Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN

La proteína YlbF, que forma parte de la familia de proteínas con dominio com_ylbF estudiadas principalmente en Bacillus subtilis, está involucrada en la regulación de la formación de biofilm, competencia y esporulación. Dado que este dominio es conservado, se postula que proteínas homólogas en otras...

Full description

Autores:
Ruiz Castellanos, Julian Santiago
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13493
Acceso en línea:
https://hdl.handle.net/20.500.12495/13493
https://repositorio.unbosque.edu.co
Palabra clave:
Staphylococcus aureus
YlbF
Dinámica molecular
in sílico
Simulación
Energías intermoleculares
610.28
Staphylococcus aureus
YlbF
Molecular dynamics
in silico
Simulation
Intermolecular Energies
Rights
License
Acceso cerrado
id UNBOSQUE2_435b1a44f325f30c19487d4a90471532
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13493
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
dc.title.translated.none.fl_str_mv Development of an in silico methodological protocol to understand the possible interactions between the Staphylococcus aureus YlbF protein with RNA
title Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
spellingShingle Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
Staphylococcus aureus
YlbF
Dinámica molecular
in sílico
Simulación
Energías intermoleculares
610.28
Staphylococcus aureus
YlbF
Molecular dynamics
in silico
Simulation
Intermolecular Energies
title_short Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
title_full Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
title_fullStr Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
title_full_unstemmed Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
title_sort Desarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARN
dc.creator.fl_str_mv Ruiz Castellanos, Julian Santiago
dc.contributor.advisor.none.fl_str_mv Guillem Gloria, Pedro Manuel
Corredor Rozo, Zayda Lorena
dc.contributor.author.none.fl_str_mv Ruiz Castellanos, Julian Santiago
dc.subject.none.fl_str_mv Staphylococcus aureus
YlbF
Dinámica molecular
in sílico
Simulación
Energías intermoleculares
topic Staphylococcus aureus
YlbF
Dinámica molecular
in sílico
Simulación
Energías intermoleculares
610.28
Staphylococcus aureus
YlbF
Molecular dynamics
in silico
Simulation
Intermolecular Energies
dc.subject.ddc.none.fl_str_mv 610.28
dc.subject.keywords.none.fl_str_mv Staphylococcus aureus
YlbF
Molecular dynamics
in silico
Simulation
Intermolecular Energies
description La proteína YlbF, que forma parte de la familia de proteínas con dominio com_ylbF estudiadas principalmente en Bacillus subtilis, está involucrada en la regulación de la formación de biofilm, competencia y esporulación. Dado que este dominio es conservado, se postula que proteínas homólogas en otras bacterias Gram positivas podrían cumplir funciones similares. En Staphylococcus aureus, un microorganismo oportunista que causa infecciones intrahospitalarias en pacientes de alto riesgo se sospecha que YlbF está relacionada con la regulación de factores de virulencia, especialmente a nivel transcripcional, como sugiere la presencia de un dominio putativo de unión a ácidos nucleicos y estudios en mutantes nulos. En este proyecto de grado elaboró un protocolo bioinformático centrado en el desarrollo de un pipeline para obtener parámetros y llevar a cabo una dinámica molecular de la proteína YlbF de S. aureus en complejo con ARN, con el objetivo de evaluar posibles sitios de interacción (hotspots) en términos de energías, distancias y empaquetamiento hidrofóbico y su validación mediante metodologías in silico de análisis termodinámico. El flujo de trabajo incluyó la preparación de datos biológicos, obtención de estructuras proteicas y de ARN, definición de parámetros de simulación, construcción de los sistemas a simular, así como la ejecución de la dinámica molecular, su análisis y validación al realizar sustituciones clave por alanina para evaluar los cambios en las interacciones llevando a cabo un análisis comparativo de energías por aminoácido el fin de identificar aquellos residuos que presentan las energías más favorables entre las variantes mutantes y no mutantes. Hecho esto, se observó la participación de diferentes aminoácidos durante la simulación, destacando Arg193, Lys194, Arg207 y Arg209. Estos residuos mostraron una fuerte interacción con el ARN, lo que sugiere una unión potencialmente estable. La naturaleza de esta interacción parece estar relacionada con la carga positiva de estos aminoácidos, que facilita su unión a los grupos fosfato de la cadena de ARN.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-30T06:43:02Z
dc.date.available.none.fl_str_mv 2024-11-30T06:43:02Z
dc.date.issued.none.fl_str_mv 2024-11
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_970fb48d4fbd8a85
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13493
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13493
https://repositorio.unbosque.edu.co
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abellan Blázquez, A. (2016). Bacteriemias por Staphylococcus Aureus en el Hospital Clinico Universitario Virgen de la Arrixaca. Estudio Epidemiológico, Clínico y Molecular. Universidad de Murcia.
Abeywansha, T., Huang, W., Ye, X., Nawrocki, A., Lan, X., Jankowsky, E., Taylor, D. J., & Zhang, Y. (2023). The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38004-8
Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
Achar, A., & Sætrom, P. (2015). RNA motif discovery: A computational overview. In Biology Direct (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13062-015-0090-5
Adusei-Danso, F., Khaja, F. T., Desantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., Neiditch, M. B., & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. https://doi.org/10.1128/mBio
Aguilar-Salazar, A., Martínez-Vázquez, A. V., Aguilera-Arreola, G., de Jesus de Luna-Santillana, E., Cruz-Hernández, M. A., Escobedo-Bonilla, C. M., Lara-Ramírez, E., Sánchez-Sánchez, M., Guerrero, A., Rivera, G., & Bocanegra-Garcia, V. (2023). Prevalence of ESKAPE Bacteria in Surface Water and Wastewater Sources: Multidrug Resistance and Molecular Characterization, an Updated Review. In Water (Switzerland) (Vol. 15, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/w15183200
Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/NBT.3300
Archer, N. K., Mazaitis, M. J., William Costerton, J., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms. Https://Doi.Org/10.4161/Viru.2.5.17724, 2(5), 445–459. https://doi.org/10.4161/VIRU.2.5.17724
Atkins, P., & de Paula, J. (2010). Physical Chemistry.
Aytenfisu, A. H., Spasic, A., Grossfield, A., Stern, H. A., & Mathews, D. H. (2017). Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. Journal of Chemical Theory and Computation, 13(2), 900–915. https://doi.org/10.1021/ACS.JCTC.6B00870/SUPPL_FILE/CT6B00870_SI_002.ZIP
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp335
Balasubramanian, D., Harper, L., Shopsin, B., & Torres, V. J. (2017). Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75(1), 5. https://doi.org/10.1093/FEMSPD/FTX005
Barbieri, I., & Kouzarides, T. (2020). Role of RNA modifications in cancer. Nature Reviews Cancer 2020 20:6, 20(6), 303–322. https://doi.org/10.1038/s41568-020-0253-2
Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. https://doi.org/10.1128/CMR.00109-13
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/NAR/28.1.235
Beššeová, I., Banáš, P., Kührová, P., Košinová, P., Otyepka, M., & Šponer, J. (2012). Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. Journal of Physical Chemistry B, 116(33), 9899–9916. https://doi.org/10.1021/jp3014817
Bheemireddy, S., Sandhya, S., Srinivasan, N., & Sowdhamini, R. (2022). Computational tools to study RNA-protein complexes. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/FMOLB.2022.954926/FULL
Bordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds. Frontiers in Molecular Biosciences, 8, 668184. https://doi.org/10.3389/FMOLB.2021.668184/BIBTEX
Borukhov, S., Lee, J., & Laptenko, O. (2005). Bacterial transcription elongation factors: New insights into molecular mechanism of action. In Molecular Microbiology (Vol. 55, Issue 5, pp. 1315–1324). https://doi.org/10.1111/j.1365-2958.2004.04481.x
Bosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. Journal of Chemical Physics, 123(3). https://doi.org/10.1063/1.1946749
Branda, S. S., González-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., & Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology, 186(12), 3970–3979. https://doi.org/10.1128/JB.186.12.3970-3979.2004
Brantl, S., & Ul Haq, I. (2023). Small proteins in Gram-positive bacteria. In FEMS Microbiology Reviews (Vol. 47, Issue 6). Oxford University Press. https://doi.org/10.1093/femsre/fuad064
Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular Microbiology, 88(2), 283–300. https://doi.org/10.1111/MMI.12186
Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., & Parkhill, J. (2005). ACT: the Artemis comparison tool. Bioinformatics, 21(16), 3422–3423. https://doi.org/10.1093/BIOINFORMATICS/BTI553
Case, D. A., Darden Thomas Cheatham III Carlos Simmerling Junmei Wang, T. E., Duke, R. E., Crowley Ross Walker Wei Zhang Kenneth Merz Bing Wang Seth Hayik Adrian Roitberg Gustavo Seabra István Kolossváry Budapest, M. M., Shaw Kim Wong, D. F., Paesani, F., Vanicek Xiongwu Wu Scott Brozell Thomas Steinbrecher Holger Gohlke Lijiang Yang Chunhu Tan John Mongan Viktor Hornak Guanglei Cui David H Mathews Matthew G Seetin Celeste Sagui Volodymyr Babin Peter A Kollman, J. R., Pearlman Robert V Stanton Jed Pitera Irina Massova Ailan Cheng James J Vincent Paul Beroza Vickie Tsui Christian Schafmeister Wilson S Ross Randall Radmer George L Seibel James W Caldwell U Chandra Singh Paul Weiner, D. A., & Cieplak Yong Duan Rob Woods Karl Kirschner Sarah Tschampel Alexey Onufriev Christopher Bayly Wendy Cornell Scott Weiner Austin Yongye Matthew Tessier, P. M. (2008). Amber 10 Users’ Manual Principal contributors to the current codes: Additional key contributors to earlier versions: Additional key people involved in force field development. http://amber.scripps.edu/contributors.html.
Case Thomas E Cheatham, D. A. (2023). Amber 2023 Reference Manual Principal contributors to the current codes. https://ambermd.org/contributors.html
Centers for Disease Control and Prevention. (2019). Staphylococcus aureus in Healthcare Settings | HAI | CDC. https://www.cdc.gov/hai/organisms/staph.html
Cervantes-García, E., García-González, R., & María Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab, 61(1), 28–40. www.medigraphic.com/patologiaclinicawww.medigraphic.org.mx
Chambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases, 7(2), 178. https://doi.org/10.3201/EID0702.010204
Chakrabarti, P., & Pal, D. (2001). The interrelationships of side-chain and main-chain conformations in proteins. In Progress in Biophysics & Molecular Biology (Vol. 76).
Chen, A., Zhao, N., & Hou, Z. (2017). The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. Soft Matter, 13(45), 8625–8635. https://doi.org/10.1039/C7SM01854A
Chen, C. P., Hwang, R. L., Chang, S. Y., & Lu, Y. T. (2011). Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment, 46(11), 2387–2397. https://doi.org/10.1016/j.buildenv.2011.05.021
Chen, D., Wang, Z., Guo, D., Orekhov, V., & Qu, X. (2020). Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. In Chemistry - A European Journal (Vol. 26, Issue 46, pp. 10391–10401). Wiley-VCH Verlag. https://doi.org/10.1002/chem.202000246
Chmielowiec-Korzeniowska, A., Tymczyna, L., Wlazło, Ł., Nowakowicz-Dębek, B., & Trawińska, B. (2020). Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatologii i Alergologii, 37(2), 184–189. https://doi.org/10.5114/ada.2020.94837
Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5(4), 823–826. https://doi.org/10.1002/J.1460-2075.1986.TB04288.X
Christopoulou, N., & Granneman, S. (2022). The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. The FEBS Journal, 289(7), 1746–1764. https://doi.org/10.1111/FEBS.15810
Clackson, T., & Wells, J. A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science (New York, N.Y.), 267(5196), 383–386. https://doi.org/10.1126/SCIENCE.7529940
Codjoe, F. S., & Donkor, E. S. (2017). Carbapenem Resistance: A Review. Medical Sciences 2018, Vol. 6, Page 1, 6(1), 1. https://doi.org/10.3390/MEDSCI6010001
Colovos, C., & Yeates, T. (1993). Verification of protein structures:Patterns of nonbonded atomic interactions.
Danev, R., Yanagisawa, H., & Kikkawa, M. (2019). Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. In Trends in Biochemical Sciences (Vol. 44, Issue 10, pp. 837–848). Elsevier Ltd. https://doi.org/10.1016/j.tibs.2019.04.008
Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7, 55–60. http://biomednet.com/elecref/09692126007R0055
Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
Dasti, A., Cid-Samper, F., Bechara, E., & Tartaglia, G. G. (2020). RNA-centric approaches to study RNA-protein interactions in vitro and in silico. In Methods (Vol. 178, pp. 11–18). Academic Press Inc. https://doi.org/10.1016/j.ymeth.2019.09.011
Deloughery, A., Dengler, V., Chai, Y., & Losick, R. (2016). Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Molecular Microbiology, 99(2), 425–437. https://doi.org/10.1111/MMI.13240
DeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5585–E5594. https://doi.org/10.1073/PNAS.1803283115/-/DCSUPPLEMENTAL
Deng, L., Sui, Y., & Zhang, J. (2019). XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting. Genes, 10(3). https://doi.org/10.3390/GENES10030242
Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science (New York, N.Y.), 338(6110), 1042–1046. https://doi.org/10.1126/SCIENCE.1219021
Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (1999). A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations.
Dym, O., Eisenberg, D., & Yeates, T. O. (2006). Detection of errors in protein models.
Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/JOURNAL.PCBI.1005659
Escobar Perez, J. A. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus [Instituto de Biotecnología- Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69277
Escobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus. The Open Bioinformatics Journal, 12(1), 18–29. https://doi.org/10.2174/1875036201912010018
Feenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20(8), 786–798. https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B
Foster, T. J. (2004). The Staphylococcus aureus “superbug.” Journal of Clinical Investigation, 114(12), 1693–1696. https://doi.org/10.1172/JCI200423825
Foulston, L., Elsholz, A. K. W., DeFrancesco, A. S., & Losick, R. (2014). The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio, 5(5). https://doi.org/10.1128/MBIO.01667-14/FORMAT/EPUB
Frenkel, D., & Smit, B. (2001). Understanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel, B. Smit - Google Libros. https://books.google.com.co/books?hl=es&lr=&id=5qTzldS9ROIC&oi=fnd&pg=PP1&dq=Understanding+molecular+simulation+:+from+algorithms+to+applications&ots=nHPKZnXcWh&sig=toMDMYMZf3sn5T3NWfdM8XaurI8#v=onepage&q=Understanding%20molecular%20simulation%20%3A%20from%20algorithms%20to%20applications&f=false
Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. In Expert Opinion on Drug Discovery (Vol. 10, Issue 5, pp. 449–461). Informa Healthcare. https://doi.org/10.1517/17460441.2015.1032936
Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2009). Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Analytical and Bioanalytical Chemistry, 393(3), 921–928. https://doi.org/10.1007/S00216-008-2344-X/TABLES/3
Goujon, M., Mcwilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. https://doi.org/10.1093/nar/gkq313
Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews. Microbiology, 9(4), 244. https://doi.org/10.1038/NRMICRO2537
Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue). https://doi.org/10.1093/nar/gkn188
Guo, L., Wang, Y., Bi, X., Duo, K., Sun, Q., Yun, X., Zhang, Y., Fei, P., & Han, J. (2020). Antimicrobial activity and mechanism of action of the Amaranthus tricolor crude Extract against Staphylococcus aureus and potential application in cooked meat. Foods, 9(3). https://doi.org/10.3390/foods9030359
Hajian-Tilaki, K. (2018). The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Statistical Methods in Medical Research, 27(8), 2374–2383. https://doi.org/10.1177/0962280216680383
Hall, K. B. (2002). RNA–protein interactions. Current Opinion in Structural Biology, 12(3), 283–288. https://doi.org/10.1016/S0959-440X(02)00323-8
Hamze, K., Julkowska, D., Autret, S., Hinc, K., Nagorska, K., Sekowska, A., Holland, I. B., & Séror, S. J. (2009). Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology, 155(2), 398–412. https://doi.org/10.1099/MIC.0.021477-0/CITE/REFWORKS
Hansson, T., Oostenbrink, C., & Van Gunsteren, W. F. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196. https://doi.org/10.1016/S0959-440X(02)00308-1
Hinrichs, R., Pozhydaieva, N., Höfer, K., Graumann, P. L., & Mikrobiologie, L. S. (2021). Y-complex proteins show RNA-dependent binding events at the cell membrane and distinct single molecule dynamics. 1–20.
Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/NAR/GKG599
Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/J.NEURON.2018.08.011
Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. In Biomolecular Concepts (Vol. 1, Issues 3–4, pp. 271–283). De Gruyter Mouton. https://doi.org/10.1515/bmc.2010.022
Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. In Advances and Applications in Bioinformatics and Chemistry (Vol. 8, Issue 1, pp. 37–47). Dove Medical Press Ltd. https://doi.org/10.2147/AABC.S70333
Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD - An Introductory Tutorial. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], CHAPTER(SUPPL. 24), Unit. https://doi.org/10.1002/0471250953.BI0507S24
Huang, M. J., & Mikhailov, A. (2017). Nano-Swimmers in Lipid-Bilayer Membranes. Modeling of Microscale Transport in Biological Processes, 207–219. https://doi.org/10.1016/B978-0-12-804595-4.00008-0
Ilari, A., Savino, C., Fanelli, R., Sapienza, L., & Aldo, P. (2020). Protein structure determination by X-ray crystallography Running head: Protein X-ray structure determination.
Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/JZ501780A/SUPPL_FILE/JZ501780A_SI_001.PDF
Jeong, E., Chung, I.-F., & Miyano, S. (2004). A Neural Network Method for Identification of RNA-Interacting Residues in Protein.
Jin, S., Li, L., Xu, Z., & Zhao, Y. (2020). A random batch Ewald method for particle systems with Coulomb interactions. http://arxiv.org/abs/2010.01559
Jones, S., Daley, D. T. A., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: a structural analysis. In Nucleic Acids Research (Vol. 29, Issue 4). www.biochem.ucl.ac.uk/bsm/DNA/server
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68(3), 350–358. https://doi.org/10.1002/BIP.10266
Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002 9:9, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
Kaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139. https://doi.org/10.1021/ct400340s
Kearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular Microbiology, 55(3), 739–749. https://doi.org/10.1111/J.1365-2958.2004.04440.X
Khatib, R., Johnson, L. B., Fakih, M. G., Riederer, K., Khosrovaneh, A., Tabriz, M. S., Sharma, M., & Saeed, S. (2009). Persistence in Staphylococcus aureus bacteremia: Incidence, characteristics of patients and outcome. Https://Doi.Org/10.1080/00365540500372846, 38(1), 7–14. https://doi.org/10.1080/00365540500372846
Khemici, V., Prados, J., Linder, P., & Redder, P. (2015). Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLOS Genetics, 11(10), e1005577. https://doi.org/10.1371/JOURNAL.PGEN.1005577
Khor, B. Y., Tye, G. J., Lim, T. S., & Choong, Y. S. (2015). General overview on structure prediction of twilight-zone proteins. Theoretical Biology and Medical Modelling, 12(1). https://doi.org/10.1186/s12976-015-0014-1
Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks (Vol. 10, Issue 3).
Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724–725. https://doi.org/10.1016/J.TIM.2019.03.008
Krüger, D. M., Neubacher, S., & Grossmann, T. N. (2018). Protein-RNA interactions: structural characteristics and hotspot amino acids. https://doi.org/10.1261/rna
L. Jorgensen, W., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001
Ladomery, M., & Sommerville, J. (1995). A role for Y-box proteins in cell proliferation. BioEssays, 17(1), 9–11. https://doi.org/10.1002/BIES.950170104
Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249. https://doi.org/10.1016/J.CPLETT.2005.10.135
Laskowski, R., Rullmann, A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*. In Journal of Biomolecular NMR (Vol. 8). http://www-nmr.chem.ruu.nl/users/rull/
Lee, M. C., & Duan, Y. (2004). Distinguish protein decoys by Using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins: Structure, Function, and Bioinformatics, 55(3), 620–634. https://doi.org/10.1002/PROT.10470
Lehnik-Habrink, M., Newman, J., Rothe, F. M., Solovyova, A. S., Rodrigues, C., Herzberg, C., Commichau, F. M., Lewis, R. J., & Stülke, J. (2011). RNase Y in Bacillus subtilis: a Natively Disordered Protein That Is the Functional Equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 193(19), 5431. https://doi.org/10.1128/JB.05500-11
Levitt, M., & Huber, R. (1983). Molecular dynamics of native protein: II. Analysis and nature of motion. Journal of Molecular Biology, 168(3), 621–657. https://doi.org/10.1016/S0022-2836(83)80306-4
Lewis, B. A., Walia, R. R., Terribilini, M., Ferguson, J., Zheng, C., Honavar, V., & Dobbs, D. (2011). PRIDB: a protein–RNA interface database. Nucleic Acids Research, 39(Database issue), D277. https://doi.org/10.1093/NAR/GKQ1108
Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584. https://doi.org/10.1093/NAR/GKV279
Li, Y., Lyu, J., Wu, Y., Liu, Y., & Huang, G. (2022). PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life, 12(2). https://doi.org/10.3390/LIFE12020307
Liu, Z. P., Wu, L. Y., Wang, Y., Zhang, X. S., & Chen, L. (2010). Prediction of protein–RNA binding sites by a random forest method with combined features. Bioinformatics, 26(13), 1616–1622. https://doi.org/10.1093/BIOINFORMATICS/BTQ253
Lozano-Aponte, J., & Scior, T. (2014). What do you know about... Molecular Dynamics? Revista Mexicana de Ciencias Farmacéuticas. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000100010
Lunin, V. Y., Urzhumtsev, A., Bockmayr, A., Fokin, A., Urzhumtsev, A., Afonine, P., Lunin, V. Y., Harding, M., Turkenburg, M., Ballard, C., & Howard-Eales, M. (2002). Theory and Techniques 12. Binary Integer Programming and its Use for Envelope Determination Bulk Solvent Correction for Yet Unsolved Structures Search of the Optimal Strategy for Refinement of Atomic Models Metal Coordination Groups in Proteins: Some Comments on Geometry, Constitution and B-values. http://www.iucr.org
Macke, T. J., Ecker, D. J., Gutell, R. R., Gautheret, D., Case, D. A., & Sampath, R. (2001). RNAMotif, an RNA secondary structure definition and search algorithm. In Nucleic Acids Research (Vol. 29, Issue 22). http://bioinfo.math.rpi.edu/~zukerm/rna/energy/.
Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728. https://doi.org/10.1093/bioinformatics/btt473
Marincola, G., & Wolz, C. (2017). Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Research, 45(10), 5980. https://doi.org/10.1093/NAR/GKX296
Markham, N. R., & Zuker, M. (2008). UNAFold: Software for nucleic acid folding and hybridization. Methods in Molecular Biology, 453, 3–31. https://doi.org/10.1007/978-1-60327-429-6_1/COVER
Maticzka, D., Lange, S. J., Costa, F., & Backofen, R. (2014). GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biology, 15(1), R17. https://doi.org/10.1186/GB-2014-15-1-R17
Mcdonald, I. R. (1972). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. In MOLECULAR PHYSICS (Vol. 23, Issue 1).
McDowell, S. E., Špačková, N., Šponer, J., & Walter, N. G. (2007). Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers, 85(2), 169–184. https://doi.org/10.1002/BIP.20620
Medina, J. S., Prosmiti, R., Villarreal, P., Delgado-Barrio, G., Winter, G., González, B., Alemán, J. V., & Collado, C. (2011). Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity. Chemical Physics, 388(1–3), 9–18. https://doi.org/10.1016/J.CHEMPHYS.2011.07.001
Mensa, J., Soriano, A., Barberán José, Montejo, M., Salavert, M., Alvarez-Rocha, L., Maseda, E., Moreno, A., Pasquau, J., Gómez, J., Parra, J., Candel, J., Azanza José, García José Elías, Marco, F., Soy, D., Gray, S., Fortún, J., Aristides de Alárcon, C., & Picazo, J. (2018). Guía de tratamiento antimicrobiano de la infección por Staphylococcus aureus.
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
Mlýnský, V., Kührová, P., Kühr, T., Otyepka, M., Bussi, G., Banáš, P., & Šponer, J. (2020). Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. https://doi.org/10.1101/2020.03.08.982538
Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S. J. (2008). The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4(5), 819–834. https://doi.org/10.1021/CT700324X
Monticelli, L., & Tieleman, D. P. (2013). Force Fields for Classical Molecular Dynamics (pp. 197–213). https://doi.org/10.1007/978-1-62703-017-5_8
Moore, P. B., & Steitz, T. A. (2002). The involvement of RNA in ribosome function. Nature 2002 418:6894, 418(6894), 229–235. https://doi.org/10.1038/418229a
Morra, G., & Colombo, G. (2008). Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Proteins: Structure, Function and Genetics, 72(2), 660–672. https://doi.org/10.1002/PROT.21963
Morris, A. L., Macarthur, M. W., Hutchinson, E. G., & Thornton’, J. M. (1992). Stereochemical Quality of Protein Structure Coordinates. In PROTEINS: Structure, Function, and Genetics (Vol. 12).
Murray, P. R., Rosenthal, K. S., & Michael A. Pfaller. (1967). Medical Microbiology Ninth Edition. Angewandte Chemie International Edition, 6(11), 951–952., 5–24.
Narumi, T., Susukita, R., Ebisuzaki, T., McNiven, G., & Elmegreen, B. (1999). Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations. Molecular Simulation, 21(5–6), 401–415. https://doi.org/10.1080/08927029908022078
Nose, S. (1991). Constant Temperature Molecular Dynamics Methods. Progress of Theoretical Physics Supplement, 103. https://doi.org/10.1143/PTPS.103.1/1894286
Nurisso, A., Daina, A., & Walker, R. C. (2012). A practical introduction to molecular dynamics simulations: Applications to homology modeling. Methods in Molecular Biology, 857, 137–173. https://doi.org/10.1007/978-1-61779-588-6_6
Nutt, D. R., & Smith, J. C. (2007). Molecular dynamics simulations of proteins: Can the explicit water model be varied? Journal of Chemical Theory and Computation, 3(4), 1550–1560. https://doi.org/10.1021/ct700053u
Ohniwa, R. L., Ushijima, Y., Saito, S., & Morikawa, K. (2011). Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLOS ONE, 6(4), e19172. https://doi.org/10.1371/JOURNAL.PONE.0019172
Pavan, M., Bassani, D., Sturlese, M., & Moro, S. (2022). Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genomics and Bioinformatics, 4(4). https://doi.org/10.1093/nargab/lqac088
Pagliuso, A., Tham, T. N., Allemand, E., Robertin, S., Dupuy, B., Bertrand, Q., Bécavin, C., Koutero, M., Najburg, V., Nahori, M. A., Tangy, F., Stavru, F., Bessonov, S., Dessen, A., Muchardt, C., Lebreton, A., Komarova, A. V., & Cossart, P. (2019). An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host & Microbe, 26(6), 823-835.e11. https://doi.org/10.1016/J.CHOM.2019.10.004
Pasachova Garzón, J., Ramirez Martinez, S., & Munoz Molina, L. (2019). Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular.
Patiyal, S., Dhall, A., Bajaj, K., Sahu, H., & Raghava, G. P. S. (2023). Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile. Briefings in Bioinformatics, 24(1). https://doi.org/10.1093/bib/bbac538
Patodia, S. (2014). Molecular dynamics simulation of protein Physical Chemistry & Biophysics. J Phys Chem Biophys, 4, 6. https://doi.org/10.4172/2161-0398.1000166
Perez, D., Uberuaga, B. P., Shim, Y., Amar, J. G., & Voter, A. F. (2009). Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry (Vol. 5, pp. 79–98). https://doi.org/10.1016/S1574-1400(09)00504-0
Perez, R. K., Gordon, M. G., Subramaniam, M., Kim, M. C., Hartoularos, G. C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., Thompson, M., Rappoport, N., Dahl, A., Lanata, C. M., Matloubian, M., Maliskova, L., Kwek, S. S., Li, T., Slyper, M., … Ye, C. J. (2022). Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science (New York, N.Y.), 376(6589), eabf1970. https://doi.org/10.1126/SCIENCE.ABF1970
Periasamy, S., Joo, H. S., Duong, A. C., Bach, T. H. L., Tan, V. Y., Chatterjee, S. S., Cheung, G. Y. C., & Otto, M. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1281–1286. https://doi.org/10.1073/PNAS.1115006109
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289
Piatkowski, P. , Kasprzak, J. M. , Kumar, D. , Magnus, M. , Chojnowski, G. , & Bujnicki, J. M. (2016). RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS. Methods in molecular biology. 217–235. https://doi.org/https://doi.org/10.1007/978-1-4939-6433-8_14
Plimpton, S. (1994). SANDIAREPORT A New Parallel Method for Molecular Dynamics Simulation of Macromoiecular Systems SF2gOOQ(8-8] ) q.
Pinamonti, G., Bottaro, S., Micheletti, C., & Bussi, G. (2015). Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Research, 43(15), 7260. https://doi.org/10.1093/NAR/GKV708
Poier, P. P., Lagardère, L., Piquemal, J.-P., & Jensen, F. (2019). Molecular Dynamics using Non-variational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation and Application to the Bond Capacity Model.
Pokorná, P., Kruse, H., Krepl, M., & Šponer, J. (2018). QM/MM Calculations on Protein-RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation, 14(10), 5419–5433. https://doi.org/10.1021/ACS.JCTC.8B00670
Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, 40(14). https://doi.org/10.1093/nar/gks339
Pyle, A. M. (1993). Ribozymes: a distinct class of metalloenzymes. Science (New York, N.Y.), 261(5122), 709–714. https://doi.org/10.1126/SCIENCE.7688142
Ramanathan, M., Porter, D. F., & Khavari, P. A. (2019). Methods to study RNA–protein interactions. Nature Methods 2019 16:3, 16(3), 225–234. https://doi.org/10.1038/s41592-019-0330-1
Redmill, P. S., Capps, S. L., Cummings, P. T., & McCabe, C. (2009). A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. Carbon, 47(12), 2865–2874. https://doi.org/10.1016/j.carbon.2009.06.040
Ricci, C. G., De Andrade, A. S. C., Mottin, M., & Netz, P. A. (2010). Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. Journal of Physical Chemistry B, 114(30), 9882–9893. https://doi.org/10.1021/jp1035663
Robert L. Buchanan, & Myron Solberg. (1972). INTERACTION_OF_SODIUM_NITRATE_OXYGEN_AND.
Rocchetti, T. T., Martins, K. B., Martins, P. Y. F., Oliveira, R. A. de, Mondelli, A. L., Fortaleza, C. M. C. B., & Cunha, M. de L. R. de S. da. (2018). Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Brazilian Journal of Infectious Diseases, 22(2), 99–105. https://doi.org/10.1016/j.bjid.2018.02.006
Roman Laskowski, B. A., Macarthur, M. W., & Thornton, J. M. (1983). Computer Programs PROCHECK: a program to check the stereochemicai quality of protein structures. In Phys. Status Solidi B (Vol. 13).
Romby, P., & Charpentier, E. (2010). An overview of RNAs with regulatory functions in gram-positive bacteria. In Cellular and Molecular Life Sciences (Vol. 67, Issue 2, pp. 217–237). https://doi.org/10.1007/s00018-009-0162-8
Rosales-Pelaez, P., Sanchez-Burgos, I., Valeriani, C., Vega, C., & Sanz, E. (2020). Seeding Approach to nucleation in the NVT ensemble: the case of bubble cavitation in overstretched Lennard Jones fluids. https://doi.org/10.1103/PhysRevE.101.022611
Rowlinson, M. C., LeBourgeois, P., Ward, K., Song, Y., Finegold, S. M., & Bruckner, D. A. (2006). Isolation of a Strictly Anaerobic Strain of Staphylococcus epidermidis. Journal of Clinical Microbiology, 44(3), 857. https://doi.org/10.1128/JCM.44.3.857-860.2006
Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. In Processes (Vol. 9, Issue 1, pp. 1–63). MDPI AG. https://doi.org/10.3390/pr9010071
Sarzynska, J., Popenda, M., Antczak, M., & Szachniuk, M. (2023). RNA tertiary structure prediction using RNAComposer in CASP15. Proteins: Structure, Function and Bioinformatics, 91(12), 1790–1799. https://doi.org/10.1002/prot.26578
Sasse, A., Laverty, K. U., Hughes, T. R., & Morris, Q. D. (2018). Motif models for RNA-binding proteins. In Current Opinion in Structural Biology (Vol. 53, pp. 115–123). Elsevier Ltd. https://doi.org/10.1016/j.sbi.2018.08.001
Steffen, P., Voß, B., Rehmsmeier, M., Reeder, J., & Giegerich, R. (2006). RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4), 500–503. https://doi.org/10.1093/BIOINFORMATICS/BTK010
Steinbach, P. J., & Brooks, B. R. (1994). New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation STEINBACH AND BROOKS. In Journal of Computational Chemistry (Vol. 15, Issue 7).
Stillinger, F. H., & Rahman, A. (2003). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60(4), 1545. https://doi.org/10.1063/1.1681229
Sugiura, R., Satoh, R., Ishiwata, S., Umeda, N., & Kita, A. (2011). Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. Journal of Signal Transduction, 2011, 1–8. https://doi.org/10.1155/2011/109746
Suzuki, M., Gerstein, M., & Yagi, N. (1994). Stereochemical basis of DNA recognition by Zn fingers. In Nucleic Acids Research (Vol. 22, Issue 16). http://nar.oxfordjournals.org/
Szachniuk, M., Sarzyńska, J., & Blazewicz, J. (2013). Turning data into folds using RNAComposer. AIP Conference Proceedings, 1559, 353–354. https://doi.org/10.1063/1.4825029
Tang, S., Li, J., Huang, G., & Yan, L. (2021). Predicting Protein Surface Property with its Surface Hydrophobicity. Protein & Peptide Letters, 28(8), 938–944. https://doi.org/10.2174/0929866528666210222160603
Tanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837. https://doi.org/10.1111/MMI.13667
Tobi, D., & Bahar, I. (2005). Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18908–18913. https://doi.org/10.1073/PNAS.0507603102
Torrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011
Tortosa, P., Albano, M., & Dubnau, D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Molecular Microbiology, 35(5), 1110–1119. https://doi.org/10.1046/J.1365-2958.2000.01779.X
Toukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: a survey. In Computer Physics Communications (Vol. 95).
Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M. W., & Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 176(1–2), 391-403.e19. https://doi.org/10.1016/J.CELL.2018.11.004/ATTACHMENT/E3562894-90AA-4BA4-96A4-2B801FCD0CF2/MMC6.PDF
Valero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J. M., García-Gimeno, R. M., & Zurera, G. (2009). Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology, 133(1–2), 186–194. https://doi.org/10.1016/J.IJFOODMICRO.2009.05.023
Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). NAR Breakthrough Article AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50. https://doi.org/10.1093/nar/gkab1061
Vlachakis, D., Bencurova, E., Papangelopoulos, N., & Kossida, S. (2014). Current State-of-the-Art Molecular Dynamics Methods and Applications. Advances in Protein Chemistry and Structural Biology, 94, 269–313. https://doi.org/10.1016/B978-0-12-800168-4.00007-X
Wang, L., Huang, C., Yang, M. Q., & Yang, J. Y. (2010). BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Systems Biology, 4(Suppl 1), S3. https://doi.org/10.1186/1752-0509-4-S1-S3
Wang, L., You, Z. H., Huang, D. S., & Zhou, F. (2020). Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(3), 972–980. https://doi.org/10.1109/TCBB.2018.2874267
Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). BIOMOLECULAR SIMULATIONS: Recent Developments in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. www.annualreviews.org
Warren L. DeLano. (2004). PyMOL User’s Guide
Wheeler, E. C., Van Nostrand, E. L., & Yeo, G. W. (2018). Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. Wiley Interdisciplinary Reviews: RNA, 9(1). https://doi.org/10.1002/wrna.1436
Williams, S. G., & Lovell, S. C. (2009). The Effect of Sequence Evolution on Protein Structural Divergence. Molecular Biology and Evolution, 26(5), 1055–1065. https://doi.org/10.1093/MOLBEV/MSP020
Windbichler, N., & Schroeder, R. (2006). Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nature Protocols 2006 1:2, 1(2), 637–640. https://doi.org/10.1038/nprot.2006.95
Wlodawer, A. (2017). Stereochemistry and validation of macromolecular structures. In Methods in Molecular Biology (Vol. 1607, pp. 595–610). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7000-1_24
World Health Organization. (2022). Antimicrobial Resistance Multi-Partner Trust Fund annual report 2022.
Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/NAR/GKX407
Yang, Z., Zeng, X., Zhao, Y., & Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and medicine. In Signal Transduction and Targeted Therapy (Vol. 8, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-023-01381-z
Yao, Z., Weinberg, Z., & Ruzzo, W. L. (2006). CMfinder - A covariance model based RNA motif finding algorithm. Bioinformatics, 22(4), 445–452. https://doi.org/10.1093/bioinformatics/btk008
Yildirim, I., Stern, H. A., Kennedy, S. D., Tubbs, J. D., & Turner, D. H. (2010). Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. Journal of Chemical Theory and Computation, 6(5), 1520–1531. https://doi.org/10.1021/ct900604a
Yildirim, I., Stern, H. A., Tubbs, J. D., Kennedy, S. D., & Turner, D. H. (2011). Benchmarking AMBER force fields for RNA: Comparisons to NMR spectra for single-stranded r(GACC) are improved by revised Χ torsions. Journal of Physical Chemistry B, 115(29), 9261–9270. https://doi.org/10.1021/jp2016006
Yusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., Zhang, X. Y. C., Dickman, C. T. D., Fulton, D. L., Lim, J. S., Schnabl, J. M., Ramos, O. H. P., Vasseur-Cognet, M., de Leeuw, C. N., Simpson, E. M., Ryffel, G. U., Lam, E. W. F., Kist, R., Wilson, M. S. C., … Hevner, R. F. (2012). The transcription factor encyclopedia. Genome Biology, 13(3). https://doi.org/10.1186/gb-2012-13-3-r24
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.local.spa.fl_str_mv Acceso cerrado
dc.rights.accessrights.none.fl_str_mv rl.org/coar/access_right/c_14cbhttp://pu
rights_invalid_str_mv Acceso cerrado
rl.org/coar/access_right/c_14cbhttp://pu
http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bioingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/c50043bc-bbbc-4bff-b34d-faa0ed5567fa/download
https://repositorio.unbosque.edu.co/bitstreams/8f53c408-423b-4e7f-ac4f-bad68b0b91af/download
https://repositorio.unbosque.edu.co/bitstreams/5ce76eae-ca48-415d-8fce-1e61e047da4e/download
https://repositorio.unbosque.edu.co/bitstreams/33e676ef-cca5-4aca-ad67-00f09844f849/download
https://repositorio.unbosque.edu.co/bitstreams/667099bc-ac00-48e6-b4f9-883b700d16a3/download
https://repositorio.unbosque.edu.co/bitstreams/328b7a6e-2be2-4b16-9e8d-855f90144127/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
367043e57dd5547e96dec6e8c5d29c26
3b6ce8e9e36c89875e8cf39962fe8920
e5785ecb5b8d4c71b176895ccab75114
920b1375a3ddd01c91415a53f000eb7c
b634931b433fbbee1a77dfdcb41a1771
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164446645649408
spelling Guillem Gloria, Pedro ManuelCorredor Rozo, Zayda LorenaRuiz Castellanos, Julian Santiago2024-11-30T06:43:02Z2024-11-30T06:43:02Z2024-11https://hdl.handle.net/20.500.12495/13493instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coLa proteína YlbF, que forma parte de la familia de proteínas con dominio com_ylbF estudiadas principalmente en Bacillus subtilis, está involucrada en la regulación de la formación de biofilm, competencia y esporulación. Dado que este dominio es conservado, se postula que proteínas homólogas en otras bacterias Gram positivas podrían cumplir funciones similares. En Staphylococcus aureus, un microorganismo oportunista que causa infecciones intrahospitalarias en pacientes de alto riesgo se sospecha que YlbF está relacionada con la regulación de factores de virulencia, especialmente a nivel transcripcional, como sugiere la presencia de un dominio putativo de unión a ácidos nucleicos y estudios en mutantes nulos. En este proyecto de grado elaboró un protocolo bioinformático centrado en el desarrollo de un pipeline para obtener parámetros y llevar a cabo una dinámica molecular de la proteína YlbF de S. aureus en complejo con ARN, con el objetivo de evaluar posibles sitios de interacción (hotspots) en términos de energías, distancias y empaquetamiento hidrofóbico y su validación mediante metodologías in silico de análisis termodinámico. El flujo de trabajo incluyó la preparación de datos biológicos, obtención de estructuras proteicas y de ARN, definición de parámetros de simulación, construcción de los sistemas a simular, así como la ejecución de la dinámica molecular, su análisis y validación al realizar sustituciones clave por alanina para evaluar los cambios en las interacciones llevando a cabo un análisis comparativo de energías por aminoácido el fin de identificar aquellos residuos que presentan las energías más favorables entre las variantes mutantes y no mutantes. Hecho esto, se observó la participación de diferentes aminoácidos durante la simulación, destacando Arg193, Lys194, Arg207 y Arg209. Estos residuos mostraron una fuerte interacción con el ARN, lo que sugiere una unión potencialmente estable. La naturaleza de esta interacción parece estar relacionada con la carga positiva de estos aminoácidos, que facilita su unión a los grupos fosfato de la cadena de ARN.Laboratorio de genética molecular bacterianaBioingenieroPregradoThe YlbF protein, part of the com_ylbF domain family studied mainly in Bacillus subtilis, is involved in the regulation of biofilm formation, competence, and sporulation. Given the conserved nature of this domain, it is hypothesized that homologous proteins in other Gram-positive bacteria might perform similar functions. In Staphylococcus aureus, an opportunistic microorganism responsible for nosocomial infections in high-risk patients, YlbF is suspected to be linked to the regulation of virulence factors, particularly at the transcriptional level, as indicated by the presence of a putative nucleic acid-binding domain and studies in null mutants. In this degree project, a bioinformatics protocol was developed, focusing on creating a pipeline to obtain parameters and conduct molecular dynamics simulations of the S. aureus YlbF protein in complex with RNA. The goal was to evaluate potential interaction sites (hotspots) in terms of energies, distances, and hydrophobic packing, and validate these through in silico thermodynamic analysis methodologies. The workflow included preparing biological data, obtaining protein and RNA structures, defining simulation parameters, constructing the systems to be simulated, executing molecular dynamics, analyzing the results, and validating key substitutions with alanine to assess changes in interactions. This included a comparative analysis of energies per amino acid to identify residues showing the most favorable energies between mutant and non-mutant variants. As a result, different amino acids were highlighted during the simulation, with Arg193, Lys194, Arg207, and Arg209 showing strong interactions with RNA, suggesting a potentially stable binding. This interaction is likely related to the positive charge of these amino acids, which facilitates their binding to the phosphate groups of the RNA chain.application/pdfStaphylococcus aureusYlbFDinámica molecularin sílicoSimulaciónEnergías intermoleculares610.28Staphylococcus aureusYlbFMolecular dynamicsin silicoSimulationIntermolecular EnergiesDesarrollo de un protocolo metodológico in sílico para comprender las posibles interacciones entre la proteína YlbF de Staphylococcus aureus con ARNDevelopment of an in silico methodological protocol to understand the possible interactions between the Staphylococcus aureus YlbF protein with RNABioingenieríaUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Abellan Blázquez, A. (2016). Bacteriemias por Staphylococcus Aureus en el Hospital Clinico Universitario Virgen de la Arrixaca. Estudio Epidemiológico, Clínico y Molecular. Universidad de Murcia.Abeywansha, T., Huang, W., Ye, X., Nawrocki, A., Lan, X., Jankowsky, E., Taylor, D. J., & Zhang, Y. (2023). The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-38004-8Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001Achar, A., & Sætrom, P. (2015). RNA motif discovery: A computational overview. In Biology Direct (Vol. 10, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13062-015-0090-5Adusei-Danso, F., Khaja, F. T., Desantis, M., Jeffrey, P. D., Dubnau, E., Demeler, B., Neiditch, M. B., & Dubnau, D. (2019). Structure-Function Studies of the Bacillus subtilis Ric Proteins Identify the Fe-S Cluster-Ligating Residues and Their Roles in Development and RNA Processing. https://doi.org/10.1128/mBioAguilar-Salazar, A., Martínez-Vázquez, A. V., Aguilera-Arreola, G., de Jesus de Luna-Santillana, E., Cruz-Hernández, M. A., Escobedo-Bonilla, C. M., Lara-Ramírez, E., Sánchez-Sánchez, M., Guerrero, A., Rivera, G., & Bocanegra-Garcia, V. (2023). Prevalence of ESKAPE Bacteria in Surface Water and Wastewater Sources: Multidrug Resistance and Molecular Characterization, an Updated Review. In Water (Switzerland) (Vol. 15, Issue 18). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/w15183200Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/NBT.3300Archer, N. K., Mazaitis, M. J., William Costerton, J., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms. Https://Doi.Org/10.4161/Viru.2.5.17724, 2(5), 445–459. https://doi.org/10.4161/VIRU.2.5.17724Atkins, P., & de Paula, J. (2010). Physical Chemistry.Aytenfisu, A. H., Spasic, A., Grossfield, A., Stern, H. A., & Mathews, D. H. (2017). Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. Journal of Chemical Theory and Computation, 13(2), 900–915. https://doi.org/10.1021/ACS.JCTC.6B00870/SUPPL_FILE/CT6B00870_SI_002.ZIPBailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(SUPPL. 2). https://doi.org/10.1093/nar/gkp335Balasubramanian, D., Harper, L., Shopsin, B., & Torres, V. J. (2017). Staphylococcus aureus pathogenesis in diverse host environments. Pathogens and Disease, 75(1), 5. https://doi.org/10.1093/FEMSPD/FTX005Barbieri, I., & Kouzarides, T. (2020). Role of RNA modifications in cancer. Nature Reviews Cancer 2020 20:6, 20(6), 303–322. https://doi.org/10.1038/s41568-020-0253-2Becker, K., Heilmann, C., & Peters, G. (2014). Coagulase-negative staphylococci. Clinical Microbiology Reviews, 27(4), 870–926. https://doi.org/10.1128/CMR.00109-13Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/NAR/28.1.235Beššeová, I., Banáš, P., Kührová, P., Košinová, P., Otyepka, M., & Šponer, J. (2012). Simulations of A-RNA duplexes. The effect of sequence, solute force field, water model, and salt concentration. Journal of Physical Chemistry B, 116(33), 9899–9916. https://doi.org/10.1021/jp3014817Bheemireddy, S., Sandhya, S., Srinivasan, N., & Sowdhamini, R. (2022). Computational tools to study RNA-protein complexes. Frontiers in Molecular Biosciences, 9. https://doi.org/10.3389/FMOLB.2022.954926/FULLBordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing Evolution Through Protein Structures: Nature Captured in a Few Thousand Folds. Frontiers in Molecular Biosciences, 8, 668184. https://doi.org/10.3389/FMOLB.2021.668184/BIBTEXBorukhov, S., Lee, J., & Laptenko, O. (2005). Bacterial transcription elongation factors: New insights into molecular mechanism of action. In Molecular Microbiology (Vol. 55, Issue 5, pp. 1315–1324). https://doi.org/10.1111/j.1365-2958.2004.04481.xBosko, J. T., Todd, B. D., & Sadus, R. J. (2005). Molecular simulation of dendrimers and their mixtures under shear: Comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. Journal of Chemical Physics, 123(3). https://doi.org/10.1063/1.1946749Branda, S. S., González-Pastor, J. E., Dervyn, E., Ehrlich, S. D., Losick, R., & Kolter, R. (2004). Genes involved in formation of structured multicellular communities by Bacillus subtilis. Journal of Bacteriology, 186(12), 3970–3979. https://doi.org/10.1128/JB.186.12.3970-3979.2004Brantl, S., & Ul Haq, I. (2023). Small proteins in Gram-positive bacteria. In FEMS Microbiology Reviews (Vol. 47, Issue 6). Oxford University Press. https://doi.org/10.1093/femsre/fuad064Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287Carabetta, V. J., Tanner, A. W., Greco, T. M., Defrancesco, M., Cristea, I. M., & Dubnau, D. (2013). A complex of YlbF, YmcA and YaaT regulates sporulation, competence and biofilm formation by accelerating the phosphorylation of Spo0A. Molecular Microbiology, 88(2), 283–300. https://doi.org/10.1111/MMI.12186Carver, T. J., Rutherford, K. M., Berriman, M., Rajandream, M.-A., Barrell, B. G., & Parkhill, J. (2005). ACT: the Artemis comparison tool. Bioinformatics, 21(16), 3422–3423. https://doi.org/10.1093/BIOINFORMATICS/BTI553Case, D. A., Darden Thomas Cheatham III Carlos Simmerling Junmei Wang, T. E., Duke, R. E., Crowley Ross Walker Wei Zhang Kenneth Merz Bing Wang Seth Hayik Adrian Roitberg Gustavo Seabra István Kolossváry Budapest, M. M., Shaw Kim Wong, D. F., Paesani, F., Vanicek Xiongwu Wu Scott Brozell Thomas Steinbrecher Holger Gohlke Lijiang Yang Chunhu Tan John Mongan Viktor Hornak Guanglei Cui David H Mathews Matthew G Seetin Celeste Sagui Volodymyr Babin Peter A Kollman, J. R., Pearlman Robert V Stanton Jed Pitera Irina Massova Ailan Cheng James J Vincent Paul Beroza Vickie Tsui Christian Schafmeister Wilson S Ross Randall Radmer George L Seibel James W Caldwell U Chandra Singh Paul Weiner, D. A., & Cieplak Yong Duan Rob Woods Karl Kirschner Sarah Tschampel Alexey Onufriev Christopher Bayly Wendy Cornell Scott Weiner Austin Yongye Matthew Tessier, P. M. (2008). Amber 10 Users’ Manual Principal contributors to the current codes: Additional key contributors to earlier versions: Additional key people involved in force field development. http://amber.scripps.edu/contributors.html.Case Thomas E Cheatham, D. A. (2023). Amber 2023 Reference Manual Principal contributors to the current codes. https://ambermd.org/contributors.htmlCenters for Disease Control and Prevention. (2019). Staphylococcus aureus in Healthcare Settings | HAI | CDC. https://www.cdc.gov/hai/organisms/staph.htmlCervantes-García, E., García-González, R., & María Salazar-Schettino, P. (2014). Características generales del Staphylococcus aureus. Rev Latinoam Patol Clin Med Lab, 61(1), 28–40. www.medigraphic.com/patologiaclinicawww.medigraphic.org.mxChambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging Infectious Diseases, 7(2), 178. https://doi.org/10.3201/EID0702.010204Chakrabarti, P., & Pal, D. (2001). The interrelationships of side-chain and main-chain conformations in proteins. In Progress in Biophysics & Molecular Biology (Vol. 76).Chen, A., Zhao, N., & Hou, Z. (2017). The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. Soft Matter, 13(45), 8625–8635. https://doi.org/10.1039/C7SM01854AChen, C. P., Hwang, R. L., Chang, S. Y., & Lu, Y. T. (2011). Effects of temperature steps on human skin physiology and thermal sensation response. Building and Environment, 46(11), 2387–2397. https://doi.org/10.1016/j.buildenv.2011.05.021Chen, D., Wang, Z., Guo, D., Orekhov, V., & Qu, X. (2020). Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. In Chemistry - A European Journal (Vol. 26, Issue 46, pp. 10391–10401). Wiley-VCH Verlag. https://doi.org/10.1002/chem.202000246Chmielowiec-Korzeniowska, A., Tymczyna, L., Wlazło, Ł., Nowakowicz-Dębek, B., & Trawińska, B. (2020). Staphylococcus aureus carriage state in healthy adult population and phenotypic and genotypic properties of isolated strains. Postepy Dermatologii i Alergologii, 37(2), 184–189. https://doi.org/10.5114/ada.2020.94837Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5(4), 823–826. https://doi.org/10.1002/J.1460-2075.1986.TB04288.XChristopoulou, N., & Granneman, S. (2022). The role of RNA-binding proteins in mediating adaptive responses in Gram-positive bacteria. The FEBS Journal, 289(7), 1746–1764. https://doi.org/10.1111/FEBS.15810Clackson, T., & Wells, J. A. (1995). A hot spot of binding energy in a hormone-receptor interface. Science (New York, N.Y.), 267(5196), 383–386. https://doi.org/10.1126/SCIENCE.7529940Codjoe, F. S., & Donkor, E. S. (2017). Carbapenem Resistance: A Review. Medical Sciences 2018, Vol. 6, Page 1, 6(1), 1. https://doi.org/10.3390/MEDSCI6010001Colovos, C., & Yeates, T. (1993). Verification of protein structures:Patterns of nonbonded atomic interactions.Danev, R., Yanagisawa, H., & Kikkawa, M. (2019). Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. In Trends in Biochemical Sciences (Vol. 44, Issue 10, pp. 837–848). Elsevier Ltd. https://doi.org/10.1016/j.tibs.2019.04.008Darden, T., Perera, L., Li, L., & Pedersen, L. (1999). New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7, 55–60. http://biomednet.com/elecref/09692126007R0055Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397Dasti, A., Cid-Samper, F., Bechara, E., & Tartaglia, G. G. (2020). RNA-centric approaches to study RNA-protein interactions in vitro and in silico. In Methods (Vol. 178, pp. 11–18). Academic Press Inc. https://doi.org/10.1016/j.ymeth.2019.09.011Deloughery, A., Dengler, V., Chai, Y., & Losick, R. (2016). Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Molecular Microbiology, 99(2), 425–437. https://doi.org/10.1111/MMI.13240DeLoughery, A., Lalanne, J. B., Losick, R., & Li, G. W. (2018). Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 115(24), E5585–E5594. https://doi.org/10.1073/PNAS.1803283115/-/DCSUPPLEMENTALDeng, L., Sui, Y., & Zhang, J. (2019). XGBPRH: Prediction of Binding Hot Spots at Protein–RNA Interfaces Utilizing Extreme Gradient Boosting. Genes, 10(3). https://doi.org/10.3390/GENES10030242Dill, K. A., & MacCallum, J. L. (2012). The protein-folding problem, 50 years on. Science (New York, N.Y.), 338(6110), 1042–1046. https://doi.org/10.1126/SCIENCE.1219021Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (1999). A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations.Dym, O., Eisenberg, D., & Yeates, T. O. (2006). Detection of errors in protein models.Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/JOURNAL.PCBI.1005659Escobar Perez, J. A. (2018). Identificación y caracterización de una proteína de unión al gen icaA y evaluación de su potencial participación en la formación de biofilm en Staphylococcus aureus [Instituto de Biotecnología- Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/69277Escobar-Perez, J., Ospina-Garcia, K., Rozo, Z. L. C., Marquez-Ortiz, R. A., Castellanos, J. E., & Gomez, N. V. (2019). Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus. The Open Bioinformatics Journal, 12(1), 18–29. https://doi.org/10.2174/1875036201912010018Feenstra, K. A., Hess, B., & Berendsen, H. J. C. (1999). Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. Journal of Computational Chemistry, 20(8), 786–798. https://doi.org/10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-BFoster, T. J. (2004). The Staphylococcus aureus “superbug.” Journal of Clinical Investigation, 114(12), 1693–1696. https://doi.org/10.1172/JCI200423825Foulston, L., Elsholz, A. K. W., DeFrancesco, A. S., & Losick, R. (2014). The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio, 5(5). https://doi.org/10.1128/MBIO.01667-14/FORMAT/EPUBFrenkel, D., & Smit, B. (2001). Understanding Molecular Simulation: From Algorithms to Applications - Daan Frenkel, B. Smit - Google Libros. https://books.google.com.co/books?hl=es&lr=&id=5qTzldS9ROIC&oi=fnd&pg=PP1&dq=Understanding+molecular+simulation+:+from+algorithms+to+applications&ots=nHPKZnXcWh&sig=toMDMYMZf3sn5T3NWfdM8XaurI8#v=onepage&q=Understanding%20molecular%20simulation%20%3A%20from%20algorithms%20to%20applications&f=falseGenheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. In Expert Opinion on Drug Discovery (Vol. 10, Issue 5, pp. 449–461). Informa Healthcare. https://doi.org/10.1517/17460441.2015.1032936Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2009). Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions. Analytical and Bioanalytical Chemistry, 393(3), 921–928. https://doi.org/10.1007/S00216-008-2344-X/TABLES/3Goujon, M., Mcwilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. https://doi.org/10.1093/nar/gkq313Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews. Microbiology, 9(4), 244. https://doi.org/10.1038/NRMICRO2537Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue). https://doi.org/10.1093/nar/gkn188Guo, L., Wang, Y., Bi, X., Duo, K., Sun, Q., Yun, X., Zhang, Y., Fei, P., & Han, J. (2020). Antimicrobial activity and mechanism of action of the Amaranthus tricolor crude Extract against Staphylococcus aureus and potential application in cooked meat. Foods, 9(3). https://doi.org/10.3390/foods9030359Hajian-Tilaki, K. (2018). The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Statistical Methods in Medical Research, 27(8), 2374–2383. https://doi.org/10.1177/0962280216680383Hall, K. B. (2002). RNA–protein interactions. Current Opinion in Structural Biology, 12(3), 283–288. https://doi.org/10.1016/S0959-440X(02)00323-8Hamze, K., Julkowska, D., Autret, S., Hinc, K., Nagorska, K., Sekowska, A., Holland, I. B., & Séror, S. J. (2009). Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology, 155(2), 398–412. https://doi.org/10.1099/MIC.0.021477-0/CITE/REFWORKSHansson, T., Oostenbrink, C., & Van Gunsteren, W. F. (2002). Molecular dynamics simulations. Current Opinion in Structural Biology, 12(2), 190–196. https://doi.org/10.1016/S0959-440X(02)00308-1Hinrichs, R., Pozhydaieva, N., Höfer, K., Graumann, P. L., & Mikrobiologie, L. S. (2021). Y-complex proteins show RNA-dependent binding events at the cell membrane and distinct single molecule dynamics. 1–20.Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/NAR/GKG599Hollingsworth, S. A., & Dror, R. O. (2018). Molecular Dynamics Simulation for All. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/J.NEURON.2018.08.011Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. In Biomolecular Concepts (Vol. 1, Issues 3–4, pp. 271–283). De Gruyter Mouton. https://doi.org/10.1515/bmc.2010.022Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. In Advances and Applications in Bioinformatics and Chemistry (Vol. 8, Issue 1, pp. 37–47). Dove Medical Press Ltd. https://doi.org/10.2147/AABC.S70333Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD - An Introductory Tutorial. Current Protocols in Bioinformatics / Editoral Board, Andreas D. Baxevanis ... [et Al.], CHAPTER(SUPPL. 24), Unit. https://doi.org/10.1002/0471250953.BI0507S24Huang, M. J., & Mikhailov, A. (2017). Nano-Swimmers in Lipid-Bilayer Membranes. Modeling of Microscale Transport in Biological Processes, 207–219. https://doi.org/10.1016/B978-0-12-804595-4.00008-0Ilari, A., Savino, C., Fanelli, R., Sapienza, L., & Aldo, P. (2020). Protein structure determination by X-ray crystallography Running head: Protein X-ray structure determination.Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/JZ501780A/SUPPL_FILE/JZ501780A_SI_001.PDFJeong, E., Chung, I.-F., & Miyano, S. (2004). A Neural Network Method for Identification of RNA-Interacting Residues in Protein.Jin, S., Li, L., Xu, Z., & Zhao, Y. (2020). A random batch Ewald method for particle systems with Coulomb interactions. http://arxiv.org/abs/2010.01559Jones, S., Daley, D. T. A., Luscombe, N. M., Berman, H. M., & Thornton, J. M. (2001). Protein-RNA interactions: a structural analysis. In Nucleic Acids Research (Vol. 29, Issue 4). www.biochem.ucl.ac.uk/bsm/DNA/serverJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025Karplus, M. (2003). Molecular dynamics of biological macromolecules: A brief history and perspective. Biopolymers, 68(3), 350–358. https://doi.org/10.1002/BIP.10266Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology 2002 9:9, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646Kaus, J. W., Pierce, L. T., Walker, R. C., & McCammon, J. A. (2013). Improving the efficiency of free energy calculations in the amber molecular dynamics package. Journal of Chemical Theory and Computation, 9(9), 4131–4139. https://doi.org/10.1021/ct400340sKearns, D. B., Chu, F., Branda, S. S., Kolter, R., & Losick, R. (2005). A master regulator for biofilm formation by Bacillus subtilis. Molecular Microbiology, 55(3), 739–749. https://doi.org/10.1111/J.1365-2958.2004.04440.XKhatib, R., Johnson, L. B., Fakih, M. G., Riederer, K., Khosrovaneh, A., Tabriz, M. S., Sharma, M., & Saeed, S. (2009). Persistence in Staphylococcus aureus bacteremia: Incidence, characteristics of patients and outcome. Https://Doi.Org/10.1080/00365540500372846, 38(1), 7–14. https://doi.org/10.1080/00365540500372846Khemici, V., Prados, J., Linder, P., & Redder, P. (2015). Decay-Initiating Endoribonucleolytic Cleavage by RNase Y Is Kept under Tight Control via Sequence Preference and Sub-cellular Localisation. PLOS Genetics, 11(10), e1005577. https://doi.org/10.1371/JOURNAL.PGEN.1005577Khor, B. Y., Tye, G. J., Lim, T. S., & Choong, Y. S. (2015). General overview on structure prediction of twilight-zone proteins. Theoretical Biology and Medical Modelling, 12(1). https://doi.org/10.1186/s12976-015-0014-1Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks (Vol. 10, Issue 3).Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724–725. https://doi.org/10.1016/J.TIM.2019.03.008Krüger, D. M., Neubacher, S., & Grossmann, T. N. (2018). Protein-RNA interactions: structural characteristics and hotspot amino acids. https://doi.org/10.1261/rnaL. Jorgensen, W., & Tirado-Rives, J. (1988). The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001Ladomery, M., & Sommerville, J. (1995). A role for Y-box proteins in cell proliferation. BioEssays, 17(1), 9–11. https://doi.org/10.1002/BIES.950170104Lamoureux, G., Harder, E., Vorobyov, I. V., Roux, B., & MacKerell, A. D. (2006). A polarizable model of water for molecular dynamics simulations of biomolecules. Chemical Physics Letters, 418(1–3), 245–249. https://doi.org/10.1016/J.CPLETT.2005.10.135Laskowski, R., Rullmann, A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR*. In Journal of Biomolecular NMR (Vol. 8). http://www-nmr.chem.ruu.nl/users/rull/Lee, M. C., & Duan, Y. (2004). Distinguish protein decoys by Using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins: Structure, Function, and Bioinformatics, 55(3), 620–634. https://doi.org/10.1002/PROT.10470Lehnik-Habrink, M., Newman, J., Rothe, F. M., Solovyova, A. S., Rodrigues, C., Herzberg, C., Commichau, F. M., Lewis, R. J., & Stülke, J. (2011). RNase Y in Bacillus subtilis: a Natively Disordered Protein That Is the Functional Equivalent of RNase E from Escherichia coli. Journal of Bacteriology, 193(19), 5431. https://doi.org/10.1128/JB.05500-11Levitt, M., & Huber, R. (1983). Molecular dynamics of native protein: II. Analysis and nature of motion. Journal of Molecular Biology, 168(3), 621–657. https://doi.org/10.1016/S0022-2836(83)80306-4Lewis, B. A., Walia, R. R., Terribilini, M., Ferguson, J., Zheng, C., Honavar, V., & Dobbs, D. (2011). PRIDB: a protein–RNA interface database. Nucleic Acids Research, 39(Database issue), D277. https://doi.org/10.1093/NAR/GKQ1108Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y. M., Buso, N., & Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Research, 43(W1), W580–W584. https://doi.org/10.1093/NAR/GKV279Li, Y., Lyu, J., Wu, Y., Liu, Y., & Huang, G. (2022). PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life, 12(2). https://doi.org/10.3390/LIFE12020307Liu, Z. P., Wu, L. Y., Wang, Y., Zhang, X. S., & Chen, L. (2010). Prediction of protein–RNA binding sites by a random forest method with combined features. Bioinformatics, 26(13), 1616–1622. https://doi.org/10.1093/BIOINFORMATICS/BTQ253Lozano-Aponte, J., & Scior, T. (2014). What do you know about... Molecular Dynamics? Revista Mexicana de Ciencias Farmacéuticas. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952014000100010Lunin, V. Y., Urzhumtsev, A., Bockmayr, A., Fokin, A., Urzhumtsev, A., Afonine, P., Lunin, V. Y., Harding, M., Turkenburg, M., Ballard, C., & Howard-Eales, M. (2002). Theory and Techniques 12. Binary Integer Programming and its Use for Envelope Determination Bulk Solvent Correction for Yet Unsolved Structures Search of the Optimal Strategy for Refinement of Atomic Models Metal Coordination Groups in Proteins: Some Comments on Geometry, Constitution and B-values. http://www.iucr.orgMacke, T. J., Ecker, D. J., Gutell, R. R., Gautheret, D., Case, D. A., & Sampath, R. (2001). RNAMotif, an RNA secondary structure definition and search algorithm. In Nucleic Acids Research (Vol. 29, Issue 22). http://bioinfo.math.rpi.edu/~zukerm/rna/energy/.Mariani, V., Biasini, M., Barbato, A., & Schwede, T. (2013). IDDT: A local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728. https://doi.org/10.1093/bioinformatics/btt473Marincola, G., & Wolz, C. (2017). Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus. Nucleic Acids Research, 45(10), 5980. https://doi.org/10.1093/NAR/GKX296Markham, N. R., & Zuker, M. (2008). UNAFold: Software for nucleic acid folding and hybridization. Methods in Molecular Biology, 453, 3–31. https://doi.org/10.1007/978-1-60327-429-6_1/COVERMaticzka, D., Lange, S. J., Costa, F., & Backofen, R. (2014). GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biology, 15(1), R17. https://doi.org/10.1186/GB-2014-15-1-R17Mcdonald, I. R. (1972). NpT-ensemble Monte Carlo calculations for binary liquid mixtures. In MOLECULAR PHYSICS (Vol. 23, Issue 1).McDowell, S. E., Špačková, N., Šponer, J., & Walter, N. G. (2007). Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers, 85(2), 169–184. https://doi.org/10.1002/BIP.20620Medina, J. S., Prosmiti, R., Villarreal, P., Delgado-Barrio, G., Winter, G., González, B., Alemán, J. V., & Collado, C. (2011). Molecular dynamics simulations of rigid and flexible water models: Temperature dependence of viscosity. Chemical Physics, 388(1–3), 9–18. https://doi.org/10.1016/J.CHEMPHYS.2011.07.001Mensa, J., Soriano, A., Barberán José, Montejo, M., Salavert, M., Alvarez-Rocha, L., Maseda, E., Moreno, A., Pasquau, J., Gómez, J., Parra, J., Candel, J., Azanza José, García José Elías, Marco, F., Soy, D., Gray, S., Fortún, J., Aristides de Alárcon, C., & Picazo, J. (2018). Guía de tratamiento antimicrobiano de la infección por Staphylococcus aureus.Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1Mlýnský, V., Kührová, P., Kühr, T., Otyepka, M., Bussi, G., Banáš, P., & Šponer, J. (2020). Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. https://doi.org/10.1101/2020.03.08.982538Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S. J. (2008). The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 4(5), 819–834. https://doi.org/10.1021/CT700324XMonticelli, L., & Tieleman, D. P. (2013). Force Fields for Classical Molecular Dynamics (pp. 197–213). https://doi.org/10.1007/978-1-62703-017-5_8Moore, P. B., & Steitz, T. A. (2002). The involvement of RNA in ribosome function. Nature 2002 418:6894, 418(6894), 229–235. https://doi.org/10.1038/418229aMorra, G., & Colombo, G. (2008). Relationship between energy distribution and fold stability: Insights from molecular dynamics simulations of native and mutant proteins. Proteins: Structure, Function and Genetics, 72(2), 660–672. https://doi.org/10.1002/PROT.21963Morris, A. L., Macarthur, M. W., Hutchinson, E. G., & Thornton’, J. M. (1992). Stereochemical Quality of Protein Structure Coordinates. In PROTEINS: Structure, Function, and Genetics (Vol. 12).Murray, P. R., Rosenthal, K. S., & Michael A. Pfaller. (1967). Medical Microbiology Ninth Edition. Angewandte Chemie International Edition, 6(11), 951–952., 5–24.Narumi, T., Susukita, R., Ebisuzaki, T., McNiven, G., & Elmegreen, B. (1999). Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations. Molecular Simulation, 21(5–6), 401–415. https://doi.org/10.1080/08927029908022078Nose, S. (1991). Constant Temperature Molecular Dynamics Methods. Progress of Theoretical Physics Supplement, 103. https://doi.org/10.1143/PTPS.103.1/1894286Nurisso, A., Daina, A., & Walker, R. C. (2012). A practical introduction to molecular dynamics simulations: Applications to homology modeling. Methods in Molecular Biology, 857, 137–173. https://doi.org/10.1007/978-1-61779-588-6_6Nutt, D. R., & Smith, J. C. (2007). Molecular dynamics simulations of proteins: Can the explicit water model be varied? Journal of Chemical Theory and Computation, 3(4), 1550–1560. https://doi.org/10.1021/ct700053uOhniwa, R. L., Ushijima, Y., Saito, S., & Morikawa, K. (2011). Proteomic Analyses of Nucleoid-Associated Proteins in Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. PLOS ONE, 6(4), e19172. https://doi.org/10.1371/JOURNAL.PONE.0019172Pavan, M., Bassani, D., Sturlese, M., & Moro, S. (2022). Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genomics and Bioinformatics, 4(4). https://doi.org/10.1093/nargab/lqac088Pagliuso, A., Tham, T. N., Allemand, E., Robertin, S., Dupuy, B., Bertrand, Q., Bécavin, C., Koutero, M., Najburg, V., Nahori, M. A., Tangy, F., Stavru, F., Bessonov, S., Dessen, A., Muchardt, C., Lebreton, A., Komarova, A. V., & Cossart, P. (2019). An RNA-Binding Protein Secreted by a Bacterial Pathogen Modulates RIG-I Signaling. Cell Host & Microbe, 26(6), 823-835.e11. https://doi.org/10.1016/J.CHOM.2019.10.004Pasachova Garzón, J., Ramirez Martinez, S., & Munoz Molina, L. (2019). Staphylococcus aureus: generalidades, mecanismos de patogenicidad y colonización celular.Patiyal, S., Dhall, A., Bajaj, K., Sahu, H., & Raghava, G. P. S. (2023). Prediction of RNA-interacting residues in a protein using CNN and evolutionary profile. Briefings in Bioinformatics, 24(1). https://doi.org/10.1093/bib/bbac538Patodia, S. (2014). Molecular dynamics simulation of protein Physical Chemistry & Biophysics. J Phys Chem Biophys, 4, 6. https://doi.org/10.4172/2161-0398.1000166Perez, D., Uberuaga, B. P., Shim, Y., Amar, J. G., & Voter, A. F. (2009). Chapter 4 Accelerated Molecular Dynamics Methods: Introduction and Recent Developments. In Annual Reports in Computational Chemistry (Vol. 5, pp. 79–98). https://doi.org/10.1016/S1574-1400(09)00504-0Perez, R. K., Gordon, M. G., Subramaniam, M., Kim, M. C., Hartoularos, G. C., Targ, S., Sun, Y., Ogorodnikov, A., Bueno, R., Lu, A., Thompson, M., Rappoport, N., Dahl, A., Lanata, C. M., Matloubian, M., Maliskova, L., Kwek, S. S., Li, T., Slyper, M., … Ye, C. J. (2022). Single-cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science (New York, N.Y.), 376(6589), eabf1970. https://doi.org/10.1126/SCIENCE.ABF1970Periasamy, S., Joo, H. S., Duong, A. C., Bach, T. H. L., Tan, V. Y., Chatterjee, S. S., Cheung, G. Y. C., & Otto, M. (2012). How Staphylococcus aureus biofilms develop their characteristic structure. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 1281–1286. https://doi.org/10.1073/PNAS.1115006109Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/JCC.20289Piatkowski, P. , Kasprzak, J. M. , Kumar, D. , Magnus, M. , Chojnowski, G. , & Bujnicki, J. M. (2016). RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS. Methods in molecular biology. 217–235. https://doi.org/https://doi.org/10.1007/978-1-4939-6433-8_14Plimpton, S. (1994). SANDIAREPORT A New Parallel Method for Molecular Dynamics Simulation of Macromoiecular Systems SF2gOOQ(8-8] ) q.Pinamonti, G., Bottaro, S., Micheletti, C., & Bussi, G. (2015). Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Research, 43(15), 7260. https://doi.org/10.1093/NAR/GKV708Poier, P. P., Lagardère, L., Piquemal, J.-P., & Jensen, F. (2019). Molecular Dynamics using Non-variational Polarizable Force Fields: Theory, Periodic Boundary Conditions Implementation and Application to the Bond Capacity Model.Pokorná, P., Kruse, H., Krepl, M., & Šponer, J. (2018). QM/MM Calculations on Protein-RNA Complexes: Understanding Limitations of Classical MD Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical Theory and Computation, 14(10), 5419–5433. https://doi.org/10.1021/ACS.JCTC.8B00670Popenda, M., Szachniuk, M., Antczak, M., Purzycka, K. J., Lukasiak, P., Bartol, N., Blazewicz, J., & Adamiak, R. W. (2012). Automated 3D structure composition for large RNAs. Nucleic Acids Research, 40(14). https://doi.org/10.1093/nar/gks339Pyle, A. M. (1993). Ribozymes: a distinct class of metalloenzymes. Science (New York, N.Y.), 261(5122), 709–714. https://doi.org/10.1126/SCIENCE.7688142Ramanathan, M., Porter, D. F., & Khavari, P. A. (2019). Methods to study RNA–protein interactions. Nature Methods 2019 16:3, 16(3), 225–234. https://doi.org/10.1038/s41592-019-0330-1Redmill, P. S., Capps, S. L., Cummings, P. T., & McCabe, C. (2009). A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. Carbon, 47(12), 2865–2874. https://doi.org/10.1016/j.carbon.2009.06.040Ricci, C. G., De Andrade, A. S. C., Mottin, M., & Netz, P. A. (2010). Molecular dynamics of DNA: Comparison of force fields and terminal nucleotide definitions. Journal of Physical Chemistry B, 114(30), 9882–9893. https://doi.org/10.1021/jp1035663Robert L. Buchanan, & Myron Solberg. (1972). INTERACTION_OF_SODIUM_NITRATE_OXYGEN_AND.Rocchetti, T. T., Martins, K. B., Martins, P. Y. F., Oliveira, R. A. de, Mondelli, A. L., Fortaleza, C. M. C. B., & Cunha, M. de L. R. de S. da. (2018). Detection of the mecA gene and identification of Staphylococcus directly from blood culture bottles by multiplex polymerase chain reaction. Brazilian Journal of Infectious Diseases, 22(2), 99–105. https://doi.org/10.1016/j.bjid.2018.02.006Roman Laskowski, B. A., Macarthur, M. W., & Thornton, J. M. (1983). Computer Programs PROCHECK: a program to check the stereochemicai quality of protein structures. In Phys. Status Solidi B (Vol. 13).Romby, P., & Charpentier, E. (2010). An overview of RNAs with regulatory functions in gram-positive bacteria. In Cellular and Molecular Life Sciences (Vol. 67, Issue 2, pp. 217–237). https://doi.org/10.1007/s00018-009-0162-8Rosales-Pelaez, P., Sanchez-Burgos, I., Valeriani, C., Vega, C., & Sanz, E. (2020). Seeding Approach to nucleation in the NVT ensemble: the case of bubble cavitation in overstretched Lennard Jones fluids. https://doi.org/10.1103/PhysRevE.101.022611Rowlinson, M. C., LeBourgeois, P., Ward, K., Song, Y., Finegold, S. M., & Bruckner, D. A. (2006). Isolation of a Strictly Anaerobic Strain of Staphylococcus epidermidis. Journal of Clinical Microbiology, 44(3), 857. https://doi.org/10.1128/JCM.44.3.857-860.2006Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. In Processes (Vol. 9, Issue 1, pp. 1–63). MDPI AG. https://doi.org/10.3390/pr9010071Sarzynska, J., Popenda, M., Antczak, M., & Szachniuk, M. (2023). RNA tertiary structure prediction using RNAComposer in CASP15. Proteins: Structure, Function and Bioinformatics, 91(12), 1790–1799. https://doi.org/10.1002/prot.26578Sasse, A., Laverty, K. U., Hughes, T. R., & Morris, Q. D. (2018). Motif models for RNA-binding proteins. In Current Opinion in Structural Biology (Vol. 53, pp. 115–123). Elsevier Ltd. https://doi.org/10.1016/j.sbi.2018.08.001Steffen, P., Voß, B., Rehmsmeier, M., Reeder, J., & Giegerich, R. (2006). RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4), 500–503. https://doi.org/10.1093/BIOINFORMATICS/BTK010Steinbach, P. J., & Brooks, B. R. (1994). New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation STEINBACH AND BROOKS. In Journal of Computational Chemistry (Vol. 15, Issue 7).Stillinger, F. H., & Rahman, A. (2003). Improved simulation of liquid water by molecular dynamics. The Journal of Chemical Physics, 60(4), 1545. https://doi.org/10.1063/1.1681229Sugiura, R., Satoh, R., Ishiwata, S., Umeda, N., & Kita, A. (2011). Role of RNA-Binding Proteins in MAPK Signal Transduction Pathway. Journal of Signal Transduction, 2011, 1–8. https://doi.org/10.1155/2011/109746Suzuki, M., Gerstein, M., & Yagi, N. (1994). Stereochemical basis of DNA recognition by Zn fingers. In Nucleic Acids Research (Vol. 22, Issue 16). http://nar.oxfordjournals.org/Szachniuk, M., Sarzyńska, J., & Blazewicz, J. (2013). Turning data into folds using RNAComposer. AIP Conference Proceedings, 1559, 353–354. https://doi.org/10.1063/1.4825029Tang, S., Li, J., Huang, G., & Yan, L. (2021). Predicting Protein Surface Property with its Surface Hydrophobicity. Protein & Peptide Letters, 28(8), 938–944. https://doi.org/10.2174/0929866528666210222160603Tanner, A. W., Carabetta, V. J., Martinie, R. J., Mashruwala, A. A., Boyd, J. M., Krebs, C., & Dubnau, D. (2017). The RicAFT (YmcA-YlbF-YaaT) complex carries two [4Fe-4S]2+ clusters and may respond to redox changes. Molecular Microbiology, 104(5), 837. https://doi.org/10.1111/MMI.13667Tobi, D., & Bahar, I. (2005). Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 18908–18913. https://doi.org/10.1073/PNAS.0507603102Torrisi, M., Pollastri, G., & Le, Q. (2020). Deep learning methods in protein structure prediction. Computational and Structural Biotechnology Journal, 18, 1301–1310. https://doi.org/10.1016/J.CSBJ.2019.12.011Tortosa, P., Albano, M., & Dubnau, D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Molecular Microbiology, 35(5), 1110–1119. https://doi.org/10.1046/J.1365-2958.2000.01779.XToukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: a survey. In Computer Physics Communications (Vol. 95).Trendel, J., Schwarzl, T., Horos, R., Prakash, A., Bateman, A., Hentze, M. W., & Krijgsveld, J. (2019). The Human RNA-Binding Proteome and Its Dynamics during Translational Arrest. Cell, 176(1–2), 391-403.e19. https://doi.org/10.1016/J.CELL.2018.11.004/ATTACHMENT/E3562894-90AA-4BA4-96A4-2B801FCD0CF2/MMC6.PDFValero, A., Pérez-Rodríguez, F., Carrasco, E., Fuentes-Alventosa, J. M., García-Gimeno, R. M., & Zurera, G. (2009). Modelling the growth boundaries of Staphylococcus aureus: Effect of temperature, pH and water activity. International Journal of Food Microbiology, 133(1–2), 186–194. https://doi.org/10.1016/J.IJFOODMICRO.2009.05.023Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). NAR Breakthrough Article AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50. https://doi.org/10.1093/nar/gkab1061Vlachakis, D., Bencurova, E., Papangelopoulos, N., & Kossida, S. (2014). Current State-of-the-Art Molecular Dynamics Methods and Applications. Advances in Protein Chemistry and Structural Biology, 94, 269–313. https://doi.org/10.1016/B978-0-12-800168-4.00007-XWang, L., Huang, C., Yang, M. Q., & Yang, J. Y. (2010). BindN+ for accurate prediction of DNA and RNA-binding residues from protein sequence features. BMC Systems Biology, 4(Suppl 1), S3. https://doi.org/10.1186/1752-0509-4-S1-S3Wang, L., You, Z. H., Huang, D. S., & Zhou, F. (2020). Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(3), 972–980. https://doi.org/10.1109/TCBB.2018.2874267Wang, W., Donini, O., Reyes, C. M., & Kollman, P. A. (2001). BIOMOLECULAR SIMULATIONS: Recent Developments in Force Fields, Simulations of Enzyme Catalysis, Protein-Ligand, Protein-Protein, and Protein-Nucleic Acid Noncovalent Interactions. www.annualreviews.orgWarren L. DeLano. (2004). PyMOL User’s GuideWheeler, E. C., Van Nostrand, E. L., & Yeo, G. W. (2018). Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. Wiley Interdisciplinary Reviews: RNA, 9(1). https://doi.org/10.1002/wrna.1436Williams, S. G., & Lovell, S. C. (2009). The Effect of Sequence Evolution on Protein Structural Divergence. Molecular Biology and Evolution, 26(5), 1055–1065. https://doi.org/10.1093/MOLBEV/MSP020Windbichler, N., & Schroeder, R. (2006). Isolation of specific RNA-binding proteins using the streptomycin-binding RNA aptamer. Nature Protocols 2006 1:2, 1(2), 637–640. https://doi.org/10.1038/nprot.2006.95Wlodawer, A. (2017). Stereochemistry and validation of macromolecular structures. In Methods in Molecular Biology (Vol. 1607, pp. 595–610). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7000-1_24World Health Organization. (2022). Antimicrobial Resistance Multi-Partner Trust Fund annual report 2022.Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/NAR/GKX407Yang, Z., Zeng, X., Zhao, Y., & Chen, R. (2023). AlphaFold2 and its applications in the fields of biology and medicine. In Signal Transduction and Targeted Therapy (Vol. 8, Issue 1). Springer Nature. https://doi.org/10.1038/s41392-023-01381-zYao, Z., Weinberg, Z., & Ruzzo, W. L. (2006). CMfinder - A covariance model based RNA motif finding algorithm. Bioinformatics, 22(4), 445–452. https://doi.org/10.1093/bioinformatics/btk008Yildirim, I., Stern, H. A., Kennedy, S. D., Tubbs, J. D., & Turner, D. H. (2010). Reparameterization of RNA χ torsion parameters for the AMBER force field and comparison to NMR spectra for cytidine and uridine. Journal of Chemical Theory and Computation, 6(5), 1520–1531. https://doi.org/10.1021/ct900604aYildirim, I., Stern, H. A., Tubbs, J. D., Kennedy, S. D., & Turner, D. H. (2011). Benchmarking AMBER force fields for RNA: Comparisons to NMR spectra for single-stranded r(GACC) are improved by revised Χ torsions. Journal of Physical Chemistry B, 115(29), 9261–9270. https://doi.org/10.1021/jp2016006Yusuf, D., Butland, S. L., Swanson, M. I., Bolotin, E., Ticoll, A., Cheung, W. A., Zhang, X. Y. C., Dickman, C. T. D., Fulton, D. L., Lim, J. S., Schnabl, J. M., Ramos, O. H. P., Vasseur-Cognet, M., de Leeuw, C. N., Simpson, E. M., Ryffel, G. U., Lam, E. W. F., Kist, R., Wilson, M. S. C., … Hevner, R. F. (2012). The transcription factor encyclopedia. Genome Biology, 13(3). https://doi.org/10.1186/gb-2012-13-3-r24Acceso cerradorl.org/coar/access_right/c_14cbhttp://puhttp://purl.org/coar/access_right/c_14cbspaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/c50043bc-bbbc-4bff-b34d-faa0ed5567fa/download17cc15b951e7cc6b3728a574117320f9MD51Carta de aprobacion.pdfapplication/pdf116112https://repositorio.unbosque.edu.co/bitstreams/8f53c408-423b-4e7f-ac4f-bad68b0b91af/download367043e57dd5547e96dec6e8c5d29c26MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/5ce76eae-ca48-415d-8fce-1e61e047da4e/download3b6ce8e9e36c89875e8cf39962fe8920MD52ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf4107236https://repositorio.unbosque.edu.co/bitstreams/33e676ef-cca5-4aca-ad67-00f09844f849/downloade5785ecb5b8d4c71b176895ccab75114MD54TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain101562https://repositorio.unbosque.edu.co/bitstreams/667099bc-ac00-48e6-b4f9-883b700d16a3/download920b1375a3ddd01c91415a53f000eb7cMD56THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4073https://repositorio.unbosque.edu.co/bitstreams/328b7a6e-2be2-4b16-9e8d-855f90144127/downloadb634931b433fbbee1a77dfdcb41a1771MD5720.500.12495/13493oai:repositorio.unbosque.edu.co:20.500.12495/134932024-11-30 03:04:37.976restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=