A novel spatial feature for the identification of motor tasks using high-density electromyography
Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/o...
- Autores:
-
Jordanić, Mislav
Rojas-Martínez, Mónica
Mañanas, Miguel Angel
Francesc Alonso, Joan
Reza Marateb, Hamid
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/4672
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/4672
https://doi.org/10.3390/s17071597
- Palabra clave:
- High-density electromyography
Mean shift
Myoelectric control
Pattern recognition
Prosthetics
- Rights
- openAccess
- License
- Attribution 4.0 International
id |
UNBOSQUE2_311e224ce229396fd74e9caeb7e241c3 |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/4672 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
dc.title.translated.spa.fl_str_mv |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
title |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
spellingShingle |
A novel spatial feature for the identification of motor tasks using high-density electromyography High-density electromyography Mean shift Myoelectric control Pattern recognition Prosthetics |
title_short |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
title_full |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
title_fullStr |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
title_full_unstemmed |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
title_sort |
A novel spatial feature for the identification of motor tasks using high-density electromyography |
dc.creator.fl_str_mv |
Jordanić, Mislav Rojas-Martínez, Mónica Mañanas, Miguel Angel Francesc Alonso, Joan Reza Marateb, Hamid |
dc.contributor.author.none.fl_str_mv |
Jordanić, Mislav Rojas-Martínez, Mónica Mañanas, Miguel Angel Francesc Alonso, Joan Reza Marateb, Hamid |
dc.subject.keywords.spa.fl_str_mv |
High-density electromyography Mean shift Myoelectric control Pattern recognition Prosthetics |
topic |
High-density electromyography Mean shift Myoelectric control Pattern recognition Prosthetics |
description |
Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-09T21:58:41Z |
dc.date.available.none.fl_str_mv |
2020-11-09T21:58:41Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
1424-8220 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/4672 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/s17071597 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
identifier_str_mv |
1424-8220 instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/4672 https://doi.org/10.3390/s17071597 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
Sensors, 1424-8220, Vol. 17, No. 7, 1597, 2017, p. 1-24 |
dc.relation.uri.none.fl_str_mv |
https://www.mdpi.com/1424-8220/17/7/1597 |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
dc.rights.creativecommons.none.fl_str_mv |
2017-07 |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Acceso abierto http://purl.org/coar/access_right/c_abf2 2017-07 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.journal.spa.fl_str_mv |
Sensors |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/220d1060-b0f2-4dba-b94b-f321b3df3023/download https://repositorio.unbosque.edu.co/bitstreams/1573bbc6-e9b6-4ea3-8691-456e3f5c9884/download https://repositorio.unbosque.edu.co/bitstreams/d51fb48c-f227-4469-a2ca-c2df03339e21/download https://repositorio.unbosque.edu.co/bitstreams/27e1c5f9-df50-4ffb-9fa8-83ed777bcd27/download https://repositorio.unbosque.edu.co/bitstreams/b11745f6-f407-4094-8b96-97a131cef095/download |
bitstream.checksum.fl_str_mv |
056c4d83cefe8843de1b6e29c0ae14d6 0175ea4a2d4caec4bbcc37e300941108 8a4605be74aa9ea9d79846c1fba20a33 5871483031c8392c83a03f153f0f78ae 4bcd16ef627634d8a13995047cf86a56 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100804022304768 |
spelling |
Jordanić, MislavRojas-Martínez, MónicaMañanas, Miguel AngelFrancesc Alonso, JoanReza Marateb, Hamid2020-11-09T21:58:41Z2020-11-09T21:58:41Z1424-8220http://hdl.handle.net/20.500.12495/4672https://doi.org/10.3390/s17071597instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengMDPISensorsSensors, 1424-8220, Vol. 17, No. 7, 1597, 2017, p. 1-24https://www.mdpi.com/1424-8220/17/7/1597Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2017-07A novel spatial feature for the identification of motor tasks using high-density electromyographyA novel spatial feature for the identification of motor tasks using high-density electromyographyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85High-density electromyographyMean shiftMyoelectric controlPattern recognitionProstheticsEstimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.ORIGINALJordanić_Mislav_2017.pdfJordanić_Mislav_2017.pdfapplication/pdf6888650https://repositorio.unbosque.edu.co/bitstreams/220d1060-b0f2-4dba-b94b-f321b3df3023/download056c4d83cefe8843de1b6e29c0ae14d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/1573bbc6-e9b6-4ea3-8691-456e3f5c9884/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/d51fb48c-f227-4469-a2ca-c2df03339e21/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILJordanić_Mislav_2017.pdf.jpgJordanić_Mislav_2017.pdf.jpgIM Thumbnailimage/jpeg11571https://repositorio.unbosque.edu.co/bitstreams/27e1c5f9-df50-4ffb-9fa8-83ed777bcd27/download5871483031c8392c83a03f153f0f78aeMD54TEXTJordanić_Mislav_2017.pdf.txtJordanić_Mislav_2017.pdf.txtExtracted texttext/plain89317https://repositorio.unbosque.edu.co/bitstreams/b11745f6-f407-4094-8b96-97a131cef095/download4bcd16ef627634d8a13995047cf86a56MD5520.500.12495/4672oai:repositorio.unbosque.edu.co:20.500.12495/46722024-02-07 08:00:10.215http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |