Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador

El ácido levulínico es un compuesto orgánico con un reconocido uso en la actualidad como molécula plataforma para la obtención de diversos productos químicos de gran interés en diferentes sectores industriales como la farmacéutica. Para la obtención del ácido se puede emplear la hidrólisis...

Full description

Autores:
Guerrero Pinilla, Dana Valentina
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13265
Acceso en línea:
https://hdl.handle.net/20.500.12495/13265
Palabra clave:
Ácido levulínico
Glucosa
Ácido metanoi
Temperatura
Tiempos
Hidrólisis ácida
615.19
Levulinic acid
Glucose
Methanoic acid
Temperature
Times
Acid hydrolysi
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_4156dcd345b02b585eaef5b053cb7d1d
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13265
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
dc.title.translated.none.fl_str_mv Obtaining levulinic acid, a synthetic promoter widely used in the pharmaceutical industry, using methanoic acid as catalyst
title Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
spellingShingle Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
Ácido levulínico
Glucosa
Ácido metanoi
Temperatura
Tiempos
Hidrólisis ácida
615.19
Levulinic acid
Glucose
Methanoic acid
Temperature
Times
Acid hydrolysi
title_short Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
title_full Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
title_fullStr Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
title_full_unstemmed Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
title_sort Obtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizador
dc.creator.fl_str_mv Guerrero Pinilla, Dana Valentina
dc.contributor.advisor.none.fl_str_mv Cortés Ortiz, William Giovanni
Guerrero Fajardo, Carlos Alberto
dc.contributor.author.none.fl_str_mv Guerrero Pinilla, Dana Valentina
dc.subject.none.fl_str_mv Ácido levulínico
Glucosa
Ácido metanoi
Temperatura
Tiempos
Hidrólisis ácida
topic Ácido levulínico
Glucosa
Ácido metanoi
Temperatura
Tiempos
Hidrólisis ácida
615.19
Levulinic acid
Glucose
Methanoic acid
Temperature
Times
Acid hydrolysi
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Levulinic acid
Glucose
Methanoic acid
Temperature
Times
Acid hydrolysi
description El ácido levulínico es un compuesto orgánico con un reconocido uso en la actualidad como molécula plataforma para la obtención de diversos productos químicos de gran interés en diferentes sectores industriales como la farmacéutica. Para la obtención del ácido se puede emplear la hidrólisis ácida, la cual es un proceso que emplea materias primas celulósicas empleando tratamientos ácidos, para favorecer la reacción. En este estudio, se desarrolló un diseño factorial para la evaluación de la influencia de la temperatura y el tiempo de reacción en el proceso de obtención de ácido levulínico a partir de glucosa, empleando ácido metanoico como catalizador. Los ensayos se llevaron a cabo a condiciones de 170 °C – 200 °C y 60 min – 120 min usando ácido metanoico al 10,0 % (v/v). Los resultados demostraron que a mayor temperatura (200 °C) y tiempo corto (60 min) se favorece la descomposición de glucosa a ácido levulínico. El uso de ácido metanoico como catalizador demuestra que proporciona un medio de reacción contribuyente en la formación del ácido levulínico con valores de rendimiento del 65,26 % y selectividad de 70,01 %.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-20T14:48:04Z
dc.date.available.none.fl_str_mv 2024-11-20T14:48:04Z
dc.date.issued.none.fl_str_mv 2025-10
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13265
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13265
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] B. Girisuta, L. P. B. M. Janssen, and H. J. Heeres, “Green chemicals: A kinetic study on the conversion of glucose to levulinic acid,” Chemical Engineering Research and Design, vol. 84, no. 5 A, pp. 339–349, 2006, doi: 10.1205/cherd05038.
[2] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Extractive separation of levulinic acid using natural and chemical solvents,” Chemical Data Collections, vol. 28, Aug. 2020, doi: 10.1016/j.cdc.2020.100417.
[3] A. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Jun. 2007. doi: 10.1021/cr050989d.
[4] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 790–793. doi: 10.1016/j.matpr.2020.04.749.
[5] M. Zhang, N. Wang, J. Liu, C. Wang, Y. Xu, and L. Ma, “A review on biomass-derived levulinic acid for application in drug synthesis,” 2022, Taylor and Francis Ltd. doi: 10.1080/07388551.2021.1939261.
[6] C. Mota, A. De Lima, D. Fernandes, and B. Pinto, Levulinic Acid: A Sustainable Platform Chemical for Value-added Products, 1st ed. 2022.
[7] F. A. C. P. ; Bergfeld et al., “Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics,” 2021. [Online]. Available: https://www.cir-
[8] J. L. Cannon, A. Aydin, A. N. Mann, S. L. Bolton, T. Zhao, and M. P. Doyle, “Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates,” J Food Prot, vol. 75, no. 8, pp. 1532–1535, Aug. 2012, doi: 10.4315/0362-028X.11-572.
[9] P. Biswas, S. Nandy, D. K. Pandey, J. Singh, and A. Dey, “Levulinic acid: a potent green chemical in sustainable agriculture,” in New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals, Elsevier, 2022, pp. 179–218. doi: 10.1016/B978-0-323-85581-5.00013-6.
[10] K. V. M. Pulidindi, “Levulinic Acid Market Size By Process (Acid Hydrolysis, Biofine) By Application (Plasticizers, Agrochemicals, Food Additives, Fuel Additives and Others) By End-User Industry (Cosmetics & Personal Care, Pharmaceutical, Agriculture, Food & Beverages and Others), & Forecast, 2024 – 2032,” Global Market Insights, Jul. 2024, Accessed: Aug. 25, 2024. [Online]. Available: https://www.gminsights.com/industry- analysis/levulinic-acid-market
[11] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Separation of fuel additive levulinic acid using toluene, xylene, and octanol from water stream,” Journal of the Indian Chemical Society, vol. 99, no. 11, Nov. 2022, doi: 10.1016/j.jics.2022.10074
[12] J. J. Bozell et al., “Production of levulinic acid and use as a platform chemical for derived products,” 2000. [Online]. Available: www.elsevier.com/locate/resconrec
[13] F. L. Gonzales J and P. Vera Zelada, “DISMINUCIÓN DE LA MATERIA ORGÁNICA DE LAS AGUAS RESIDUALES DOMÉSTICA CON PERÓXIDO DE HIDRÓGENO Y LEVADURA,” UNIVERSIDAD PRIVADA ANTONIO GUILLERMO URRELO, Perú, 2022.
[14] C. E. Bounoukta, C. Megías-Sayago, S. Ivanova, F. Ammari, M. A. Centeno, and J. A. Odriozola, “Pursuing efficient systems for glucose transformation to levulinic acid: Homogeneous vs. heterogeneous catalysts and the effect of their co-action,” Fuel, vol. 318, Jun. 2022, doi: 10.1016/j.fuel.2022.123712.
[15] P. Deshlahra and E. Iglesia, “Reactivity descriptors in acid catalysis: Acid strength, proton affinity and host- guest interactions,” Chemical Communications, vol. 56, no. 54, pp. 7371–7398, Jul. 2020, doi: 10.1039/d0cc02593c.
[16] M. L. Testa and V. La Parola, “Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview,” Oct. 01, 2021, MDPI. doi: 10.3390/catal11101143.
[17] C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, and A. M. R. Galletti, “New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock,” Dec. 01, 2016, MDPI. doi: 10.3390/catal6120196.
[18] T. N. Rao et al., “One-pot synthesis of 7, 7-dimethyl-4-phenyl-2-thioxo-2,3,4,6,7, 8-hexahydro-1H-quinazoline-5- onesusing zinc ferrite nanocatalyst and its bio evaluation,” Catalysts, vol. 11, no. 4, Apr. 2021, doi: 10.3390/catal11040431.
[19] X. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis,” Sep. 20, 2015, Science Press. doi: 10.1016/S1872-2067(15)60861-0.
