Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos

Este estudio exploró la producción de bioplásticos utilizando bagazo de caña de azúcar y tusa residual de maíz como materias primas, enfocándose en su aplicabilidad como material para empaque sostenible. A través de un proceso de extracción, se obtuvo celulosa y fibra de las biomasas mencionadas, qu...

Full description

Autores:
Lugo Álvarez, José David
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13482
Acceso en línea:
https://hdl.handle.net/20.500.12495/13482
Palabra clave:
Bioplásticos
Bagazo de caña de azúcar
Tusa residual de maíz
Obtención de bioplásticos
Química verde
Sostenibilidad
628
Bioplastics
Sugarcane bagasse
Corn cob residue
Bioplastic production
Green chemistry
Sustainability
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_422da83efadacd21ebe1a72046f76708
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13482
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
dc.title.translated.none.fl_str_mv Use of sugar cane bagasse and residual corn stover to obtain bioplastics
title Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
spellingShingle Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
Bioplásticos
Bagazo de caña de azúcar
Tusa residual de maíz
Obtención de bioplásticos
Química verde
Sostenibilidad
628
Bioplastics
Sugarcane bagasse
Corn cob residue
Bioplastic production
Green chemistry
Sustainability
title_short Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
title_full Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
title_fullStr Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
title_full_unstemmed Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
title_sort Aprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticos
dc.creator.fl_str_mv Lugo Álvarez, José David
dc.contributor.advisor.none.fl_str_mv Cortés Ortíz, William Giovanni
dc.contributor.author.none.fl_str_mv Lugo Álvarez, José David
dc.subject.none.fl_str_mv Bioplásticos
Bagazo de caña de azúcar
Tusa residual de maíz
Obtención de bioplásticos
Química verde
Sostenibilidad
topic Bioplásticos
Bagazo de caña de azúcar
Tusa residual de maíz
Obtención de bioplásticos
Química verde
Sostenibilidad
628
Bioplastics
Sugarcane bagasse
Corn cob residue
Bioplastic production
Green chemistry
Sustainability
dc.subject.ddc.none.fl_str_mv 628
dc.subject.keywords.none.fl_str_mv Bioplastics
Sugarcane bagasse
Corn cob residue
Bioplastic production
Green chemistry
Sustainability
description Este estudio exploró la producción de bioplásticos utilizando bagazo de caña de azúcar y tusa residual de maíz como materias primas, enfocándose en su aplicabilidad como material para empaque sostenible. A través de un proceso de extracción, se obtuvo celulosa y fibra de las biomasas mencionadas, que se mezclaron en diferentes proporciones para crear biomateriales. Las muestras fueron caracterizadas mediante pruebas de contenido de humedad, absorción de agua y permeabilidad al vapor, además de una caracterización de microscopía óptica y estereoscopía, mostrando que las proporciones de celulosa y fibra influyen en las propiedades físicas y de resistencia a la humedad, siendo la proporción de distribución 75:25 de tusa-bagazo la muestra que mejor propiedad presentó. El presente trabajo evaluó la métrica “Estrella Verde” de la química verde para determinar el grado de sostenibilidad en las etapas de extracción y obtención del bioplástico, alcanzando un 69,35 % y un 81,62 % de alineación con los principios de la química verde, respectivamente. Estos resultados indican un “gran acercamiento verde” del proceso. Este proyecto muestra el potencial del bagazo de caña de azúcar y la tusa residual de maíz en el desarrollo de bioplásticos y establece recomendaciones para mejorar la resistencia del material, incentivando investigaciones futuras en la optimización de bioplásticos para aplicaciones comerciales y fomentando el compromiso ambiental en el desarrollo de subproductos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-29T15:20:50Z
dc.date.available.none.fl_str_mv 2024-11-29T15:20:50Z
dc.date.issued.none.fl_str_mv 2024-11
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13482
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13482
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484
Aguilar, N. M., Arteaga-Cardona, F., de Anda Reyes, M. E., Gervacio-Arciniega, J. J., & Salazar-Kuri, U. (2019). Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemistry and Physics, 238, 121921. https://doi.org/10.1016/J.MATCHEMPHYS.2019.121921
Aguilar-Rivera, N. (2011). Efecto del almacenamiento de bagazo de caña en las propiedades físicas de celulosa grado papel. Ingeniería. Investigación y Tecnología, XII(2), 189–197. https://www.redalyc.org/articulo.oa?id=40419907008
Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing 2021 8:1, 8(1), 1–25. https://doi.org/10.1186/S40643-021-00440-Z
Almeida, L., Sola, A., & Ramirez-Behainne, J. (2017). Sugarcane bagasse pellets: Characterization and comparative analysis. Acta Scientiarum. Technology, 39, 461. https://doi.org/10.4025/actascitechnol.v39i4.30198
Anastas, P. T., & Warner, J. C. (2000). Green Chemistry: Theory and Practice. Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001
Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. https://doi.org/10.1098/RSTB.2008.0304
Aroca Chica, M. J., & Estrada Ramírez, P. E. (2015). Estudio comparativo de la celulosa obtenida a partir del pseudotallo de banano con la obtenida de bagazo de la caña de azúcar, empleando la misma metodología. http://repositorio.ug.edu.ec/handle/redug/8920
ASTM International. (2015a). Standard Test Method for Ash in Biomass. https://doi.org/10.1520/E1755-01R15
ASTM International. (2015b). Standard Test Method for Determination of Total Solids in Biomass. https://doi.org/10.1520/E1756
ASTM International. (2019). Test Method for Moisture Analysis of Particulate Wood Fuels. https://doi.org/10.1520/E0871-82R19
Azmin, S. N. H. M., Hayat, N. A. B. M., & Nor, M. S. M. (2020). Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproducts, 5(4), 248–255. https://doi.org/10.1016/j.jobab.2020.10.003
Barnes, D. K. A., & Milner, P. (2005). Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Marine Biology, 146(4), 815–825. https://doi.org/10.1007/S00227-004-1474-8
Barreto, E. P. (2022). Los bioplásticos como sustitutos de los plásticos de un solo uso en Colombia proyecto de grado. https://repository.uniminuto.edu/handle/10656/14664
Benini, K. C. C. C., Voorwald, H. J. C., & Cioffi, M. O. H. (2011). Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering, 10, 3246–3251. https://doi.org/10.1016/j.proeng.2011.04.536
Bernstad Saraiva Schott, A., & Andersson, T. (2015). Food waste minimization from a life-cycle perspective. Journal of Environmental Management, 147, 219–226. https://doi.org/10.1016/J.JENVMAN.2014.07.048
Bhavanam, A., Gera, P., Pandhare, N. N., & Dash, S. (2022). Catalysts for conversion of lignocellulosic biomass into platform chemicals and bio-aromatics. Handbook of Biomass Valorization for Industrial Applications, 83–106. https://doi.org/10.1002/9781119818816.ch5
Cárdenas Quiroga, E. A., Morales Martín, L. Y., & Ussa Caycedo, A. (2015). La estereoscopía, métodos y aplicaciones en diferentes áreas del conocimiento. Revista Científica General José María Córdova, 13(16). https://doi.org/10.21830/19006586.37
Castañeda Torres, S., & Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19(1). https://doi.org/10.22267/rus.171901.75
Congreso de la República (2022). Ley 2232 de 2022
Chan, J. X., Wong, J. F., Hassan, A., & Zakaria, Z. (2021). Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, 141–169. https://doi.org/10.1016/B978-0-12-819953-4.00005-7
Cury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., & Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530
del Rodríguez, L. P., Toloza, L. J., & Mg Paola Iveth Rodríguez Contreras, C. (2021). Propuesta de optimización del Plan de Gestión Integral de Residuos Sólidos en la Sede Central de la Universidad Pedagógica y Tecnológica de Colombia. Agricultural Sciences, 03(07), 905–917. https://doi.org/10.4236/AS.2012.37110
Díaz, A., & Cardozo, A. (2022). Análisis de la gestión de los residuos orgánicos en Colombia a través de la visualización del marco legal vigente representado por medio de un dashboard. Ciencia Unisalle.
Drané, M., Zbair, M., Hajjar-Garreau, S., Josien, L., Michelin, L., Bennici, S., & Limousy, L. (2023). Unveiling the Potential of Corn Cob Biochar: Analysis of Microstructure and Composition with Emphasis on Interaction with NO2. Materials, 17(1), 159. https://doi.org/10.3390/ma17010159
Ejaz, U., Rashid, R., Ahmed, S., Narejo, K. K., Qasim, A., Sohail, M., Ali, S. T., Althakafy, J. T., Alanazi, A. K., Abo-Dief, H. M., & Moin, S. F. (2023). Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. International Journal of Biological Macromolecules, 235. https://doi.org/10.1016/j.ijbiomac.2023.123903
Enawgaw, H., Tesfaye, T., Yilma, K., & Limeneh, D. (2023). Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review. Materials Circular Economy, 5. https://doi.org/10.1007/s42824-023-00078-6
Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/J.CSCEE.2021.100142
Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packaging applications. Smart Polymers and their Applications, 476–509. https://doi.org/10.1533/9780857097026.2.476
Gabriela, M., Ribeiro, T. C., Costa, D. A., Machado, A. A. S. C., & Machado, A. A. S. C. (2010). “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Taylor & Francis, 3(2), 149–159. https://doi.org/10.1080/17518251003623376
Gandam, P. K., Chinta, M. L., Pabbathi, N. P. P., Velidandi, A., Sharma, M., Kuhad, R. C., Tabatabaei, M., Aghbashlo, M., Baadhe, R. R., & Gupta, V. K. (2022). Corncob-based biorefinery: A comprehensive review of pretreatment methodologies, and biorefinery platforms. Journal of the Energy Institute, 101, 290–308. https://doi.org/10.1016/J.JOEI.2022.01.004
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/J.JCLEPRO.2016.12.048
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782/SUPPL_FILE/1700782_SM.PDF
Glasson, J., & Therivel, R. (2019). Introduction to environmental impact assessment. Introduction to Environmental Impact Assessment, 1–381. https://doi.org/10.4324/9780429470738/INTRODUCTION-ENVIRONMENTAL-IMPACT-ASSESSMENT-JOHN-GLASSON-RIKI-THERIVEL
Guía para la formulación, implementación, evaluación, seguimiento, control y actualización de los (PGIRS) (2015).
Hernández Caballero, A. N. (2021). Análisis de la gestión de residuos sólidos en Colombia. Repositorio Institucional Universidad Militar Nueva Granada.
Hopewell, J., Dvorak, R., & Kosior, E. (2009a). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126. https://doi.org/10.1098/RSTB.2008.0311
Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898–1907. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2013.06.016
Hugot, E., & Jenkins, G. H. (1986). Handbook of Cane Sugar Engineering. Elsevier. https://books.google.com.co/books?id=hNdxQgAACAAJ
Ibitoye, S. E., Jen, T.-C., Mahamood, R. M., Akinlabi, E. T., Singh, K., Tummala, K., Kosaraju, S., & Haider, J. (2021). Improving the Combustion Properties of Corncob Biomass via Torrefaction for Solid Fuel Applications. Journal of Composites Science 2021, Vol. 5, Page 260, 5(10), 260. https://doi.org/10.3390/JCS5100260
Jayakumar, A., Radoor, S., Siengchin, S., Shin, G. H., & Kim, J. T. (2023). Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Science of the Total Environment, 878. https://doi.org/10.1016/j.scitotenv.2023.163156
Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), 237–249. https://doi.org/10.1016/j.tplants.2018.11.010
Kawaguchi, H., Takada, K., Elkasaby, T., Pangestu, R., Toyoshima, M., Kahar, P., Ogino, C., Kaneko, T., & Kondo, A. (2022). Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 344, 126165. https://doi.org/10.1016/J.BIORTECH.2021.126165
Labrador Sánchez, H., & Osto, S. (2021). Caracterización de la celulosa proveniente del lodo papelero y su esterificación. Revista de la Facultad de Ciencias, 10(2). https://doi.org/10.15446/rev.fac.cienc.v10n2.94003
Lenço, P. C., Ramirez-Quintero, D. A., & Bizzo, W. A. (2020). Characterization of sugarcane bagasse particles separated by elutriation for energy generation. Renewable Energy, 161, 712–721. https://doi.org/10.1016/J.RENENE.2020.06.046
León-Fernández, V., Rieumont-Briones, J., Bordallo-López, E., Dopico-Ramírez, D., Peña-Sacerio, E., & Menéndez-Cuesta-Mirabal, I. (2013). Obtención y caracterización de la celulosa hidrofóbicamente modificada. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 47(1), 51–56. https://www.redalyc.org/articulo.oa?id=223126409007
Liu, F., Ren, J., Yang, Q., Zhang, Q., Zhang, Y., Xiao, X., & Cao, Y. (2024). Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. International Journal of Biological Macromolecules, 260, 129404. https://doi.org/10.1016/J.IJBIOMAC.2024.129404
Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., & Tessaro, I. C. (2015). Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, 45, 203–210. https://doi.org/10.1016/J.FOODHYD.2014.11.015
Luna Vera, F., Melo Cortes, H. A., Viviana Murcia, C., & Charry Galvis, I. (2014). Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización. Informador técnico, ISSN 0122-056X, ISSN-e 2256-5035, Vol. 78, No. 2 (Julio-Diciembre 2014), 2014, págs. 106-114, 78(2), 106–114. https://dialnet.unirioja.es/servlet/articulo?codigo=5129559&info=resumen&idioma=ENG
MAATE. (2020). Manual de aprovechamiento de residuos orgánicos municipales. Ministerio de Ambiente y Agua.
Madhavan, A., Reshmy, R., Arun, K. B., Philip, E., Sindhu, R., Nair, B. G., Awasthi, M. K., Pandey, A., & Binod, P. (2023). Murraya koenigii extract blended nanocellulose-polyethylene glycol thin films for the sustainable synthesis of antibacterial food packaging. Sustainable Chemistry and Pharmacy, 32, 101021. https://doi.org/10.1016/J.SCP.2023.101021
Marta, H., Wijaya, C., Sukri, N., Cahyana, Y., & Mohammad, M. (2022). A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers, 14(22), 4875. https://doi.org/10.3390/polym14224875
Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519–5558. https://doi.org/10.1039/D0GC01647K
Menezes Filho, A. C. P. de, Oliveira Filho, J., Deminski, G., Jesus, A., Andrade, M., & Castro, C. F. de S. (2019). Avaliação colorimétrica e caracterização morfológica por microscopia óptica de alta resolução das farinhas dos frutos do jatobá, jambolão e siriguela. Multi-Science Journal, 2(1). https://doi.org/10.33837/msj.v2i1.544
Ministerio de Ambiente y Desarrollo Sostenible. (2021). Plan Nacional para la Gestión Sostenible del Plástico.
Ministerio de Ambiente y Desarrollo Sostenible. (2022). En 2050 habría en el mundo unos 12.000 millones de toneladas de basura plástica, si no se cambian las pautas de consumo - Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/en-2050-habria-en-el-mundo-unos-12-000-millones-de-toneladas-de-basura-plastica-si-no-se-cambian-las-pautas-de-consumo/
Mora, J. (2021). Reciclaje y reutilización de materiales de construcción en Colombia como aporte a la economía circular. Ciencia Unisalle.
Morales Galicia, M. L., Martínez, J. O., Reyes Sánchez, L. B., Martín Hernández, O., Arroyo Razo, G. A., Obaya Valdivia, A., & Miranda Ruvalcaba, R. (2011). ¿Qué tan verde es un experimento? Educación química, 22(3), 240–248. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2011000300009&lng=es&nrm=iso&tlng=es
Nasir, N., & Othman, S. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32, 89–101. https://doi.org/10.21315/jps2021.32.3.7
Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorization of plant biomass. Biotechnology for Biofuels 2021 14:1, 14(1), 1–22. https://doi.org/10.1186/S13068-021-01949-3
North, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/REVEH-2012-0030
Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/J.RSER.2015.08.053
Outili, N., Kerras, H., & Meniai, A. H. (2023). Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. Current Opinion in Green and Sustainable Chemistry, 41, 100794. https://doi.org/10.1016/J.COGSC.2023.100794
Pang, Y. L., Lim, S., Lai, S. O., & Chong, W. C. (2023). Green Chemistry for the development of biomass conversion process into cellulose and bioethanol. Green Sustainable Process for Chemical and Environmental Engineering and Science: Natural Materials-Based Green Composites 2: Biomass, 121–137. https://doi.org/10.1016/B978-0-323-95183-8.00003-2
Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10(2), 52–68. https://doi.org/10.1016/S0924-2244(99)00019-9
Prado-Martínez, M., Anzaldo-Hernández, J., Becerra-Aguilar, B., Palacios-Juárez, H., Vargas-Radillo, J. de J., & Rentería-Urquiza, M. (2012). Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera Bosques, 18(3). https://doi.org/10.21829/myb.2012.183357
Ratna, A. S., Ghosh, A., & Mukhopadhyay, S. (2022). Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production, 371, 133563. https://doi.org/10.1016/J.JCLEPRO.2022.133563
Rezende, C. A., de Lima, M. A., Maziero, P., deAzevedo, E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1), 54. https://doi.org/10.1186/1754-6834-4-54
Riera, M. A., Maldonado3, S., & Palma4, R. R. (2021). Agro-industrial residues generated in ecuador for the elaboration of bioplastics. https://doi.org/10.22320/S07179103/2018.13
Ritzen, L., Sprecher, B., Bakker, C., & Balkenende, R. (2023). Bio-based plastics in a circular economy: A review of recovery pathways and implications for product design. Resources, Conservation and Recycling, 199, 107268. https://doi.org/10.1016/J.RESCONREC.2023.107268
Rivero, C. P., Hu, Y., Kwan, T. H., Webb, C., Theodoropoulos, C., Daoud, W., & Lin, C. S. K. (2017). Bioplastics From Solid Waste. Current Developments in Biotechnology and Bioengineering: Solid Waste Management, 1–26. https://doi.org/10.1016/B978-0-444-63664-5.00001-0
Rojas, M., … R. M.-R.-J. en, & 2016, undefined. (2016). Producción de ácido láctico a partir de bagazo de caña residual de la industria azucarera. jovenesenlaciencia.ugto.mx, 2(1). http://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1355
Rugeles, A., … S. V.-… D. L. C., & 2014, undefined. (s/f). Bioplásticos: aplicación de la química verde. staticcuc.s3.amazonaws.com. Recuperado el 29 de octubre de 2023, de http://staticcuc.s3.amazonaws.com/images/stories/archivos/pdf/educosta/memoriaeventos/MEMORIAS_IV_ENC._INVEST._C._BAS._-_provisional.pdf#page=18
S. Kaddory Al-Zubaidy, M. (2015). A Literature Evaluation of the Energy Efficiency of Leadership in Energy and Environmental Design (LEED) -Certified Buildings. American Journal of Civil Engineering and Architecture, 3(1), 1–7. https://doi.org/10.12691/AJCEA-3-1-1
Saba, Naheed., Jawaid, Mohammad., & Thariq, Mohamed. (2021). Biopolymers and biocomposites from agro-waste for packaging applications.
Sachs, J. D. (2015). The Oxymoron of Sustainable Development: The Age of Sustainable Development. BioScience, 65(10), 1027–1029. http://bioscience.oxfordjournals.org
Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation 2022 6:1, 6(1), 1–28. https://doi.org/10.1038/s41529-022-00277-7
Santos, B., Prado, K., Jacinto, A., & Spinacé, M. (2018). Influence of Sugarcane Bagasse Fiber Size on Biodegradable Composites of Thermoplastic Starch. Journal of Renewable Materials, 6. https://doi.org/10.7569/JRM.2018.634101
Sheldon, R. A. (2008). E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 29, 3352–3365. https://doi.org/10.1039/B803584A
Sheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451. https://doi.org/10.1039/C1CS15219J
Silva, T. A. L., Zamora, H. D. Z., Varão, L. H. R., Prado, N. S., Baffi, M. A., & Pasquini, D. (2018). Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass Valorization, 9(11), 2191–2201. https://doi.org/10.1007/s12649-017-9989-7
Simão, J. A., Carmona, V. B., Marconcini, J. M., Mattoso, L. H. C., Barsberg, S. T., & Sanadi, A. R. (2016). Effect of fiber treatment condition and coupling agent on the mechanical and thermal properties in highly filled composites of sugarcane bagasse Fiber/PP. Materials Research, 19(4), 746–751. https://doi.org/10.1590/1980-5373-MR-2015-0609
Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal
Society B: Biological Sciences, 364(1526), 2127–2139. https://doi.org/10.1098/RSTB.2008.0289
Spierling, S., Röttger, C., Venkatachalam, V., Mudersbach, M., Herrmann, C., & Endres, H. J. (2018). Bio-based Plastics - A Building Block for the Circular Economy? Procedia CIRP, 69, 573–578. https://doi.org/10.1016/J.PROCIR.2017.11.017
Surendran, G., & Sherje, A. P. (2022). Cellulose nanofibers and composites: An insight into basics and biomedical applications. Journal of Drug Delivery Science and Technology, 75, 103601. https://doi.org/10.1016/J.JDDST.2022.103601
Szymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A., & Zdunek, A. (2017). Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers, 9(10). https://doi.org/10.3390/polym9100495
Teacǎ, C. A., Bodîrlǎu, R., & Spiridon, I. (2013). Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 93(1), 307–315. https://doi.org/10.1016/J.CARBPOL.2012.10.020
Thomas, A. P., Kasa, V. P., Dubey, B. K., Sen, R., & Sarmah, A. K. (2023). Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Science of The Total Environment, 904, 167243. https://doi.org/10.1016/J.SCITOTENV.2023.167243
Thompson, R. C., Moore, C. J., Saal, F. S. V., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/RSTB.2009.0053
Tobiszewski, M., Marć, M., Gałuszka, A., & Namies̈nik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, Vol. 20, Pages 10928-10946, 20(6), 10928–10946. https://doi.org/10.3390/MOLECULES200610928
Ul-Islam, Shahid., Shalla, A. Hussain., & Khan, S. Ahmad. (2022). Handbook of biomass valorization for industrial applications.
Vargas Corredor, Y. A., & Peréz Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 59–72. https://doi.org/10.18359/RFCB.3108
Vilela, C., Moreirinha, C., Domingues, E. M., Figueiredo, F. M. L., Almeida, A., & Freire, C. S. R. (2019). Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials 2019, Vol. 9, Page 980, 9(7), 980. https://doi.org/10.3390/NANO9070980
Vivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, Brito, J. O., Vivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, & Brito, J. O. (2022). Caracterização do bagaço de cana-de-açúcar e suas potencialidades para geração de energia e polpa celulósica. Madera y Bosques, 28(1). https://doi.org/10.21829/myb.2022.2812376
Wu, C. S. (2011). Performance and biodegradability of a maleated polyester bioplastic/recycled sugarcane bagasse system. Journal of Applied Polymer Science, 121(1), 427–435. https://doi.org/10.1002/APP.33713
Yang, J., Ching, Y., & Chuah, C. (2019). Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers, 11(5), 751. https://doi.org/10.3390/polym11050751
Yang, Y., Liu, H., Wu, M., Ma, J., & Lu, P. (2020). Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. International Journal of Biological Macromolecules, 161, 627–635. https://doi.org/10.1016/j.ijbiomac.2020.06.081
Yépez Chávez, A., & Viteri Moya, F. (2019). Enfoques innovadores de educación ambiental con el aprovechamiento de residuos orgánicos urbanos. Cátedra, 2(2). https://doi.org/10.29166/catedra.v2i2.1639
Zacarías, A. (2018). ¿Qué es la economía circular y cómo cuida del medio ambiente?
Zamora Rueda, G., Gutiérrez, C., Mistretta, G., Peralta, F., Golato, M., Ruiz, M., & Paz, D. (2016). Determinación del contenido de humedad del bagazo de caña de azùcar por medio de microondas. Revista industrial y agrícola de Tucumán, 93(2), 07–12. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182016000200002&lng=es&nrm=iso&tlng=es
Zia, K. M., Akram, N., Tabasum, S., Noreen, A., & Akbar, M. U. (2021). Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. En Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. Elsevier. https://doi.org/10.1016/B978-0-323-85772-7.09993-6
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/a5a7644f-e86f-480e-90b4-69694c58422d/download
https://repositorio.unbosque.edu.co/bitstreams/ab591b04-e535-4f85-a781-678b3e0f2b4b/download
https://repositorio.unbosque.edu.co/bitstreams/da667d6f-9ec7-4fcb-a570-bac0fd4c50ef/download
https://repositorio.unbosque.edu.co/bitstreams/f00b716f-440b-4dbe-964d-70df98fd18b8/download
https://repositorio.unbosque.edu.co/bitstreams/06ab4871-2bc2-41f1-aff5-00ab655e9c89/download
https://repositorio.unbosque.edu.co/bitstreams/bee36c7a-ba19-4d3a-ba34-0587e59e7ae0/download
https://repositorio.unbosque.edu.co/bitstreams/5af26c9c-e562-4382-8a73-22b2b03af005/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
a98c52a2185a1452f1d46b0edc82f737
b5135a2230deed086861198f336f0794
c9e1c75444a8bacec68e78a2309f18e9
3b6ce8e9e36c89875e8cf39962fe8920
3c79cb201a43600bfe5855ec9c308b54
fae6dce6277aae43032ff19d909c9324
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164452853219328
