, S.; Ulloa, J. In Vitro Evaluation of Anti-Rotaviral Activity and Intestinal Toxicity of a Phytotherapeutic Prototype of Achyrocline bogotensis (Kunth) DC. Viruses 2022, 14(11), 2394. https://doi.org/10.3390/v14112394 34. Urueña, C.; Ballesteros Ramírez, R.; Gomez Cadena, A.; Barreto, A.; Prieto, K.; Quijano, S.; Aschner, P.; Martínez, C.; Zapata Cardona, M.I.; El Ahanidi, H.; Jandus, C.; Florez Alvarez, L.; Rugeles, M.T.; Zapata Builes, W.; Garcia, A.A.; Fiorentino, S. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et). Front. Pharmacol. 2022, 9. https://doi.org/10.3389/fmed.2022.991873 35. Jaimes Gualdrón, T.; Flórez Álvarez, L.; Zapata Cardona, M.I.; Rojano, B.A.; Rugeles, M.T.; Zapata Builes, W. Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Functional Foods in Health and Disease 2022, 12(9), 543. https://doi.org/10.31989/ffhd.v12i9.918 36. Contreras Puentes, N.; Salas Moreno, M.; Mosquera Chaverra, L.; Córdoba Tovar, L.; Alviz Amador, A. Volatile compounds from Phyla scaberrima (Juss. ex Pers.) Moldenke and Dysphania ambrosioides (L.) Mosyakin & Clemants as possible SARS-CoV-2 protease inhibitors: Identification and in-silico study. J. Pharm. Pharmacogn. Res. 2022, 10(3), 469–485. http://dx.doi.org/10.56499/jppres21.1328_10.3.469 37. Yepes Perez, A.F.; Herrera Calderón, O.; Oliveros, C.A.; Flórez Álvarez, L.; Zapata Cardona, M.I.; Yepes, L.; Aguilar Jimenez, W.; Rugeles, M.T.; Zapata, W. The Hydroalcoholic Extract of Uncaria tomentosa (cat’s claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-Based Complementary and Alternative Medicine 2021, Article ID 6679761. https://doi.org/10.1155/2021/6679761 38. Trujillo Correa, A.I.; Quintero Gil, D.C.; Diaz Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med 2019. https://doi.org/10.1186/s12906-019-2695-1 39. Gómez Calderón, C.; Mesa Castro, C.; Robledo, S.; Gómez, S.; Bolivar Avila, S.; Diaz Castillo, F.; Martínez Gutierrez, M. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement Altern Med 2017, 17(1), 57. https://doi.org/10.1186/s12906-017-1562-1 40. Ocazionez, R.E.; Meneses, R.; Torres, F.A.; Stashenko, E. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem. Inst. Oswaldo Cruz 2010, 105(3), 304–309. https://doi.org/10.1590/s0074-02762010000300010 41. García Ariza, L.L.; Olaya Montes Quim J.H.; Sierra Acevedo, J.I.; Padilla Sanabria, L. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med 2017, 22(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962017000100007 42. Agudelo Gómez, L.; Ríos, G.; Camilo, D.; García, D.; Stashenko, E.E.; Betancur Galvis, L. Composición química y evaluación de la actividad antiherpética in vitro de aceites esenciales de Lippia alba (Mill) N.E. Brown y sus componentes mayoritarios. Salud UIS 2010, 42(3), 230–239. https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/1678 43. Meneses, R., Torres, F.; Stashenko, E.E.; Ocazionez, R.E. Aceites esenciales de plantas colombianas inactivan el virus del dengue y el virus de la fiebre amarilla. Salud UIS 2009, 41(3), 236–243. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-08072009000300005 44. Yáñez Rueda, X.; Betancur Galvis, L.; Agudelo Gómez, L.; Zapata, M.B.; Correa Royero, J.; Mesa Arango, A.C.; Stashenko, E.E. Composición química y actividad biológica de aceites esenciales de Calycolpus moritzianus recolectado en el Norte de Santander, Colombia. Salud UIS 2009, 41(3), 259–267. https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/696 45. Taborda, N.A.; Acevedo, L.Y.; Patiño, C.P.; Forero, J.E.; López Herrera, A. Actividad antiviral in vitro de extractos de Hura crepitans y Codiaeum variegatum en la replicación de herpes virus bovino tipo-1 y virus de estomatitis vesicular. Revista Colombiana de Ciencias Pecuarias 2016. https://doi.org/10.17533/udea.rccp.324147 46. Ramos, G. Colombia, segundo país con mayor diversidad de plantas del planeta, 2019. Disponible en: https://www.minambiente.gov.co/colombia-segundo-pais-con-mayor-diversidad-de-plantas-del-planeta/ (consultado el 29 de enero de 2025) 47. Terblanché, F.C., Kornelius, G. Essential Oil Constituents of the Genus Lippia (Verbenaceae)—A Literature Review. Journal of Essential Oil Research 1996, 8, 471–485. https://doi.org/10.1080/10412905.1996.9700673 48. Pascual, M.E., Slowing, K., Carretero, E., Sánchez, D., Villar, A. Review Lippia: traditional uses, chemistry and pharmacology: a review. Journal of Ethnopharmacology 2000. https://doi.org/10.1016/s0378-8741(01)00234-3 49. Padilla, J.C., Rojas, D.P., Sáenz Gómez, R. Dengue en Colombia: Epidemiología de la reemergencia a la hiperendemia. Guías de impresión Ltda. 2012. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/INV/Dengue%20en%20Colombia.pdf (consultado el 29 de enero de 2025) 50. Instituto Nacional de Salud. Protocolo de vigilancia en salud pública Dengue. 2024. Disponible en: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Dengue.pdf (consultado el 29 de enero de 2025) 51. Chen, X., Yin, Y.H., Zhang, M.Y., Liu, J.Y., Qu, Y.Q. Investigating the mechanism of ShuFeng JieDu capsule for the treatment of novel Coronavirus pneumonia (COVID-19) based on network pharmacology. International Journal of Medical Sciences 2020, 17(16), 2511-2530. https://doi.org/10.7150/ijms.46378 52. Panyod, S., Ho, C.T., Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. Journal of Traditional and Complementary Medicine 2020, 10(4), 420-427. https://doi.org/10.1016/j.jtcme.2020.05.004 53. Ballesteros Ramírez, R., Durán, M.I., Fiorentino, S. Genotoxicity and mutagenicity assessment of a standardized extract (P2Et) obtained from Caesalpinia spinosa. Toxicology Reports 2021, 258-263. https://doi.org/10.1016/j.toxrep.2020.12.024 54. Seca, A.M.L., Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci 2018, 19(1), 263. https://doi.org/10.3390/ijms19010263 |
dc.rights.en.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Química Farmacéutica |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/32d39472-389e-4cce-b495-c4241a2bc51d/download https://repositorio.unbosque.edu.co/bitstreams/d0889a1c-0073-408c-bb74-7d0954d7f840/download https://repositorio.unbosque.edu.co/bitstreams/94f0278c-1cf2-460b-841e-3cde7887c733/download https://repositorio.unbosque.edu.co/bitstreams/52855347-5696-440f-9a20-982dc03bbcae/download https://repositorio.unbosque.edu.co/bitstreams/cfe53728-093e-4088-b1c6-201bf3861406/download https://repositorio.unbosque.edu.co/bitstreams/32521361-58dc-43df-9c93-83026ede56f3/download https://repositorio.unbosque.edu.co/bitstreams/3cdb17f4-bd1c-4772-9470-818aeef71b26/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 ae1803da4b3af385b359e62ea484d552 ae1803da4b3af385b359e62ea484d552 f5ac6c99f54f1b80f6f8a06588c2bd6b 5643bfd9bcf29d560eeec56d584edaa9 167d9cc4d77cbefaf4c0dcaf57fe6b02 58c828977018af70f8fb36c2202a7f88 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1834108036483907584 |
spelling |
Delgado Tiria, Félix GiovanniMorantes Medina, Sandra JohannaMayorga Amar, Angie Daniela2025-05-19T17:53:26Z2025-05-19T17:53:26Z2025-05https://hdl.handle.net/20.500.12495/14395Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coColombia es uno de los países con mayor biodiversidad de flora en el mundo, dentro de esta se destaca el uso tradicional en el tratamiento en infecciones virales. El objetivo de este trabajo fue analizar la información publicada en bases de datos (PubMed, EMBASE, LILACS) entre los años 2000 a 2023, respecto al estudio de la actividad antiviral de extractos de plantas colombianas. Siguiendo la metodología del Instituto Joanna Briggs, se obtuvieron 212 artículos, de estos, 25 cumplían con los criterios de inclusión y fueron seleccionados para extraer su información. Se identificaron 63 plantas, en su mayoría del género Lippia. Entre las técnicas de preparación del material vegetal se destacó el uso de la hidrodestilación y la extracción con etanol. Los virus que más se investigaron fueron el dengue en sus serotipos 1, 2, 3 y 4 (DENV) y el SARS-CoV-2. El tipo de estudio experimental en su mayoría fue in vitro, y sólo seis de los artículos revisados incluían ensayos in silico para determinar el mecanismo de acción de los metabolitos de los extractos. La mayoría de los estudios revisados reportan haber evidenciado actividad antiviral, lo que demuestra el potencial antiviral de plantas encontradas en el país.PregradoQuímico FarmacéuticoColombia is one of the countries with the greatest biodiversity of flora in the world, within which the traditional use in the treatment of viral infections stands out. The objective of this work was to analyze the information published in databases (PubMed, EMBASE, LILACS) between 2000 and 2023, regarding the study of the antiviral activity of Colombian plant extracts. Following the methodology of the Joanna Briggs Institute, 212 articles were obtained; of these, 25 met the inclusion criteria and were selected to extract their information. Sixty-three plants were identified, mostly from the genus Lippia. Among the plant material preparation techniques, the use of hydrodistillation and ethanol extraction stood out. The most investigated viruses were dengue serotypes 1, 2, 3 and 4 (DENV) and SARS-CoV-2. The type of experimental study was mostly in vitro, and only six of the articles reviewed included in silico assays to determine the mechanism of action of the metabolites of the extracts. Most of the studies reviewed reported evidence of antiviral activity, which demonstrates the antiviral potential of plants found in the country.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Extractos de plantasAntiviralPlantas medicinalesBioprospección615.19Plant extractsAntiviralMedicinal plantsBioprospectingExtractos de plantas colombianas con actividad antiviral: una revisión exploratoriaExtracts of colombian plants with antiviral activity: an scoping reviewQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. Angulo, C.A.F.; Rosero, R.R.A.; González Insuasti, M.S. Estudio etnobotánico de las plantas medicinales utilizadas por los habitantes del corregimiento de Genoy, Municipio de Pasto, Colombia. Univ Salud 2012, 14(2), 168-185. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124-7107201200020000711. Pabón, L.C.; Rodríguez, M.F.; Hernández Rodríguez, P. Plantas medicinales que se comercializan en Bogotá (Colombia) para el tratamiento de enfermedades infecciosas. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 2017, 16(6), 529-546. https://www.redalyc.org/pdf/856/85653615002.pdf2. Adeosun, W.B.; Loots, D.T. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024, 16(2), 218. https://doi.org/10.3390/v160202183. Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. https://doi.org/10.3389/fphar.2013.001774. Tran, J. Green Tea: A Potential Alternative Anti-Infectious Agent Catechins and Viral Infections. Advances in Anthropology 2013, 3, 198–202. https://doi.org/10.4236/aa.2013.340285. Hudson, J.; Vimalanathan, S. Echinacea-A Source of Potent Antivirals for Respiratory Virus Infections. Pharmaceuticals 2011, 4, 1019–1031. https://doi.org/10.3390/ph40710196. Rangel, O. La biodiversidad de Colombia: significado y distribución regional. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 2015. https://doi.org/10.18257/raccefyn.1367. Bernal, H.Y.; Mesa, C. Chapter 3: Endemic Medicinal Plants of Colombia. In Catalogue of Useful Plants Colombia, Royal Botanic Gardens Kew, 2022; pp. 48-61. https://www.researchgate.net/publication/364317564_Chapter_3_Endemic_Medicinal_Plants_of_Colombia8. Chitalia, V.C.; Munawar, A.H. A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals. J Transl Med 2020, 18(1), 390. https://doi.org/10.1186/s12967-020-02476-99. Villena Tejada, M.; Vera Ferchau, I.; Cardona Rivero, A.; Zamalloa Cornejo, R.; Quispe Florez, M.; Frisancho Triveño, Z.; Abarca Meléndez, R.C.; Alvarez Sucari, S.G.; Mejia, C.R.; Yañez, J.A. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: A cross-sectional survey. PLoS One 2021, 16(9), e0257165. https://doi.org/10.1371/journal.pone.025716510. He, H. Vaccines and Antiviral Agents. In Current Issues in Molecular Virology: Viral Genetics and Biotechnological Applications, 2013; pp. 239–250. https://www.intechopen.com/chapters/4564912. Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Research 2008, 131(2), 111-120. https://doi.org/10.1016/j.virusres.2007.09.00813. COLOMBIA CO. Colombia, líder en diversidad de Flora. Disponible en: https://www.colombia.co/pais-colombia/hechos/colombia-lider-en-diversidad-de-flora/#:~:text=Las%20m%C3%A1s%20de%2045.000%20especies,superficie%206%2C5%20veces%20mayor (consultado el 25 de enero de 2025)14. Ehrich, K.; Freeman, G.K.; Richards, S.C.; Robinson, I.C., Shepperd, S. How to do a scoping exercise: continuity of care. Research Policy and Planning 2002, 20(1), 25–29. https://eprints.soton.ac.uk/33560/15. Pham, M.; Raji, A.; Greig, J.; Sargeant, J.; Papadopoulos, A.; McEwen, S. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Research Synthesis Methods 2014, 5(4), 371–385. https://doi.org/10.1002/jrsm.112316. Grimshaw, J. A Guide to Knowledge Synthesis: A Knowledge Synthesis Chapter, 2020. Disponible en: https://cihr-irsc.gc.ca/e/41382.html 16. (consultado el 25 de enero de 2025)17. Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.; Colquhoun, H.; Kastner, M.; Levac, D., Ng, C., Pearson Sharpe, J., Wilson, K., Kenny, M., Warren, R., Wilson, C., Stelfox, H.T., Straus, S.E. A scoping review on the conduct and reporting of scoping reviews. BMC Med Res Methodol 2016, 16, 15. https://doi.org/10.1186/s12874-016-0116-418. Tricco, A., Zarin, W.; Ghassemi, M.; Nincic, V.; Lillie, E.; Page, M., Shamseer, L., Antony, J., Rios, P., Hwee, J., Veroniki, A.A., Moher, D., Hartling, L., Pham, B., Straus, S.E. Same family, different species: methodological conduct and quality varies according to purpose for five types of knowledge synthesis. Journal of Clinical Epidemiology 2018, 96, 133–142. https://doi.org/10.1016/j.jclinepi.2017.10.01419. Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping Reviews. In Aromataris E, Lockwood, C.; Porritt, K.; Pilla, B.; Jordan, Z. (Eds.), JBI Manual for Evidence Synthesis, 2020; JBI; 2024. https://synthesismanual.jbi.global20. Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D., Horsley, T., Weeks, L., Hempel, S. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018, 169(7), 467-473. doi: 10.7326/M18-085021. Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022, 27(20), 6844. https://doi.org/10.3390/molecules2720684422. Parra Acevedo, V.; Ocazionez, R.E.; Stashenko E.E.; Silva Trujillo, L.; Rondón Villarreal, P. Comparative Virucidal Activities of Essential Oils and Alcohol-Based Solutions Against Enveloped Virus Surrogates: In Vitro and In Silico Analyses. Molecules 2023, 28(10), 4156. https://doi.org/10.3390/molecules2810415623. Prieto, K.; Arévalo, C.; Lasso, P.; Carlosama, C.; Urueña, C.; Fiorentino, S.; Barreto, A. Plant extracts modulate cellular stress to inhibit replication of mouse Coronavirus MHV-A59. Heliyon 2023, 10(1), e23403. https://doi.org/10.1016/j.heliyon.2023.e2340324. Betancur Galvis, L.; Jimenez Jarava, O.J.; Rivas, F.; Mendoza Hernández, W.E.; González Cardenete, M.A. Synergistic In Vitro Antiviral Effect of Combinations of Ivermectin, Essential Oils, and 18-(Phthalimid-2 yl)ferruginol against Arboviruses and Herpesvirus. Pharmaceuticals 2023, 16(11), 1602. https://doi.org/10.3390/ph1611160225. Betancur Galvis, L.A.; Morales, G.E.; Forero, J.E.; Roldan, J. Cytotoxic and Antiviral Activities of Colombian Medicinal Plant Extracts of the Euphorbia genus. Mem. Inst. Oswaldo Cruz 2002, 97(4), 541–546. https://doi.org/10.1590/s0074-0276200200040001726. Meneses, R.; Ocazionez, R.E.; Martinez, J.R.; Stashenko, E.E. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro. Ann Clin Microbiol Antimicrob 2009, 8(1), 8. https://doi.org/10.1186/1476-0711-8-827. Forero, J.E.; Avila, L.; Taborda, N.; Tabares, P.; López, A.; Torres, F.; Quiñones, W.; Bucio, M.A.; Mora Pérez, Y.; Rugeles, M.T.; Joseph Nathan, P.; Echeverri, F. In vitro anti-influenza screening of several Euphorbiaceae species: Structure of a bioactive Cyanoglucoside from Codiaeum variegatum. Phytochemistry 2008, 69(16), 2815–2819. https://doi.org/10.1016/j.phytochem.2008.09.00328. Téllez, M.A.; Téllez, A.N.; Vélez, F.; Ulloa, J.C. In vitro antiviral activity against rotavirus and astrovirus infection exerted by substances obtained from Achyrocline bogotensis (Kunth) DC. (Compositae). BMC Complement Altern Med 2015, 15(1). https://doi.org/10.1186/s12906-015-0949-029. Avila, L.; Perez, M.; Sanchez Duffhues, G.; Hernández Galán, R.; Muñoz, E.; Cabezas, F.; Quiñones, W.; Torres, F.; Echeverri, F. Effects of diterpenes from latex of Euphorbia lactea and Euphorbia laurifolia on human immunodeficiency virus type 1 reactivation. Phytochemistry 2010, 71(2–3), 243–248. https://doi.org/10.1016/j.phytochem.2009.10.00530. Gómez, L.A.; Stashenko, E.; Ocazionez, R.E. Comparative Study on In Vitro Activities of Citral, Limonene and Essential Oils from Lippia citriodora and L. alba on Yellow Fever Virus. Natural Product Communications 2013, 8(2). https://doi.org/10.1177/1934578X130080023031. Quintero Rueda, E.; Velandia, S.A.; Ocazionez, R.E.; Stashenko, E.E.; Rondón Villarreal, P. Comparative Anti-dengue Activities of Ethanolic and Supercritical Extracts of Lippia origanoides Kunth: in-vitro and in-silico Analyses. Records of Natural Products 2023, 4, 1–18. http://doi.org/10.25135/rnp.401.2303.272032. Velandia, S.A.; Quintero Rueda, E.; Rondon Villarreal, P.; Silva, L.M.; Stashenko, E.E.; Ocazionez, R.E. Essential oil of Cordia curassavica (Jacq) Roem. & Schult: in vitro and in silico evaluation of effects on dengue virus replication and cytokines production. Bol Latinoam Caribe Plant Med Aromat 2023, 22(6), 848–863. https://doi.org/10.37360/blacpma.23.22.6.5733. Ramírez, M.C.; Méndez, K.; Castelblanco Mora, A.; Quijano, S.; Ulloa, J. In Vitro Evaluation of Anti-Rotaviral Activity and Intestinal Toxicity of a Phytotherapeutic Prototype of Achyrocline bogotensis (Kunth) DC. Viruses 2022, 14(11), 2394. https://doi.org/10.3390/v1411239434. Urueña, C.; Ballesteros Ramírez, R.; Gomez Cadena, A.; Barreto, A.; Prieto, K.; Quijano, S.; Aschner, P.; Martínez, C.; Zapata Cardona, M.I.; El Ahanidi, H.; Jandus, C.; Florez Alvarez, L.; Rugeles, M.T.; Zapata Builes, W.; Garcia, A.A.; Fiorentino, S. Randomized double-blind clinical study in patients with COVID-19 to evaluate the safety and efficacy of a phytomedicine (P2Et). Front. Pharmacol. 