[20] S. Fernández and B. Director, “DISEÑO DE EXPERIMENTOS: DISEÑO FACTORIAL Memoria y Anexos Autor,” 2020.
[21] D. Frías-Navarro, “Diseño de la investigación, análisis y redacción de los resultados Editores: Dolores Frías- Navarro Marcos Pascual-Soler,” 2021.
[22] C. Chang, M. A. Xiaojian, and C. E. N. Peilin, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature,” Chin J Chem Eng, vol. 14, pp. 708–712, 2006.
[23] Q. JING and X. LÜ, “Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water,” Chin J Chem Eng, vol. 16, no. 6, pp. 890–894, Dec. 2008, doi: 10.1016/S1004-9541(09)60012-4.
[24] A. Kiadó and B. Vol, “KINETICS OF LEVULINIC ACID FORMATION FROM CARBOHYDRATES AT MODERATE TEMPERATURES,” Kluwer Academic Publishers, 2002.
[25] L. Kupiainen, J. Ahola, and J. Tanskanen, “Comparison of formic and sulfuric acids as a glucose decomposition catalyst,” Ind Eng Chem Res, vol. 49, no. 18, pp. 8444–8449, Sep. 2010, doi: 10.1021/ie1008822.
[26] J. Horvat, B. Klaid, B. Metelko, and V. Sunjid’, “MECHANISM OF LEVULINIC ACID FORMATION,” 1985.
[27] K. C. Badgujar, L. D. Wilson, and B. M. Bhanage, “Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2018.12.007.
[28] A. Paajanen and J. Vaari, “High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study,” Cellulose, vol. 24, no. 7, pp. 2713–2725, Jul. 2017, doi: 10.1007/s10570-017-1325-7.
[29] Y. Wang, K. Lu, Y. Zhao, L. Zhu, and S. Wang, “Catalytic Conversion of Glucose to Levulinic Acid over Temperature-Responsive Al-Doped Silicotungstic Acid Catalyst. ,” Energy & Fuels, vol. 38, no. 9, pp. 7950–7958, 2024.
[30] F. Parveen and S. Upadhyayula, “Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study,” Fuel Processing Technology, vol. 162, pp. 30– 36, 2017, doi: 10.1016/j.fuproc.2017.03.021.
[31] S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2018.06.016.
[32] M. H. Kim, C. S. Kim, H. W. Lee, and K. Kim, “Temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol in aqueous solutions up to 175°C,” Journal of the Chemical Society - Faraday Transactions, vol. 92, no. 24, pp. 4951–4956, Dec. 1996, doi: 10.1039/FT9969204951.
[33] L. Kupiainen, J. Ahola, and J. Tanskanen, “Kinetics of glucose decomposition in formic acid,” Chemical Engineering Research and Design, vol. 89, no. 12, pp. 2706–2713, Dec. 2011, doi: 10.1016/j.cherd.2011.06.005.
[34] M. Li, W. Li, Y. Lu, H. Jameel, H. M. Chang, and L. Ma, “High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system,” RSC Adv, vol. 7, no. 24, pp. 14330–14336, 2017, doi: 10.1039/c7ra00701a.
[35] P. C. Smitht, H. E. Grethlein, and A. O. Converse, “GLUCOSE DECOMPOSITION AT HIGH TEMPERATURE, MILD ACID, AND SHORT RESIDENCE TIMES,” 1982.
[36] C. Chang, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature*,” 2006.
[37] J. Dagnino, “ANÁLISIS DE VArIANZA,” 2014.
[38] A. Bryman and D. Cramer, “Quantitative data analysis with minitab: A guide for social scientists.,” 2003, Routledge.
[39] Minitab, “ANOVA de un solo factor,” 2024.
[40] K. Kumar, M. Kumar, and S. Upadhyayula, “Catalytic conversion of glucose into levulinic acid using 2-phenyl- 2-imidazoline based ionic liquid catalyst,” Molecules, vol. 26, no. 2, Jan. 2021, doi: 10.3390/molecules26020348.
[41] N. Ya’aini, N. A. S. Amin, and M. Asmadi, “Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst,” Bioresour Technol, vol. 116, pp. 58–65, Jul. 2012, doi: 10.1016/j.biortech.2012.03.097.
[42] W. Weiqi and W. Shubin, “Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids,” Chemical Engineering Journal, vol. 307, pp. 389–398, Jan. 2017, doi: 10.1016/j.cej.2016.08.099.
[43] M. Mikola, J. Ahola, and J. Tanskanen, “Production of levulinic acid from glucose in sulfolane/water mixtures,” Chemical Engineering Research and Design, vol. 148, pp. 291–297, Aug. 2019, doi: 10.1016/j.cherd.2019.06.022.
[44] I. Van Zandvoort et al., “Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions,” ChemSusChem, vol. 6, no. 9, pp. 1745–1758, 2013, doi: 10.1002/cssc.201300332.
[45] N. A. S. Ramli and N. A. S. Amin, “Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance,” Appl Catal B, vol. 163, pp. 487–498, Feb. 2015, doi: 10.1016/j.apcatb.2014.08.031.
[46] J. Fu, F. Yang, J. Mo, J. Zhuang, and X. Lu, “Catalytic Decomposition of Glucose to Levulinic Acid by Synergy of Organic Lewis Acid and Brønsted Acid in Water”.
[47] Y. Liu, H. Li, J. He, W. Zhao, T. Yang, and S. Yang, “Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides,” Catal Commun, vol. 93, pp. 20–24, 2017, doi: 10.1016/j.catcom.2017.01.023.
[48] F. Shen, R. L. Smith, L. Li, L. Yan, and X. Qi, “Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst,” ACS Sustain Chem Eng, vol. 5, no. 3, pp. 2421–2427, Mar. 2017, doi: 10.1021/acssuschemeng.6b02765.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/d4b8b687-8453-4d99-8898-6a2fe8f469e9/download
https://repositorio.unbosque.edu.co/bitstreams/02028b94-a023-448f-85ae-9c920fb72ff5/download
https://repositorio.unbosque.edu.co/bitstreams/7b06da70-2f12-48f1-9b94-d785beca6c10/download
https://repositorio.unbosque.edu.co/bitstreams/4a3d31af-71be-49c3-82b8-6032247d65b7/download
https://repositorio.unbosque.edu.co/bitstreams/2a5855da-cdd3-42ac-896e-d1ecc548fc73/download
https://repositorio.unbosque.edu.co/bitstreams/18c96c5e-2eab-46d5-ad4f-0e8de8a68993/download
https://repositorio.unbosque.edu.co/bitstreams/a84037e3-9e78-4105-94e9-e15becafb7c5/download
https://repositorio.unbosque.edu.co/bitstreams/46cc8d02-f1d7-4c73-9dc8-76d4db215aec/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
6a1555d892e2a50815c27faea949e7a0
73e6f702d71862dfc5bb660c90f18575
d6d49518f664ee7b99897b99155fddf9
6d05544cb54f0e9db0357d6b1f0aa48f
3b6ce8e9e36c89875e8cf39962fe8920
5cfac82c2e900025ea7973e0bbe57dc7
a2415d6e669e4991d80286c6b1ba1ec1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164422928957440
spelling Cortés Ortiz, William GiovanniGuerrero Fajardo, Carlos AlbertoGuerrero Pinilla, Dana Valentina2024-11-20T14:48:04Z2024-11-20T14:48:04Z2025-10https://hdl.handle.net/20.500.12495/13265Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl ácido levulínico es un compuesto orgánico con un reconocido uso en la actualidad como molécula plataforma para la obtención de diversos productos químicos de gran interés en diferentes sectores industriales como la farmacéutica. Para la obtención del ácido se puede emplear la hidrólisis ácida, la cual es un proceso que emplea materias primas celulósicas empleando tratamientos ácidos, para favorecer la reacción. En este estudio, se desarrolló un diseño factorial para la evaluación de la influencia de la temperatura y el tiempo de reacción en el proceso de obtención de ácido levulínico a partir de glucosa, empleando ácido metanoico como catalizador. Los ensayos se llevaron a cabo a condiciones de 170 °C – 200 °C y 60 min – 120 min usando ácido metanoico al 10,0 % (v/v). Los resultados demostraron que a mayor temperatura (200 °C) y tiempo corto (60 min) se favorece la descomposición de glucosa a ácido levulínico. El uso de ácido metanoico como catalizador demuestra que proporciona un medio de reacción contribuyente en la formación del ácido levulínico con valores de rendimiento del 65,26 % y selectividad de 70,01 %.PregradoQuímico FarmacéuticoLevulinic acid is an organic compound currently recognized for its use as a platform molecule for obtaining various chemicals of great interest in different industrial sectors, such as pharmaceuticals. Acid hydrolysis can be used to obtain levulinic acid, a process that employs cellulosic raw materials and acid treatments to promote the reaction. In this study, a factorial design was developed to evaluate the influence of temperature and reaction time in the process of obtaining levulinic acid from glucose, using methanoic acid as a catalyst. The experiments were carried out under conditions of 170°C – 200°C and 60 min – 120 min using 10.0% (v/v) methanoic acid. The results showed that higher temperatures (200°C) and shorter times (60 min) favor the decomposition of glucose to levulinic acid. The use of methanoic acid as a catalyst demonstrated that it provides a reaction medium that contributes to the formation of levulinic acid, with yields of 65.26% and selectivity of 70.01%.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Ácido levulínicoGlucosaÁcido metanoiTemperaturaTiemposHidrólisis ácida615.19Levulinic acidGlucoseMethanoic acidTemperatureTimesAcid hydrolysiObtención de ácido levulínico, un promotor sintético de amplio uso en la industria farmacéutica, empleando ácido metanoico como catalizadorObtaining levulinic acid, a synthetic promoter widely used in the pharmaceutical industry, using methanoic acid as catalystQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] B. Girisuta, L. P. B. M. Janssen, and H. J. Heeres, “Green chemicals: A kinetic study on the conversion of glucose to levulinic acid,” Chemical Engineering Research and Design, vol. 84, no. 5 A, pp. 339–349, 2006, doi: 10.1205/cherd05038.[2] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Extractive separation of levulinic acid using natural and chemical solvents,” Chemical Data Collections, vol. 28, Aug. 2020, doi: 10.1016/j.cdc.2020.100417.[3] A. Corma Canos, S. Iborra, and A. Velty, “Chemical routes for the transformation of biomass into chemicals,” Jun. 2007. doi: 10.1021/cr050989d.[4] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Production of levulinic acid: A promising building block material for pharmaceutical and food industry,” in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 790–793. doi: 10.1016/j.matpr.2020.04.749.[5] M. Zhang, N. Wang, J. Liu, C. Wang, Y. Xu, and L. Ma, “A review on biomass-derived levulinic acid for application in drug synthesis,” 2022, Taylor and Francis Ltd. doi: 10.1080/07388551.2021.1939261.[6] C. Mota, A. De Lima, D. Fernandes, and B. Pinto, Levulinic Acid: A Sustainable Platform Chemical for Value-added Products, 1st ed. 2022.[7] F. A. C. P. ; Bergfeld et al., “Safety Assessment of Levulinic Acid and Sodium Levulinate as Used in Cosmetics,” 2021. [Online]. Available: https://www.cir-[8] J. L. Cannon, A. Aydin, A. N. Mann, S. L. Bolton, T. Zhao, and M. P. Doyle, “Efficacy of a levulinic acid plus sodium dodecyl sulfate-based sanitizer on inactivation of human norovirus surrogates,” J Food Prot, vol. 75, no. 8, pp. 1532–1535, Aug. 2012, doi: 10.4315/0362-028X.11-572.[9] P. Biswas, S. Nandy, D. K. Pandey, J. Singh, and A. Dey, “Levulinic acid: a potent green chemical in sustainable agriculture,” in New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals, Elsevier, 2022, pp. 179–218. doi: 10.1016/B978-0-323-85581-5.00013-6.[10] K. V. M. Pulidindi, “Levulinic Acid Market Size By Process (Acid Hydrolysis, Biofine) By Application (Plasticizers, Agrochemicals, Food Additives, Fuel Additives and Others) By End-User Industry (Cosmetics & Personal Care, Pharmaceutical, Agriculture, Food & Beverages and Others), & Forecast, 2024 – 2032,” Global Market Insights, Jul. 2024, Accessed: Aug. 25, 2024. [Online]. Available: https://www.gminsights.com/industry- analysis/levulinic-acid-market[11] A. Kumar, D. Z. Shende, and K. L. Wasewar, “Separation of fuel additive levulinic acid using toluene, xylene, and octanol from water stream,” Journal of the Indian Chemical Society, vol. 99, no. 11, Nov. 2022, doi: 10.1016/j.jics.2022.10074[12] J. J. Bozell et al., “Production of levulinic acid and use as a platform chemical for derived products,” 2000. [Online]. Available: www.elsevier.com/locate/resconrec[13] F. L. Gonzales J and P. Vera Zelada, “DISMINUCIÓN DE LA MATERIA ORGÁNICA DE LAS AGUAS RESIDUALES DOMÉSTICA CON PERÓXIDO DE HIDRÓGENO Y LEVADURA,” UNIVERSIDAD PRIVADA ANTONIO GUILLERMO URRELO, Perú, 2022.[14] C. E. Bounoukta, C. Megías-Sayago, S. Ivanova, F. Ammari, M. A. Centeno, and J. A. Odriozola, “Pursuing efficient systems for glucose transformation to levulinic acid: Homogeneous vs. heterogeneous catalysts and the effect of their co-action,” Fuel, vol. 318, Jun. 2022, doi: 10.1016/j.fuel.2022.123712.[15] P. Deshlahra and E. Iglesia, “Reactivity descriptors in acid catalysis: Acid strength, proton affinity and host- guest interactions,” Chemical Communications, vol. 56, no. 54, pp. 7371–7398, Jul. 2020, doi: 10.1039/d0cc02593c.[16] M. L. Testa and V. La Parola, “Sulfonic acid-functionalized inorganic materials as efficient catalysts in various applications: A minireview,” Oct. 01, 2021, MDPI. doi: 10.3390/catal11101143.[17] C. Antonetti, D. Licursi, S. Fulignati, G. Valentini, and A. M. R. Galletti, “New frontiers in the catalytic synthesis of levulinic acid: From sugars to raw and waste biomass as starting feedstock,” Dec. 01, 2016, MDPI. doi: 10.3390/catal6120196.[18] T. N. Rao et al., “One-pot synthesis of 7, 7-dimethyl-4-phenyl-2-thioxo-2,3,4,6,7, 8-hexahydro-1H-quinazoline-5- onesusing zinc ferrite nanocatalyst and its bio evaluation,” Catalysts, vol. 11, no. 4, Apr. 2021, doi: 10.3390/catal11040431.[19] X. Liu, S. Li, Y. Liu, and Y. Cao, “Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis,” Sep. 20, 2015, Science Press. doi: 10.1016/S1872-2067(15)60861-0.[20] S. Fernández and B. Director, “DISEÑO DE EXPERIMENTOS: DISEÑO FACTORIAL Memoria y Anexos Autor,” 2020.[21] D. Frías-Navarro, “Diseño de la investigación, análisis y redacción de los resultados Editores: Dolores Frías- Navarro Marcos Pascual-Soler,” 2021.[22] C. Chang, M. A. Xiaojian, and C. E. N. Peilin, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature,” Chin J Chem Eng, vol. 14, pp. 708–712, 2006.[23] Q. JING and X. LÜ, “Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water,” Chin J Chem Eng, vol. 16, no. 6, pp. 890–894, Dec. 2008, doi: 10.1016/S1004-9541(09)60012-4.[24] A. Kiadó and B. Vol, “KINETICS OF LEVULINIC ACID FORMATION FROM CARBOHYDRATES AT MODERATE TEMPERATURES,” Kluwer Academic Publishers, 2002.[25] L. Kupiainen, J. Ahola, and J. Tanskanen, “Comparison of formic and sulfuric acids as a glucose decomposition catalyst,” Ind Eng Chem Res, vol. 49, no. 18, pp. 8444–8449, Sep. 2010, doi: 10.1021/ie1008822.[26] J. Horvat, B. Klaid, B. Metelko, and V. Sunjid’, “MECHANISM OF LEVULINIC ACID FORMATION,” 1985.[27] K. C. Badgujar, L. D. Wilson, and B. M. Bhanage, “Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges,” Mar. 01, 2019, Elsevier Ltd. doi: 10.1016/j.rser.2018.12.007.[28] A. Paajanen and J. Vaari, “High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study,” Cellulose, vol. 24, no. 7, pp. 2713–2725, Jul. 2017, doi: 10.1007/s10570-017-1325-7.[29] Y. Wang, K. Lu, Y. Zhao, L. Zhu, and S. Wang, “Catalytic Conversion of Glucose to Levulinic Acid over Temperature-Responsive Al-Doped Silicotungstic Acid Catalyst. ,” Energy & Fuels, vol. 38, no. 9, pp. 7950–7958, 2024.[30] F. Parveen and S. Upadhyayula, “Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study,” Fuel Processing Technology, vol. 162, pp. 30– 36, 2017, doi: 10.1016/j.fuproc.2017.03.021.[31] S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Oct. 01, 2018, Elsevier Ltd. doi: 10.1016/j.rser.2018.06.016.[32] M. H. Kim, C. S. Kim, H. W. Lee, and K. Kim, “Temperature dependence of dissociation constants for formic acid and 2,6-dinitrophenol in aqueous solutions up to 175°C,” Journal of the Chemical Society - Faraday Transactions, vol. 92, no. 24, pp. 4951–4956, Dec. 1996, doi: 10.1039/FT9969204951.[33] L. Kupiainen, J. Ahola, and J. Tanskanen, “Kinetics of glucose decomposition in formic acid,” Chemical Engineering Research and Design, vol. 89, no. 12, pp. 2706–2713, Dec. 2011, doi: 10.1016/j.cherd.2011.06.005.[34] M. Li, W. Li, Y. Lu, H. Jameel, H. M. Chang, and L. Ma, “High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system,” RSC Adv, vol. 7, no. 24, pp. 14330–14336, 2017, doi: 10.1039/c7ra00701a.[35] P. C. Smitht, H. E. Grethlein, and A. O. Converse, “GLUCOSE DECOMPOSITION AT HIGH TEMPERATURE, MILD ACID, AND SHORT RESIDENCE TIMES,” 1982.[36] C. Chang, “Kinetics of Levulinic Acid Formation from Glucose Decomposition at High Temperature*,” 2006.[37] J. Dagnino, “ANÁLISIS DE VArIANZA,” 2014.[38] A. Bryman and D. Cramer, “Quantitative data analysis with minitab: A guide for social scientists.,” 2003, Routledge.[39] Minitab, “ANOVA de un solo factor,” 2024.[40] K. Kumar, M. Kumar, and S. Upadhyayula, “Catalytic conversion of glucose into levulinic acid using 2-phenyl- 2-imidazoline based ionic liquid catalyst,” Molecules, vol. 26, no. 2, Jan. 2021, doi: 10.3390/molecules26020348.[41] N. Ya’aini, N. A. S. Amin, and M. Asmadi, “Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst,” Bioresour Technol, vol. 116, pp. 58–65, Jul. 2012, doi: 10.1016/j.biortech.2012.03.097.[42] W. Weiqi and W. Shubin, “Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids,” Chemical Engineering Journal, vol. 307, pp. 389–398, Jan. 2017, doi: 10.1016/j.cej.2016.08.099.[43] M. Mikola, J. Ahola, and J. Tanskanen, “Production of levulinic acid from glucose in sulfolane/water mixtures,” Chemical Engineering Research and Design, vol. 148, pp. 291–297, Aug. 2019, doi: 10.1016/j.cherd.2019.06.022.[44] I. Van Zandvoort et al., “Formation, molecular structure, and morphology of humins in biomass conversion: Influence of feedstock and processing conditions,” ChemSusChem, vol. 6, no. 9, pp. 1745–1758, 2013, doi: 10.1002/cssc.201300332.[45] N. A. S. Ramli and N. A. S. Amin, “Fe/HY zeolite as an effective catalyst for levulinic acid production from glucose: Characterization and catalytic performance,” Appl Catal B, vol. 163, pp. 487–498, Feb. 2015, doi: 10.1016/j.apcatb.2014.08.031.[46] J. Fu, F. Yang, J. Mo, J. Zhuang, and X. Lu, “Catalytic Decomposition of Glucose to Levulinic Acid by Synergy of Organic Lewis Acid and Brønsted Acid in Water”.[47] Y. Liu, H. Li, J. He, W. Zhao, T. Yang, and S. Yang, “Catalytic conversion of carbohydrates to levulinic acid with mesoporous niobium-containing oxides,” Catal Commun, vol. 93, pp. 20–24, 2017, doi: 10.1016/j.catcom.2017.01.023.[48] F. Shen, R. L. Smith, L. Li, L. Yan, and X. Qi, “Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst,” ACS Sustain Chem Eng, vol. 5, no. 3, pp. 2421–2427, Mar. 2017, doi: 10.1021/acssuschemeng.6b02765.spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/d4b8b687-8453-4d99-8898-6a2fe8f469e9/download17cc15b951e7cc6b3728a574117320f9MD51Acta de aprobacion.pdfapplication/pdf558507https://repositorio.unbosque.edu.co/bitstreams/02028b94-a023-448f-85ae-9c920fb72ff5/download6a1555d892e2a50815c27faea949e7a0MD56Carta autorizacion comite.pdfapplication/pdf179152https://repositorio.unbosque.edu.co/bitstreams/7b06da70-2f12-48f1-9b94-d785beca6c10/download73e6f702d71862dfc5bb660c90f18575MD57Carta de autorizacion.pdfapplication/pdf349885https://repositorio.unbosque.edu.co/bitstreams/4a3d31af-71be-49c3-82b8-6032247d65b7/downloadd6d49518f664ee7b99897b99155fddf9MD58ORIGINALTrabajo de grado .pdfTrabajo de grado .pdfapplication/pdf1899557https://repositorio.unbosque.edu.co/bitstreams/2a5855da-cdd3-42ac-896e-d1ecc548fc73/download6d05544cb54f0e9db0357d6b1f0aa48fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/18c96c5e-2eab-46d5-ad4f-0e8de8a68993/download3b6ce8e9e36c89875e8cf39962fe8920MD55TEXTTrabajo de grado .pdf.txtTrabajo de grado .pdf.txtExtracted texttext/plain62821https://repositorio.unbosque.edu.co/bitstreams/a84037e3-9e78-4105-94e9-e15becafb7c5/download5cfac82c2e900025ea7973e0bbe57dc7MD59THUMBNAILTrabajo de grado .pdf.jpgTrabajo de grado .pdf.jpgGenerated Thumbnailimage/jpeg5096https://repositorio.unbosque.edu.co/bitstreams/46cc8d02-f1d7-4c73-9dc8-76d4db215aec/downloada2415d6e669e4991d80286c6b1ba1ec1MD51020.500.12495/13265oai:repositorio.unbosque.edu.co:20.500.12495/132652024-11-21 03:02:59.694http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=