spelling Cortés Ortíz, William GiovanniLugo Álvarez, José David2024-11-29T15:20:50Z2024-11-29T15:20:50Z2024-11https://hdl.handle.net/20.500.12495/13482instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEste estudio exploró la producción de bioplásticos utilizando bagazo de caña de azúcar y tusa residual de maíz como materias primas, enfocándose en su aplicabilidad como material para empaque sostenible. A través de un proceso de extracción, se obtuvo celulosa y fibra de las biomasas mencionadas, que se mezclaron en diferentes proporciones para crear biomateriales. Las muestras fueron caracterizadas mediante pruebas de contenido de humedad, absorción de agua y permeabilidad al vapor, además de una caracterización de microscopía óptica y estereoscopía, mostrando que las proporciones de celulosa y fibra influyen en las propiedades físicas y de resistencia a la humedad, siendo la proporción de distribución 75:25 de tusa-bagazo la muestra que mejor propiedad presentó. El presente trabajo evaluó la métrica “Estrella Verde” de la química verde para determinar el grado de sostenibilidad en las etapas de extracción y obtención del bioplástico, alcanzando un 69,35 % y un 81,62 % de alineación con los principios de la química verde, respectivamente. Estos resultados indican un “gran acercamiento verde” del proceso. Este proyecto muestra el potencial del bagazo de caña de azúcar y la tusa residual de maíz en el desarrollo de bioplásticos y establece recomendaciones para mejorar la resistencia del material, incentivando investigaciones futuras en la optimización de bioplásticos para aplicaciones comerciales y fomentando el compromiso ambiental en el desarrollo de subproductos.Ingeniero AmbientalPregradoThis study explored the production of bioplastics using sugarcane bagasse and corn cob waste as raw materials, focusing on their applicability as sustainable packaging material. Through an extraction process, cellulose and fiber were obtained from the mentioned biomasses, which were mixed in different proportions to create bioplastic films. The samples were characterized by moisture content, water absorption and vapor permeability tests, in addition to optical and stereoscopic microscopy characterization, showing that the proportions of cellulose and fiber influence their physical and moisture resistance properties, with the 75:25 distribution ratio of corn cob-bagasse being the sample that presented the best properties. This work evaluated the “Green Star” metric of green chemistry to determine the degree of sustainability in the extraction and obtaining stages of bioplastic, reaching 69.35% and 81.62% alignment with the principles of green chemistry, respectively. These results indicate a “great green approach” to the process. This project shows the potential of sugarcane bagasse and corn cob residue in the development of bioplastics and establishes recommendations to improve the strength of the material, encouraging future research into the optimization of bioplastics for commercial applications and promoting environmental commitment in the development of by-products.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2BioplásticosBagazo de caña de azúcarTusa residual de maízObtención de bioplásticosQuímica verdeSostenibilidad628BioplasticsSugarcane bagasseCorn cob residueBioplastic productionGreen chemistrySustainabilityAprovechamiento del bagazo de la caña de azúcar y tusa residual de maíz para la obtención de bioplásticosUse of sugar cane bagasse and residual corn stover to obtain bioplasticsIngeniería AmbientalUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aaAbe, M. M., Martins, J. R., Sanvezzo, P. B., Macedo, J. V., Branciforti, M. C., Halley, P., Botaro, V. R., & Brienzo, M. (2021). Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 13(15), 2484. https://doi.org/10.3390/polym13152484Aguilar, N. M., Arteaga-Cardona, F., de Anda Reyes, M. E., Gervacio-Arciniega, J. J., & Salazar-Kuri, U. (2019). Magnetic bioplastics based on isolated cellulose from cotton and sugarcane bagasse. Materials Chemistry and Physics, 238, 121921. https://doi.org/10.1016/J.MATCHEMPHYS.2019.121921Aguilar-Rivera, N. (2011). Efecto del almacenamiento de bagazo de caña en las propiedades físicas de celulosa grado papel. Ingeniería. Investigación y Tecnología, XII(2), 189–197. https://www.redalyc.org/articulo.oa?id=40419907008Ajala, E. O., Ighalo, J. O., Ajala, M. A., Adeniyi, A. G., & Ayanshola, A. M. (2021). Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresources and Bioprocessing 2021 8:1, 8(1), 1–25. https://doi.org/10.1186/S40643-021-00440-ZAlmeida, L., Sola, A., & Ramirez-Behainne, J. (2017). Sugarcane bagasse pellets: Characterization and comparative analysis. Acta Scientiarum. Technology, 39, 461. https://doi.org/10.4025/actascitechnol.v39i4.30198Anastas, P. T., & Warner, J. C. (2000). Green Chemistry: Theory and Practice. Oxford University Press. https://doi.org/10.1093/oso/9780198506980.001.0001Andrady, A. L., & Neal, M. A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1977–1984. https://doi.org/10.1098/RSTB.2008.0304Aroca Chica, M. J., & Estrada Ramírez, P. E. (2015). Estudio comparativo de la celulosa obtenida a partir del pseudotallo de banano con la obtenida de bagazo de la caña de azúcar, empleando la misma metodología. http://repositorio.ug.edu.ec/handle/redug/8920ASTM International. (2015a). Standard Test Method for Ash in Biomass. https://doi.org/10.1520/E1755-01R15ASTM International. (2015b). Standard Test Method for Determination of Total Solids in Biomass. https://doi.org/10.1520/E1756ASTM International. (2019). Test Method for Moisture Analysis of Particulate Wood Fuels. https://doi.org/10.1520/E0871-82R19Azmin, S. N. H. M., Hayat, N. A. B. M., & Nor, M. S. M. (2020). Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. Journal of Bioresources and Bioproducts, 5(4), 248–255. https://doi.org/10.1016/j.jobab.2020.10.003Barnes, D. K. A., & Milner, P. (2005). Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Marine Biology, 146(4), 815–825. https://doi.org/10.1007/S00227-004-1474-8Barreto, E. P. (2022). Los bioplásticos como sustitutos de los plásticos de un solo uso en Colombia proyecto de grado. https://repository.uniminuto.edu/handle/10656/14664Benini, K. C. C. C., Voorwald, H. J. C., & Cioffi, M. O. H. (2011). Mechanical properties of HIPS/sugarcane bagasse fiber composites after accelerated weathering. Procedia Engineering, 10, 3246–3251. https://doi.org/10.1016/j.proeng.2011.04.536Bernstad Saraiva Schott, A., & Andersson, T. (2015). Food waste minimization from a life-cycle perspective. Journal of Environmental Management, 147, 219–226. https://doi.org/10.1016/J.JENVMAN.2014.07.048Bhavanam, A., Gera, P., Pandhare, N. N., & Dash, S. (2022). Catalysts for conversion of lignocellulosic biomass into platform chemicals and bio-aromatics. Handbook of Biomass Valorization for Industrial Applications, 83–106. https://doi.org/10.1002/9781119818816.ch5Cárdenas Quiroga, E. A., Morales Martín, L. Y., & Ussa Caycedo, A. (2015). La estereoscopía, métodos y aplicaciones en diferentes áreas del conocimiento. Revista Científica General José María Córdova, 13(16). https://doi.org/10.21830/19006586.37Castañeda Torres, S., & Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19(1). https://doi.org/10.22267/rus.171901.75Congreso de la República (2022). Ley 2232 de 2022Chan, J. X., Wong, J. F., Hassan, A., & Zakaria, Z. (2021). Bioplastics from agricultural waste. Biopolymers and Biocomposites from Agro-Waste for Packaging Applications, 141–169. https://doi.org/10.1016/B978-0-12-819953-4.00005-7Cury R, K., Aguas M, Y., Martinez M, A., Olivero V, R., & Chams Ch, L. (2017). Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA, 9(S1), 122–132. https://doi.org/10.24188/RECIA.V9.NS.2017.530del Rodríguez, L. P., Toloza, L. J., & Mg Paola Iveth Rodríguez Contreras, C. (2021). Propuesta de optimización del Plan de Gestión Integral de Residuos Sólidos en la Sede Central de la Universidad Pedagógica y Tecnológica de Colombia. Agricultural Sciences, 03(07), 905–917. https://doi.org/10.4236/AS.2012.37110Díaz, A., & Cardozo, A. (2022). Análisis de la gestión de los residuos orgánicos en Colombia a través de la visualización del marco legal vigente representado por medio de un dashboard. Ciencia Unisalle.Drané, M., Zbair, M., Hajjar-Garreau, S., Josien, L., Michelin, L., Bennici, S., & Limousy, L. (2023). Unveiling the Potential of Corn Cob Biochar: Analysis of Microstructure and Composition with Emphasis on Interaction with NO2. Materials, 17(1), 159. https://doi.org/10.3390/ma17010159Ejaz, U., Rashid, R., Ahmed, S., Narejo, K. K., Qasim, A., Sohail, M., Ali, S. T., Althakafy, J. T., Alanazi, A. K., Abo-Dief, H. M., & Moin, S. F. (2023). Synthesis of methylcellulose-polyvinyl alcohol composite, biopolymer film and thermostable enzymes from sugarcane bagasse. International Journal of Biological Macromolecules, 235. https://doi.org/10.1016/j.ijbiomac.2023.123903Enawgaw, H., Tesfaye, T., Yilma, K., & Limeneh, D. (2023). Multiple Utilization Ways of Corn By-Products for Biomaterial Production with Bio-Refinery Concept; a Review. Materials Circular Economy, 5. https://doi.org/10.1007/s42824-023-00078-6Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/J.CSCEE.2021.100142Fabra, M. J., López-Rubio, A., & Lagaron, J. M. (2014). Biopolymers for food packaging applications. Smart Polymers and their Applications, 476–509. https://doi.org/10.1533/9780857097026.2.476Gabriela, M., Ribeiro, T. C., Costa, D. A., Machado, A. A. S. C., & Machado, A. A. S. C. (2010). “Green Star”: a holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Taylor & Francis, 3(2), 149–159. https://doi.org/10.1080/17518251003623376Gandam, P. K., Chinta, M. L., Pabbathi, N. P. P., Velidandi, A., Sharma, M., Kuhad, R. C., Tabatabaei, M., Aghbashlo, M., Baadhe, R. R., & Gupta, V. K. (2022). Corncob-based biorefinery: A comprehensive review of pretreatment methodologies, and biorefinery platforms. Journal of the Energy Institute, 101, 290–308. https://doi.org/10.1016/J.JOEI.2022.01.004Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/J.JCLEPRO.2016.12.048Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). https://doi.org/10.1126/SCIADV.1700782/SUPPL_FILE/1700782_SM.PDFGlasson, J., & Therivel, R. (2019). Introduction to environmental impact assessment. Introduction to Environmental Impact Assessment, 1–381. https://doi.org/10.4324/9780429470738/INTRODUCTION-ENVIRONMENTAL-IMPACT-ASSESSMENT-JOHN-GLASSON-RIKI-THERIVELGuía para la formulación, implementación, evaluación, seguimiento, control y actualización de los (PGIRS) (2015).Hernández Caballero, A. N. (2021). Análisis de la gestión de residuos sólidos en Colombia. Repositorio Institucional Universidad Militar Nueva Granada.Hopewell, J., Dvorak, R., & Kosior, E. (2009a). Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2115–2126. https://doi.org/10.1098/RSTB.2008.0311Hottle, T. A., Bilec, M. M., & Landis, A. E. (2013). Sustainability assessments of bio-based polymers. Polymer Degradation and Stability, 98(9), 1898–1907. https://doi.org/10.1016/J.POLYMDEGRADSTAB.2013.06.016Hugot, E., & Jenkins, G. H. (1986). Handbook of Cane Sugar Engineering. Elsevier. https://books.google.com.co/books?id=hNdxQgAACAAJIbitoye, S. E., Jen, T.-C., Mahamood, R. M., Akinlabi, E. T., Singh, K., Tummala, K., Kosaraju, S., & Haider, J. (2021). Improving the Combustion Properties of Corncob Biomass via Torrefaction for Solid Fuel Applications. Journal of Composites Science 2021, Vol. 5, Page 260, 5(10), 260. https://doi.org/10.3390/JCS5100260Jayakumar, A., Radoor, S., Siengchin, S., Shin, G. H., & Kim, J. T. (2023). Recent progress of bioplastics in their properties, standards, certifications and regulations: A review. Science of the Total Environment, 878. https://doi.org/10.1016/j.scitotenv.2023.163156Karan, H., Funk, C., Grabert, M., Oey, M., & Hankamer, B. (2019). Green Bioplastics as Part of a Circular Bioeconomy. Trends in Plant Science, 24(3), 237–249. https://doi.org/10.1016/j.tplants.2018.11.010Kawaguchi, H., Takada, K., Elkasaby, T., Pangestu, R., Toyoshima, M., Kahar, P., Ogino, C., Kaneko, T., & Kondo, A. (2022). Recent advances in lignocellulosic biomass white biotechnology for bioplastics. Bioresource Technology, 344, 126165. https://doi.org/10.1016/J.BIORTECH.2021.126165Labrador Sánchez, H., & Osto, S. (2021). Caracterización de la celulosa proveniente del lodo papelero y su esterificación. Revista de la Facultad de Ciencias, 10(2). https://doi.org/10.15446/rev.fac.cienc.v10n2.94003Lenço, P. C., Ramirez-Quintero, D. A., & Bizzo, W. A. (2020). Characterization of sugarcane bagasse particles separated by elutriation for energy generation. Renewable Energy, 161, 712–721. https://doi.org/10.1016/J.RENENE.2020.06.046León-Fernández, V., Rieumont-Briones, J., Bordallo-López, E., Dopico-Ramírez, D., Peña-Sacerio, E., & Menéndez-Cuesta-Mirabal, I. (2013). Obtención y caracterización de la celulosa hidrofóbicamente modificada. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 47(1), 51–56. https://www.redalyc.org/articulo.oa?id=223126409007Liu, F., Ren, J., Yang, Q., Zhang, Q., Zhang, Y., Xiao, X., & Cao, Y. (2024). Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. International Journal of Biological Macromolecules, 260, 129404. https://doi.org/10.1016/J.IJBIOMAC.2024.129404Luchese, C. L., Frick, J. M., Patzer, V. L., Spada, J. C., & Tessaro, I. C. (2015). Synthesis and characterization of biofilms using native and modified pinhão starch. Food Hydrocolloids, 45, 203–210. https://doi.org/10.1016/J.FOODHYD.2014.11.015Luna Vera, F., Melo Cortes, H. A., Viviana Murcia, C., & Charry Galvis, I. (2014). Modificación superficial de micro fibras de celulosa obtenidas a partir de bagazo de caña de azúcar usando silanización. Informador técnico, ISSN 0122-056X, ISSN-e 2256-5035, Vol. 78, No. 2 (Julio-Diciembre 2014), 2014, págs. 106-114, 78(2), 106–114. https://dialnet.unirioja.es/servlet/articulo?codigo=5129559&info=resumen&idioma=ENGMAATE. (2020). Manual de aprovechamiento de residuos orgánicos municipales. Ministerio de Ambiente y Agua.Madhavan, A., Reshmy, R., Arun, K. B., Philip, E., Sindhu, R., Nair, B. G., Awasthi, M. K., Pandey, A., & Binod, P. (2023). Murraya koenigii extract blended nanocellulose-polyethylene glycol thin films for the sustainable synthesis of antibacterial food packaging. Sustainable Chemistry and Pharmacy, 32, 101021. https://doi.org/10.1016/J.SCP.2023.101021Marta, H., Wijaya, C., Sukri, N., Cahyana, Y., & Mohammad, M. (2022). A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers, 14(22), 4875. https://doi.org/10.3390/polym14224875Meereboer, K. W., Misra, M., & Mohanty, A. K. (2020). Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chemistry, 22(17), 5519–5558. https://doi.org/10.1039/D0GC01647KMenezes Filho, A. C. P. de, Oliveira Filho, J., Deminski, G., Jesus, A., Andrade, M., & Castro, C. F. de S. (2019). Avaliação colorimétrica e caracterização morfológica por microscopia óptica de alta resolução das farinhas dos frutos do jatobá, jambolão e siriguela. Multi-Science Journal, 2(1). https://doi.org/10.33837/msj.v2i1.544Ministerio de Ambiente y Desarrollo Sostenible. (2021). Plan Nacional para la Gestión Sostenible del Plástico.Ministerio de Ambiente y Desarrollo Sostenible. (2022). En 2050 habría en el mundo unos 12.000 millones de toneladas de basura plástica, si no se cambian las pautas de consumo - Ministerio de Ambiente y Desarrollo Sostenible. https://www.minambiente.gov.co/en-2050-habria-en-el-mundo-unos-12-000-millones-de-toneladas-de-basura-plastica-si-no-se-cambian-las-pautas-de-consumo/Mora, J. (2021). Reciclaje y reutilización de materiales de construcción en Colombia como aporte a la economía circular. Ciencia Unisalle.Morales Galicia, M. L., Martínez, J. O., Reyes Sánchez, L. B., Martín Hernández, O., Arroyo Razo, G. A., Obaya Valdivia, A., & Miranda Ruvalcaba, R. (2011). ¿Qué tan verde es un experimento? Educación química, 22(3), 240–248. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2011000300009&lng=es&nrm=iso&tlng=esNasir, N., & Othman, S. (2021). The Physical and Mechanical Properties of Corn-based Bioplastic Films with Different Starch and Glycerol Content. Journal of Physical Science, 32, 89–101. https://doi.org/10.21315/jps2021.32.3.7Ning, P., Yang, G., Hu, L., Sun, J., Shi, L., Zhou, Y., Wang, Z., & Yang, J. (2021). Recent advances in the valorization of plant biomass. Biotechnology for Biofuels 2021 14:1, 14(1), 1–22. https://doi.org/10.1186/S13068-021-01949-3North, E. J., & Halden, R. U. (2013). Plastics and environmental health: The road ahead. Reviews on Environmental Health, 28(1), 1–8. https://doi.org/10.1515/REVEH-2012-0030Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2016). Biomass combustion systems: A review on the physical and chemical properties of the ashes. Renewable and Sustainable Energy Reviews, 53, 235–242. https://doi.org/10.1016/J.RSER.2015.08.053Outili, N., Kerras, H., & Meniai, A. H. (2023). Recent conventional and non-conventional WCO pretreatment methods: Implementation of green chemistry principles and metrics. Current Opinion in Green and Sustainable Chemistry, 41, 100794. https://doi.org/10.1016/J.COGSC.2023.100794Pang, Y. L., Lim, S., Lai, S. O., & Chong, W. C. (2023). Green Chemistry for the development of biomass conversion process into cellulose and bioethanol. Green Sustainable Process for Chemical and Environmental Engineering and Science: Natural Materials-Based Green Composites 2: Biomass, 121–137. https://doi.org/10.1016/B978-0-323-95183-8.00003-2Petersen, K., Væggemose Nielsen, P., Bertelsen, G., Lawther, M., Olsen, M. B., Nilsson, N. H., & Mortensen, G. (1999). Potential of biobased materials for food packaging. Trends in Food Science and Technology, 10(2), 52–68. https://doi.org/10.1016/S0924-2244(99)00019-9Prado-Martínez, M., Anzaldo-Hernández, J., Becerra-Aguilar, B., Palacios-Juárez, H., Vargas-Radillo, J. de J., & Rentería-Urquiza, M. (2012). Caracterización de hojas de mazorca de maíz y de bagazo de caña para la elaboración de una pulpa celulósica mixta. Madera Bosques, 18(3). https://doi.org/10.21829/myb.2012.183357Ratna, A. S., Ghosh, A., & Mukhopadhyay, S. (2022). Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production, 371, 133563. https://doi.org/10.1016/J.JCLEPRO.2022.133563Rezende, C. A., de Lima, M. A., Maziero, P., deAzevedo, E. R., Garcia, W., & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(1), 54. https://doi.org/10.1186/1754-6834-4-54Riera, M. A., Maldonado3, S., & Palma4, R. R. (2021). Agro-industrial residues generated in ecuador for the elaboration of bioplastics. https://doi.org/10.22320/S07179103/2018.13Ritzen, L., Sprecher, B., Bakker, C., & Balkenende, R. (2023). Bio-based plastics in a circular economy: A review of recovery pathways and implications for product design. Resources, Conservation and Recycling, 199, 107268. https://doi.org/10.1016/J.RESCONREC.2023.107268Rivero, C. P., Hu, Y., Kwan, T. H., Webb, C., Theodoropoulos, C., Daoud, W., & Lin, C. S. K. (2017). Bioplastics From Solid Waste. Current Developments in Biotechnology and Bioengineering: Solid Waste Management, 1–26. https://doi.org/10.1016/B978-0-444-63664-5.00001-0Rojas, M., … R. M.-R.-J. en, & 2016, undefined. (2016). Producción de ácido láctico a partir de bagazo de caña residual de la industria azucarera. jovenesenlaciencia.ugto.mx, 2(1). http://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/1355Rugeles, A., … S. V.-… D. L. C., & 2014, undefined. (s/f). Bioplásticos: aplicación de la química verde. staticcuc.s3.amazonaws.com. Recuperado el 29 de octubre de 2023, de http://staticcuc.s3.amazonaws.com/images/stories/archivos/pdf/educosta/memoriaeventos/MEMORIAS_IV_ENC._INVEST._C._BAS._-_provisional.pdf#page=18S. Kaddory Al-Zubaidy, M. (2015). A Literature Evaluation of the Energy Efficiency of Leadership in Energy and Environmental Design (LEED) -Certified Buildings. American Journal of Civil Engineering and Architecture, 3(1), 1–7. https://doi.org/10.12691/AJCEA-3-1-1Saba, Naheed., Jawaid, Mohammad., & Thariq, Mohamed. (2021). Biopolymers and biocomposites from agro-waste for packaging applications.Sachs, J. D. (2015). The Oxymoron of Sustainable Development: The Age of Sustainable Development. BioScience, 65(10), 1027–1029. http://bioscience.oxfordjournals.orgSamir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. npj Materials Degradation 2022 6:1, 6(1), 1–28. https://doi.org/10.1038/s41529-022-00277-7Santos, B., Prado, K., Jacinto, A., & Spinacé, M. (2018). Influence of Sugarcane Bagasse Fiber Size on Biodegradable Composites of Thermoplastic Starch. Journal of Renewable Materials, 6. https://doi.org/10.7569/JRM.2018.634101Sheldon, R. A. (2008). E factors, green chemistry and catalysis: an odyssey. Chemical Communications, 29, 3352–3365. https://doi.org/10.1039/B803584ASheldon, R. A. (2012). Fundamentals of green chemistry: efficiency in reaction design. Chemical Society Reviews, 41(4), 1437–1451. https://doi.org/10.1039/C1CS15219JSilva, T. A. L., Zamora, H. D. Z., Varão, L. H. R., Prado, N. S., Baffi, M. A., & Pasquini, D. (2018). Effect of Steam Explosion Pretreatment Catalysed by Organic Acid and Alkali on Chemical and Structural Properties and Enzymatic Hydrolysis of Sugarcane Bagasse. Waste and Biomass Valorization, 9(11), 2191–2201. https://doi.org/10.1007/s12649-017-9989-7Simão, J. A., Carmona, V. B., Marconcini, J. M., Mattoso, L. H. C., Barsberg, S. T., & Sanadi, A. R. (2016). Effect of fiber treatment condition and coupling agent on the mechanical and thermal properties in highly filled composites of sugarcane bagasse Fiber/PP. Materials Research, 19(4), 746–751. https://doi.org/10.1590/1980-5373-MR-2015-0609Song, J. H., Murphy, R. J., Narayan, R., & Davies, G. B. H. (2009). Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the RoyalSociety B: Biological Sciences, 364(1526), 2127–2139. https://doi.org/10.1098/RSTB.2008.0289Spierling, S., Röttger, C., Venkatachalam, V., Mudersbach, M., Herrmann, C., & Endres, H. J. (2018). Bio-based Plastics - A Building Block for the Circular Economy? Procedia CIRP, 69, 573–578. https://doi.org/10.1016/J.PROCIR.2017.11.017Surendran, G., & Sherje, A. P. (2022). Cellulose nanofibers and composites: An insight into basics and biomedical applications. Journal of Drug Delivery Science and Technology, 75, 103601. https://doi.org/10.1016/J.JDDST.2022.103601Szymanska-Chargot, M., Chylinska, M., Gdula, K., Koziol, A., & Zdunek, A. (2017). Isolation and characterization of cellulose from different fruit and vegetable pomaces. Polymers, 9(10). https://doi.org/10.3390/polym9100495Teacǎ, C. A., Bodîrlǎu, R., & Spiridon, I. (2013). Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 93(1), 307–315. https://doi.org/10.1016/J.CARBPOL.2012.10.020Thomas, A. P., Kasa, V. P., Dubey, B. K., Sen, R., & Sarmah, A. K. (2023). Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. Science of The Total Environment, 904, 167243. https://doi.org/10.1016/J.SCITOTENV.2023.167243Thompson, R. C., Moore, C. J., Saal, F. S. V., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/RSTB.2009.0053Tobiszewski, M., Marć, M., Gałuszka, A., & Namies̈nik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, Vol. 20, Pages 10928-10946, 20(6), 10928–10946. https://doi.org/10.3390/MOLECULES200610928Ul-Islam, Shahid., Shalla, A. Hussain., & Khan, S. Ahmad. (2022). Handbook of biomass valorization for industrial applications.Vargas Corredor, Y. A., & Peréz Pérez, L. I. (2018). Aprovechamiento de residuos agroindustriales en el mejoramiento de la calidad del ambiente. Revista Facultad de Ciencias Básicas, 59–72. https://doi.org/10.18359/RFCB.3108Vilela, C., Moreirinha, C., Domingues, E. M., Figueiredo, F. M. L., Almeida, A., & Freire, C. S. R. (2019). Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. Nanomaterials 2019, Vol. 9, Page 980, 9(7), 980. https://doi.org/10.3390/NANO9070980Vivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, Brito, J. O., Vivian, M. A., Santos, J. R. S. dos, Segura, T. E. S., Silva Júnior, F. G. da, & Brito, J. O. (2022). Caracterização do bagaço de cana-de-açúcar e suas potencialidades para geração de energia e polpa celulósica. Madera y Bosques, 28(1). https://doi.org/10.21829/myb.2022.2812376Wu, C. S. (2011). Performance and biodegradability of a maleated polyester bioplastic/recycled sugarcane bagasse system. Journal of Applied Polymer Science, 121(1), 427–435. https://doi.org/10.1002/APP.33713Yang, J., Ching, Y., & Chuah, C. (2019). Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers, 11(5), 751. https://doi.org/10.3390/polym11050751Yang, Y., Liu, H., Wu, M., Ma, J., & Lu, P. (2020). Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. International Journal of Biological Macromolecules, 161, 627–635. https://doi.org/10.1016/j.ijbiomac.2020.06.081Yépez Chávez, A., & Viteri Moya, F. (2019). Enfoques innovadores de educación ambiental con el aprovechamiento de residuos orgánicos urbanos. Cátedra, 2(2). https://doi.org/10.29166/catedra.v2i2.1639Zacarías, A. (2018). ¿Qué es la economía circular y cómo cuida del medio ambiente?Zamora Rueda, G., Gutiérrez, C., Mistretta, G., Peralta, F., Golato, M., Ruiz, M., & Paz, D. (2016). Determinación del contenido de humedad del bagazo de caña de azùcar por medio de microondas. Revista industrial y agrícola de Tucumán, 93(2), 07–12. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-30182016000200002&lng=es&nrm=iso&tlng=esZia, K. M., Akram, N., Tabasum, S., Noreen, A., & Akbar, M. U. (2021). Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. En Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects. Elsevier. https://doi.org/10.1016/B978-0-323-85772-7.09993-6spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a5a7644f-e86f-480e-90b4-69694c58422d/download17cc15b951e7cc6b3728a574117320f9MD55Acta de grado.pdfapplication/pdf275158https://repositorio.unbosque.edu.co/bitstreams/ab591b04-e535-4f85-a781-678b3e0f2b4b/downloada98c52a2185a1452f1d46b0edc82f737MD510Carta de autorizacion.pdfapplication/pdf192941https://repositorio.unbosque.edu.co/bitstreams/da667d6f-9ec7-4fcb-a570-bac0fd4c50ef/downloadb5135a2230deed086861198f336f0794MD511ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf3943568https://repositorio.unbosque.edu.co/bitstreams/f00b716f-440b-4dbe-964d-70df98fd18b8/downloadc9e1c75444a8bacec68e78a2309f18e9MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/06ab4871-2bc2-41f1-aff5-00ab655e9c89/download3b6ce8e9e36c89875e8cf39962fe8920MD59TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102192https://repositorio.unbosque.edu.co/bitstreams/bee36c7a-ba19-4d3a-ba34-0587e59e7ae0/download3c79cb201a43600bfe5855ec9c308b54MD512THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3002https://repositorio.unbosque.edu.co/bitstreams/5af26c9c-e562-4382-8a73-22b2b03af005/downloadfae6dce6277aae43032ff19d909c9324MD51320.500.12495/13482oai:repositorio.unbosque.edu.co:20.500.12495/134822024-11-30 03:04:54.076http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=