Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus
Background. Mini-host models are simple experimental systems to study host-pathogen interactions. We adapted a Drosophila melanogaster infection model to evaluate the in vivo effect of different mechanisms of linezolid (LNZ) resistance in Staphylococcus aureus. Methods. Fly survival was evaluated af...
- Autores:
-
Diaz, Lorena
Kontoyiannis, Dimitrios P.
Panesso, Diana
Albert, Nathaniel D.
Singh, Kavindra V.
Tran, Truc T.
Munita, Jose M.
Murray, Barbara E.
Arias, Cesar A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/4085
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/4085
https://doi.org/10.1093/infdis/jit138
https://repositorio.unbosque.edu.co
- Palabra clave:
- Bacilos grampositivos formadores de endosporas
Acetamidas
Farmacorresistencia bacteriana
Staphylococcus aureus
Linezolid
Resistance
Drosophila melanogaster
- Rights
- openAccess
- License
- Acceso abierto
id |
UNBOSQUE2_3ab8871d71c141976ab30b6e2ec583f7 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/4085 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
dc.title.translated.spa.fl_str_mv |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
title |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
spellingShingle |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus Bacilos grampositivos formadores de endosporas Acetamidas Farmacorresistencia bacteriana Staphylococcus aureus Linezolid Resistance Drosophila melanogaster |
title_short |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
title_full |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
title_fullStr |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
title_full_unstemmed |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
title_sort |
Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureus |
dc.creator.fl_str_mv |
Diaz, Lorena Kontoyiannis, Dimitrios P. Panesso, Diana Albert, Nathaniel D. Singh, Kavindra V. Tran, Truc T. Munita, Jose M. Murray, Barbara E. Arias, Cesar A. |
dc.contributor.author.none.fl_str_mv |
Diaz, Lorena Kontoyiannis, Dimitrios P. Panesso, Diana Albert, Nathaniel D. Singh, Kavindra V. Tran, Truc T. Munita, Jose M. Murray, Barbara E. Arias, Cesar A. |
dc.contributor.orcid.none.fl_str_mv |
Panesso, Diana [0000-0002-4049-9702] |
dc.subject.decs.spa.fl_str_mv |
Bacilos grampositivos formadores de endosporas Acetamidas Farmacorresistencia bacteriana |
topic |
Bacilos grampositivos formadores de endosporas Acetamidas Farmacorresistencia bacteriana Staphylococcus aureus Linezolid Resistance Drosophila melanogaster |
dc.subject.keywords.spa.fl_str_mv |
Staphylococcus aureus Linezolid Resistance Drosophila melanogaster |
description |
Background. Mini-host models are simple experimental systems to study host-pathogen interactions. We adapted a Drosophila melanogaster infection model to evaluate the in vivo effect of different mechanisms of linezolid (LNZ) resistance in Staphylococcus aureus. Methods. Fly survival was evaluated after infection with LNZ-resistant S. aureus strains NRS119 (which has mutations in 23S ribosomal RNA [rRNA]), CM-05 and 004-737X (which carry cfr), LNZ-susceptible derivatives of CM-05 and 004-737X (which lack cfr), and ATCC 29213 (an LNZ-susceptible control). Flies were then fed food mixed with LNZ (concentration, 15–500 µg/mL). Results were compared to those in mouse peritonitis, using LNZ via oral gavage at 80 and 120 mg/kg every 12 hours. Results. LNZ at 500 µg/mL in fly food protected against all strains, while concentrations of 15–250 µg/mL failed to protect against NRS119 (survival, 1.6%–20%). An in vivo effect of cfr was only detected at concentrations of 30 and 15 µg/mL. In the mouse peritonitis model, LNZ (at doses that mimic human pharmacokinetics) protected mice from challenge with the cfr+ 004-737X strain but was ineffective against the NRS119 strain, which carried 23S rRNA mutations. Conclusions. The fly model offers promising advantages to dissect the in vivo effect of LNZ resistance in S. aureus, and findings from this model appear to be concordant with those from the mouse peritonitis model |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2020-09-14T22:08:06Z |
dc.date.available.none.fl_str_mv |
2020-09-14T22:08:06Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1537-6613 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/4085 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1093/infdis/jit138 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.unbosque.edu.co |
identifier_str_mv |
1537-6613 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque |
url |
http://hdl.handle.net/20.500.12495/4085 https://doi.org/10.1093/infdis/jit138 https://repositorio.unbosque.edu.co |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Journal of Infectious Diseases, 1537-6613, Vol 208, Nro 1, 2013, pag 83-91 |
dc.relation.uri.none.fl_str_mv |
https://academic.oup.com/jid/article/208/1/83/796362 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
dc.rights.creativecommons.none.fl_str_mv |
2013-07-01 |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 2013-07-01 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Oxford University Press |
dc.publisher.journal.spa.fl_str_mv |
Journal of Infectious Diseases |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/31a8f386-8781-44a5-ab46-1cf4c33c672f/download https://repositorio.unbosque.edu.co/bitstreams/bb0b3a16-fd12-4194-ae1b-6e782e6a33d7/download https://repositorio.unbosque.edu.co/bitstreams/44963041-ab47-48ed-a807-7eb820c3931d/download https://repositorio.unbosque.edu.co/bitstreams/26eec6c0-7c21-4af4-a1a2-fedfec6745e5/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 7210a811635d1799e7c05fee5d259be7 f6020e58a094e3f8811e4ebe737f364b 9c52410f3e0d7249ae33497c5ae27333 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1828164477329080320 |
spelling |
Diaz, LorenaKontoyiannis, Dimitrios P.Panesso, DianaAlbert, Nathaniel D.Singh, Kavindra V.Tran, Truc T.Munita, Jose M.Murray, Barbara E.Arias, Cesar A.Panesso, Diana [0000-0002-4049-9702]2020-09-14T22:08:06Z2020-09-14T22:08:06Z20131537-6613http://hdl.handle.net/20.500.12495/4085https://doi.org/10.1093/infdis/jit138instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquehttps://repositorio.unbosque.edu.coapplication/pdfengOxford University PressJournal of Infectious DiseasesJournal of Infectious Diseases, 1537-6613, Vol 208, Nro 1, 2013, pag 83-91https://academic.oup.com/jid/article/208/1/83/796362Dissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureusDissecting the mechanisms of linezolid resistance in a drosophila melanogaster infection model of staphylococcus aureusArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Bacilos grampositivos formadores de endosporasAcetamidasFarmacorresistencia bacterianaStaphylococcus aureusLinezolidResistanceDrosophila melanogasterBackground. Mini-host models are simple experimental systems to study host-pathogen interactions. We adapted a Drosophila melanogaster infection model to evaluate the in vivo effect of different mechanisms of linezolid (LNZ) resistance in Staphylococcus aureus. Methods. Fly survival was evaluated after infection with LNZ-resistant S. aureus strains NRS119 (which has mutations in 23S ribosomal RNA [rRNA]), CM-05 and 004-737X (which carry cfr), LNZ-susceptible derivatives of CM-05 and 004-737X (which lack cfr), and ATCC 29213 (an LNZ-susceptible control). Flies were then fed food mixed with LNZ (concentration, 15–500 µg/mL). Results were compared to those in mouse peritonitis, using LNZ via oral gavage at 80 and 120 mg/kg every 12 hours. Results. LNZ at 500 µg/mL in fly food protected against all strains, while concentrations of 15–250 µg/mL failed to protect against NRS119 (survival, 1.6%–20%). An in vivo effect of cfr was only detected at concentrations of 30 and 15 µg/mL. In the mouse peritonitis model, LNZ (at doses that mimic human pharmacokinetics) protected mice from challenge with the cfr+ 004-737X strain but was ineffective against the NRS119 strain, which carried 23S rRNA mutations. Conclusions. The fly model offers promising advantages to dissect the in vivo effect of LNZ resistance in S. aureus, and findings from this model appear to be concordant with those from the mouse peritonitis modelAcceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2013-07-01LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/31a8f386-8781-44a5-ab46-1cf4c33c672f/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILDíaz, Lorena_2013.pdf.jpgDíaz, Lorena_2013.pdf.jpgimage/jpeg5775https://repositorio.unbosque.edu.co/bitstreams/bb0b3a16-fd12-4194-ae1b-6e782e6a33d7/download7210a811635d1799e7c05fee5d259be7MD54ORIGINALDíaz, Lorena_2013.pdfDíaz, Lorena_2013.pdfapplication/pdf505350https://repositorio.unbosque.edu.co/bitstreams/44963041-ab47-48ed-a807-7eb820c3931d/downloadf6020e58a094e3f8811e4ebe737f364bMD53TEXTDíaz, Lorena_2013.pdf.txtDíaz, Lorena_2013.pdf.txtExtracted texttext/plain48155https://repositorio.unbosque.edu.co/bitstreams/26eec6c0-7c21-4af4-a1a2-fedfec6745e5/download9c52410f3e0d7249ae33497c5ae27333MD5520.500.12495/4085oai:repositorio.unbosque.edu.co:20.500.12495/40852024-02-07 02:55:20.823restrictedhttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |