KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2
Un Bot conversacional corresponde a una aplicación de software que cuenta con capacidades de Procesamiento de Lenguaje Natural - PLN e Inteligencia Artificial – IA para entablar conversaciones habladas con seres humanos. A diferencia de los tradicionales bots textuales, en los cuales la interacción...
- Autores:
-
Niño Gómez, Juan Daniel
- Tipo de recurso:
- https://purl.org/coar/resource_type/c_7a1f
- Fecha de publicación:
- 2024
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/13700
- Acceso en línea:
- https://hdl.handle.net/20.500.12495/13700
- Palabra clave:
- Modelo extenso de lenguaje
Bot conversacional
Dolor oncológico pediátrico
Transformadores
Inteligencia artificial
621.3
Large Language Model
Conversational Bot
Pediatric Oncologic Pain
Transformers
Artificial Intelligence
- Rights
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNBOSQUE2_347e319e6615863e9128183881ed1428 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/13700 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.none.fl_str_mv |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
dc.title.translated.none.fl_str_mv |
KENITO, the conversational bot for the evaluation of pediatric oncologic pain management - Phase 2 |
title |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
spellingShingle |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 Modelo extenso de lenguaje Bot conversacional Dolor oncológico pediátrico Transformadores Inteligencia artificial 621.3 Large Language Model Conversational Bot Pediatric Oncologic Pain Transformers Artificial Intelligence |
title_short |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
title_full |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
title_fullStr |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
title_full_unstemmed |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
title_sort |
KENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2 |
dc.creator.fl_str_mv |
Niño Gómez, Juan Daniel |
dc.contributor.advisor.none.fl_str_mv |
Romero Alvarez, Fran Ernesto |
dc.contributor.author.none.fl_str_mv |
Niño Gómez, Juan Daniel |
dc.contributor.orcid.none.fl_str_mv |
Niño Gómez, Juan Daniel [0009-0004-7960-7645] |
dc.subject.none.fl_str_mv |
Modelo extenso de lenguaje Bot conversacional Dolor oncológico pediátrico Transformadores Inteligencia artificial |
topic |
Modelo extenso de lenguaje Bot conversacional Dolor oncológico pediátrico Transformadores Inteligencia artificial 621.3 Large Language Model Conversational Bot Pediatric Oncologic Pain Transformers Artificial Intelligence |
dc.subject.ddc.none.fl_str_mv |
621.3 |
dc.subject.keywords.none.fl_str_mv |
Large Language Model Conversational Bot Pediatric Oncologic Pain Transformers Artificial Intelligence |
description |
Un Bot conversacional corresponde a una aplicación de software que cuenta con capacidades de Procesamiento de Lenguaje Natural - PLN e Inteligencia Artificial – IA para entablar conversaciones habladas con seres humanos. A diferencia de los tradicionales bots textuales, en los cuales la interacción se lleva a cabo mediante mensajes de texto, un Bot conversacional esta´ en capacidad de entender la voz humana y responder igualmente en lenguaje hablado. El Bot puede ser desplegado de diversas formas, desde sistemas de audio-respuesta sin ningún tipo de interfaz gráfica, hasta sofisticadas aplicaciones móviles que presentan al Bot como un personaje virtual animado con una personalidad y características bien definidas. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-12-13T14:15:32Z |
dc.date.available.none.fl_str_mv |
2024-12-13T14:15:32Z |
dc.date.issued.none.fl_str_mv |
2024-05 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.coar.none.fl_str_mv |
https://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coarversion.none.fl_str_mv |
https://purl.org/coar/version/c_ab4af688f83e57aa |
format |
https://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12495/13700 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
https://hdl.handle.net/20.500.12495/13700 |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
[1] S. A. Hadri y A. Bouramoul, “Towards a deep learning based contextual chat bot for preventing depression in young children with autistic spectrum disorder”, Smart Health, p. 100371, diciembre de 2022. Accedido el 4 de febrero de 2024. [En l ́ınea]. Disponible: https://doi.org/10.1016/j.smhl.2022.100371 [2] R. L. Weisenburger et al., “Conversational assessment using artificial intelligence is as clinically useful as depression scales and preferred by users”, J. Affect.Disorders, enero de 2024. Accedido el 6 de febrero de 2024. [En l ́ınea]. Disponible:https://doi.org/10.1016/j.jad.2024.01.212 [3]S. Thakur, D. Rastogi, y L. Singh, “MOODY: A Natural Language Processing-Based Chatbot for Mental Health Care”, en Lecture Notes in Electrical Engineering,Virtual, Online, 2022, pp. 899–908. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-981-19-4364-5-64 [4]L. Marciano y S. Saboor, “Reinventing mental health care in youth through mobile approaches: Current status and future steps”, Front Psychol, vol. 14, 2023, doi: 10.3389/fpsyg.2023.1126015. [5]P. Parmar, J. Ryu, S. Pandya, J. Sedoc, y S. Agarwal, “Health-focused conversational agents in person-centered care: a review of apps”, NPJ Digit Med, vol. 5,num. 1, 2022, doi: 10.1038/s41746-022-00560-6. ́ [6]H. Jahanshahi, S. Kazmi, y M. Cevik, “Auto Response Generation in Online Medical Chat Services”, J Healthc Inform Res, vol. 6, num. 3, pp. 344 – 374, 2022, ́doi: 10.1007/s41666-022-00118-x. [7]B. M. Chaudhry y A. Islam, “Design Validation of a Workplace Stress Management Mobile App for Healthcare Workers During COVID-19 and Beyond”, en Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Virtual, Online, 2022, pp. 306–321. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-3-030-94822-1-17 [8]M.-T. Ho, N.-T. B. Le, P. Mantello, M.-T. Ho, y N. Ghotbi, “Understanding the acceptance of emotional artificial intelligence in the Japanese healthcare system: Across-sectional survey of clinic visitors’ attitude”, Technol Soc, vol. 72, 2023, [En línea]. Disponible en: http://dx.doi.org/10.1016/j.techsoc.2022.102166 [9]Li, J., Wang, X., Wang, L., Kang, H. (2022). Effects of Artificial Intelligence and Virtual Reality in Martial Arts Sports on Students’ Physical and Mental Health. International Transactions on Electrical Energy Systems, 2022. http://dx.doi.org/10.1155/2022/1359243 [10]Joyce, D. W., Kormilitzin, A., Smith, K. A., Cipriani, A. (2023). Explainable artificial intelligence for mental health through transparency and interpretability for understandability. Npj Digital Medicine, 6(1). http://dx.doi.org/10.1038/s41746-023-00751-9 [11]Omarov, B., Narynov, S., Zhumanov, Z. (2023). Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review. Computers, Materials and Continua, 74(3), 5105–5122. http://dx.doi.org/10.32604/cmc.2023.034655 [12]Dham, V., Rai, K., Soni, U. (2021). Mental Stress Detection Using Artificial Intelligence Models. Journal of Physics: Conference Series, 1950(1). https://doi.org/10.1088/1742-6596/1950/1/012047 [13]Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663 [14]The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions.https://doi.org/10.1016/j.eng.2023.07.006 [15] “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research,practice and policy https://doi.org/10.1016/j.ijinfomgt.2023.102642 [16] Can ChatGPT provide intelligent diagnoses? A comparative study between pre-dictive models and ChatGPT to define a new medical diagnostic bot https://doi.org/10.1016/j.eswa.2023.121186 [17] Generative artificial intelligence and the ecology of human development https://doi.org/10.1111/jcpp.13860 [18] A comparative study of retrieval-based and generative-based chatbots using Deep Learning and Machine Learning https://doi.org/10.1016/j.health.2023.100198 [19] Learning to Fake It: Limited Responses and Fabricated References Provided by ChatGPT for Medical Questions https://doi.org/10.1016/j.mcpdig.2023.05.004 [20] Using cognitive psychology to understand GPT-3 https://doi.org/10.1073/pnas [21] Detecting Symptoms of Depression on Reddit https://doi.org/10.1145/3578503.3583621 [22] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71. [23] “Ml-ops.org,” Jan. 22, 2024. https://ml-ops.org/content/crisp-ml [24] Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663 |
dc.rights.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
https://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ Acceso abierto https://purl.org/coar/access_right/c_abf2 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sistemas |
dc.publisher.grantor.spa.fl_str_mv |
Universidad El Bosque |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/dfad9698-58f6-4723-9631-8341934c3c7d/download https://repositorio.unbosque.edu.co/bitstreams/2c0e17b9-3644-4b28-9d8d-aab9ae4f8437/download https://repositorio.unbosque.edu.co/bitstreams/5cc58e85-9bff-4b04-9482-a2d50b072f49/download https://repositorio.unbosque.edu.co/bitstreams/849c997e-b102-4986-a12c-b5af0da535f6/download https://repositorio.unbosque.edu.co/bitstreams/31f2921e-b972-4674-aeaf-efb2d746ab29/download https://repositorio.unbosque.edu.co/bitstreams/a2a3b062-2d4a-4695-8d12-f66e1ed4ea25/download |
bitstream.checksum.fl_str_mv |
17cc15b951e7cc6b3728a574117320f9 5f41b41f1e7427abf438a732b18650eb de5adafd5a2e8d60a51c02af4bea44eb 4474e113a645744aed5074807ddb3d6d 1a27df631e6402b74cbe55b5de8d1dbf eddd1061db3152c5519932494cfc5a43 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1828164447383846912 |
spelling |
Romero Alvarez, Fran ErnestoNiño Gómez, Juan DanielNiño Gómez, Juan Daniel [0009-0004-7960-7645]2024-12-13T14:15:32Z2024-12-13T14:15:32Z2024-05https://hdl.handle.net/20.500.12495/13700instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coUn Bot conversacional corresponde a una aplicación de software que cuenta con capacidades de Procesamiento de Lenguaje Natural - PLN e Inteligencia Artificial – IA para entablar conversaciones habladas con seres humanos. A diferencia de los tradicionales bots textuales, en los cuales la interacción se lleva a cabo mediante mensajes de texto, un Bot conversacional esta´ en capacidad de entender la voz humana y responder igualmente en lenguaje hablado. El Bot puede ser desplegado de diversas formas, desde sistemas de audio-respuesta sin ningún tipo de interfaz gráfica, hasta sofisticadas aplicaciones móviles que presentan al Bot como un personaje virtual animado con una personalidad y características bien definidas.Ingeniero de SistemasPregradoA conversational Bot is a software application that uses Natural Language Processing (NLP) and Artificial Intelligence (AI) capabilities to engage in spoken conversations with humans. - AI to engage in spoken conversations with human beings. Unlike traditional textual bots, in which the interaction is carried out through text messages, a conversational Bot is able to understand the human voice and respond in spoken language. The Bot can be deployed in a variety of ways, from audio-response systems without any graphical interface, to sophisticated mobile applications that present the Bot as an animated virtual character with a well-defined personality and characteristics.application/pdfAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Modelo extenso de lenguajeBot conversacionalDolor oncológico pediátricoTransformadoresInteligencia artificial621.3Large Language ModelConversational BotPediatric Oncologic PainTransformersArtificial IntelligenceKENITO,el bot conversacional para la evaluación del manejo del dolor oncológico pediátrico - Fase 2KENITO, the conversational bot for the evaluation of pediatric oncologic pain management - Phase 2Ingeniería de SistemasUniversidad El BosqueFacultad de IngenieríaTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] S. A. Hadri y A. Bouramoul, “Towards a deep learning based contextual chat bot for preventing depression in young children with autistic spectrum disorder”, Smart Health, p. 100371, diciembre de 2022. Accedido el 4 de febrero de 2024. [En l ́ınea]. Disponible: https://doi.org/10.1016/j.smhl.2022.100371[2] R. L. Weisenburger et al., “Conversational assessment using artificial intelligence is as clinically useful as depression scales and preferred by users”, J. Affect.Disorders, enero de 2024. Accedido el 6 de febrero de 2024. [En l ́ınea]. Disponible:https://doi.org/10.1016/j.jad.2024.01.212[3]S. Thakur, D. Rastogi, y L. Singh, “MOODY: A Natural Language Processing-Based Chatbot for Mental Health Care”, en Lecture Notes in Electrical Engineering,Virtual, Online, 2022, pp. 899–908. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-981-19-4364-5-64[4]L. Marciano y S. Saboor, “Reinventing mental health care in youth through mobile approaches: Current status and future steps”, Front Psychol, vol. 14, 2023, doi: 10.3389/fpsyg.2023.1126015.[5]P. Parmar, J. Ryu, S. Pandya, J. Sedoc, y S. Agarwal, “Health-focused conversational agents in person-centered care: a review of apps”, NPJ Digit Med, vol. 5,num. 1, 2022, doi: 10.1038/s41746-022-00560-6. ́[6]H. Jahanshahi, S. Kazmi, y M. Cevik, “Auto Response Generation in Online Medical Chat Services”, J Healthc Inform Res, vol. 6, num. 3, pp. 344 – 374, 2022, ́doi: 10.1007/s41666-022-00118-x.[7]B. M. Chaudhry y A. Islam, “Design Validation of a Workplace Stress Management Mobile App for Healthcare Workers During COVID-19 and Beyond”, en Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, Virtual, Online, 2022, pp. 306–321. [En l ́ınea]. Disponible en: http://dx.doi.org/10.1007/978-3-030-94822-1-17[8]M.-T. Ho, N.-T. B. Le, P. Mantello, M.-T. Ho, y N. Ghotbi, “Understanding the acceptance of emotional artificial intelligence in the Japanese healthcare system: Across-sectional survey of clinic visitors’ attitude”, Technol Soc, vol. 72, 2023, [En línea]. Disponible en: http://dx.doi.org/10.1016/j.techsoc.2022.102166[9]Li, J., Wang, X., Wang, L., Kang, H. (2022). Effects of Artificial Intelligence and Virtual Reality in Martial Arts Sports on Students’ Physical and Mental Health. International Transactions on Electrical Energy Systems, 2022. http://dx.doi.org/10.1155/2022/1359243[10]Joyce, D. W., Kormilitzin, A., Smith, K. A., Cipriani, A. (2023). Explainable artificial intelligence for mental health through transparency and interpretability for understandability. Npj Digital Medicine, 6(1). http://dx.doi.org/10.1038/s41746-023-00751-9[11]Omarov, B., Narynov, S., Zhumanov, Z. (2023). Artificial Intelligence-Enabled Chatbots in Mental Health: A Systematic Review. Computers, Materials and Continua, 74(3), 5105–5122. http://dx.doi.org/10.32604/cmc.2023.034655[12]Dham, V., Rai, K., Soni, U. (2021). Mental Stress Detection Using Artificial Intelligence Models. Journal of Physics: Conference Series, 1950(1). https://doi.org/10.1088/1742-6596/1950/1/012047[13]Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663[14]The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions.https://doi.org/10.1016/j.eng.2023.07.006[15] “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research,practice and policy https://doi.org/10.1016/j.ijinfomgt.2023.102642[16] Can ChatGPT provide intelligent diagnoses? A comparative study between pre-dictive models and ChatGPT to define a new medical diagnostic bot https://doi.org/10.1016/j.eswa.2023.121186[17] Generative artificial intelligence and the ecology of human development https://doi.org/10.1111/jcpp.13860[18] A comparative study of retrieval-based and generative-based chatbots using Deep Learning and Machine Learning https://doi.org/10.1016/j.health.2023.100198[19] Learning to Fake It: Limited Responses and Fabricated References Provided by ChatGPT for Medical Questions https://doi.org/10.1016/j.mcpdig.2023.05.004[20] Using cognitive psychology to understand GPT-3 https://doi.org/10.1073/pnas[21] Detecting Symptoms of Depression on Reddit https://doi.org/10.1145/3578503.3583621[22] M. J. Page et al., “The PRISMA 2020 statement: an updated guideline for reporting systematic reviews,” BMJ, p. n71, Mar. 2021, doi: 10.1136/bmj.n71.[23] “Ml-ops.org,” Jan. 22, 2024. https://ml-ops.org/content/crisp-ml[24] Hilal, A. M., ISSAOUI, I., Obayya, M., Al-Wesabi, F. N., NEMRI, N., Hamza, M. A., al Duhayyim, M., Zamani, A. S. (2022). Modeling of explainable artificial intelligence for biomedical mental disorder diagnosis. Computers, Materials and Continua, 71(2), 3853–3867. http://dx.doi.org/10.32604/cmc.2022.022663spaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/dfad9698-58f6-4723-9631-8341934c3c7d/download17cc15b951e7cc6b3728a574117320f9MD54Anexo 1. Acta de aprobacion.pdfapplication/pdf101302https://repositorio.unbosque.edu.co/bitstreams/2c0e17b9-3644-4b28-9d8d-aab9ae4f8437/download5f41b41f1e7427abf438a732b18650ebMD57Carta de autorizacion.pdfapplication/pdf180856https://repositorio.unbosque.edu.co/bitstreams/5cc58e85-9bff-4b04-9482-a2d50b072f49/downloadde5adafd5a2e8d60a51c02af4bea44ebMD58ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1552120https://repositorio.unbosque.edu.co/bitstreams/849c997e-b102-4986-a12c-b5af0da535f6/download4474e113a645744aed5074807ddb3d6dMD56TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain54742https://repositorio.unbosque.edu.co/bitstreams/31f2921e-b972-4674-aeaf-efb2d746ab29/download1a27df631e6402b74cbe55b5de8d1dbfMD59THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg3232https://repositorio.unbosque.edu.co/bitstreams/a2a3b062-2d4a-4695-8d12-f66e1ed4ea25/downloadeddd1061db3152c5519932494cfc5a43MD51020.500.12495/13700oai:repositorio.unbosque.edu.co:20.500.12495/137002024-12-14 03:03:33.752http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalembargo2025-12-12https://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo= |