2022, 9. https://doi.org/10.3389/fmed.2022.99187335. Jaimes Gualdrón, T.; Flórez Álvarez, L.; Zapata Cardona, M.I.; Rojano, B.A.; Rugeles, M.T.; Zapata Builes, W. Corozo (Bactris guineensis) fruit extract has antiviral activity in vitro against SARS-CoV-2. Functional Foods in Health and Disease 2022, 12(9), 543. https://doi.org/10.31989/ffhd.v12i9.91836. Contreras Puentes, N.; Salas Moreno, M.; Mosquera Chaverra, L.; Córdoba Tovar, L.; Alviz Amador, A. Volatile compounds from Phyla scaberrima (Juss. ex Pers.) Moldenke and Dysphania ambrosioides (L.) Mosyakin & Clemants as possible SARS-CoV-2 protease inhibitors: Identification and in-silico study. J. Pharm. Pharmacogn. Res. 2022, 10(3), 469–485. http://dx.doi.org/10.56499/jppres21.1328_10.3.46937. Yepes Perez, A.F.; Herrera Calderón, O.; Oliveros, C.A.; Flórez Álvarez, L.; Zapata Cardona, M.I.; Yepes, L.; Aguilar Jimenez, W.; Rugeles, M.T.; Zapata, W. The Hydroalcoholic Extract of Uncaria tomentosa (cat’s claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-Based Complementary and Alternative Medicine 2021, Article ID 6679761. https://doi.org/10.1155/2021/667976138. Trujillo Correa, A.I.; Quintero Gil, D.C.; Diaz Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement Altern Med 2019. https://doi.org/10.1186/s12906-019-2695-139. Gómez Calderón, C.; Mesa Castro, C.; Robledo, S.; Gómez, S.; Bolivar Avila, S.; Diaz Castillo, F.; Martínez Gutierrez, M. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Complement Altern Med 2017, 17(1), 57. https://doi.org/10.1186/s12906-017-1562-140. Ocazionez, R.E.; Meneses, R.; Torres, F.A.; Stashenko, E. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro. Mem. Inst. Oswaldo Cruz 2010, 105(3), 304–309. https://doi.org/10.1590/s0074-0276201000030001041. García Ariza, L.L.; Olaya Montes Quim J.H.; Sierra Acevedo, J.I.; Padilla Sanabria, L. Actividad biológica de tres Curcuminoides de Curcuma longa L. (Cúrcuma) cultivada en el Quindío-Colombia. Rev Cubana Plant Med 2017, 22(1). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-4796201700010000742. Agudelo Gómez, L.; Ríos, G.; Camilo, D.; García, D.; Stashenko, E.E.; Betancur Galvis, L. Composición química y evaluación de la actividad antiherpética in vitro de aceites esenciales de Lippia alba (Mill) N.E. Brown y sus componentes mayoritarios. Salud UIS 2010, 42(3), 230–239. https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/167843. Meneses, R., Torres, F.; Stashenko, E.E.; Ocazionez, R.E. Aceites esenciales de plantas colombianas inactivan el virus del dengue y el virus de la fiebre amarilla. Salud UIS 2009, 41(3), 236–243. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-0807200900030000544. Yáñez Rueda, X.; Betancur Galvis, L.; Agudelo Gómez, L.; Zapata, M.B.; Correa Royero, J.; Mesa Arango, A.C.; Stashenko, E.E. Composición química y actividad biológica de aceites esenciales de Calycolpus moritzianus recolectado en el Norte de Santander, Colombia. Salud UIS 2009, 41(3), 259–267. https://revistas.uis.edu.co/index.php/revistasaluduis/article/view/69645. Taborda, N.A.; Acevedo, L.Y.; Patiño, C.P.; Forero, J.E.; López Herrera, A. Actividad antiviral in vitro de extractos de Hura crepitans y Codiaeum variegatum en la replicación de herpes virus bovino tipo-1 y virus de estomatitis vesicular. Revista Colombiana de Ciencias Pecuarias 2016. https://doi.org/10.17533/udea.rccp.32414746. Ramos, G. Colombia, segundo país con mayor diversidad de plantas del planeta, 2019. Disponible en: https://www.minambiente.gov.co/colombia-segundo-pais-con-mayor-diversidad-de-plantas-del-planeta/ (consultado el 29 de enero de 2025)47. Terblanché, F.C., Kornelius, G. Essential Oil Constituents of the Genus Lippia (Verbenaceae)—A Literature Review. Journal of Essential Oil Research 1996, 8, 471–485. https://doi.org/10.1080/10412905.1996.970067348. Pascual, M.E., Slowing, K., Carretero, E., Sánchez, D., Villar, A. Review Lippia: traditional uses, chemistry and pharmacology: a review. Journal of Ethnopharmacology 2000. https://doi.org/10.1016/s0378-8741(01)00234-349. Padilla, J.C., Rojas, D.P., Sáenz Gómez, R. Dengue en Colombia: Epidemiología de la reemergencia a la hiperendemia. Guías de impresión Ltda. 2012. Disponible en: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/INEC/INV/Dengue%20en%20Colombia.pdf (consultado el 29 de enero de 2025)50. Instituto Nacional de Salud. Protocolo de vigilancia en salud pública Dengue. 2024. Disponible en: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Dengue.pdf (consultado el 29 de enero de 2025)51. Chen, X., Yin, Y.H., Zhang, M.Y., Liu, J.Y., Qu, Y.Q. Investigating the mechanism of ShuFeng JieDu capsule for the treatment of novel Coronavirus pneumonia (COVID-19) based on network pharmacology. International Journal of Medical Sciences 2020, 17(16), 2511-2530. https://doi.org/10.7150/ijms.4637852. Panyod, S., Ho, C.T., Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. Journal of Traditional and Complementary Medicine 2020, 10(4), 420-427. https://doi.org/10.1016/j.jtcme.2020.05.00453. Ballesteros Ramírez, R., Durán, M.I., Fiorentino, S. Genotoxicity and mutagenicity assessment of a standardized extract (P2Et) obtained from Caesalpinia spinosa. Toxicology Reports 2021, 258-263. https://doi.org/10.1016/j.toxrep.2020.12.02454. Seca, A.M.L., Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int J Mol Sci 2018, 19(1), 263. https://doi.org/10.3390/ijms19010263spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/32d39472-389e-4cce-b495-c4241a2bc51d/download17cc15b951e7cc6b3728a574117320f9MD52Acta de aprobacion.pdfapplication/pdf1055648https://repositorio.unbosque.edu.co/bitstreams/d0889a1c-0073-408c-bb74-7d0954d7f840/downloadae1803da4b3af385b359e62ea484d552MD54Acta de aprobacion.pdfapplication/pdf1055648https://repositorio.unbosque.edu.co/bitstreams/94f0278c-1cf2-460b-841e-3cde7887c733/downloadae1803da4b3af385b359e62ea484d552MD55ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf921347https://repositorio.unbosque.edu.co/bitstreams/52855347-5696-440f-9a20-982dc03bbcae/downloadf5ac6c99f54f1b80f6f8a06588c2bd6bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/cfe53728-093e-4088-b1c6-201bf3861406/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain80094https://repositorio.unbosque.edu.co/bitstreams/32521361-58dc-43df-9c93-83026ede56f3/download167d9cc4d77cbefaf4c0dcaf57fe6b02MD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4841https://repositorio.unbosque.edu.co/bitstreams/3cdb17f4-bd1c-4772-9470-818aeef71b26/download58c828977018af70f8fb36c2202a7f88MD5720.500.12495/14395oai:repositorio.unbosque.edu.co:20.500.12495/143952025-05-20 05:08:56.127http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalembargo2030-05-19https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |