A novel spatial feature for the identification of motor tasks using high-density electromyography

Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/o...

Full description

Autores:
Jordanić, Mislav
Rojas-Martínez, Mónica
Mañanas, Miguel Angel
Francesc Alonso, Joan
Reza Marateb, Hamid
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/4672
Acceso en línea:
http://hdl.handle.net/20.500.12495/4672
https://doi.org/10.3390/s17071597
Palabra clave:
High-density electromyography
Mean shift
Myoelectric control
Pattern recognition
Prosthetics
Rights
openAccess
License
Attribution 4.0 International
id UNBOSQUE2_311e224ce229396fd74e9caeb7e241c3
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/4672
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv A novel spatial feature for the identification of motor tasks using high-density electromyography
dc.title.translated.spa.fl_str_mv A novel spatial feature for the identification of motor tasks using high-density electromyography
title A novel spatial feature for the identification of motor tasks using high-density electromyography
spellingShingle A novel spatial feature for the identification of motor tasks using high-density electromyography
High-density electromyography
Mean shift
Myoelectric control
Pattern recognition
Prosthetics
title_short A novel spatial feature for the identification of motor tasks using high-density electromyography
title_full A novel spatial feature for the identification of motor tasks using high-density electromyography
title_fullStr A novel spatial feature for the identification of motor tasks using high-density electromyography
title_full_unstemmed A novel spatial feature for the identification of motor tasks using high-density electromyography
title_sort A novel spatial feature for the identification of motor tasks using high-density electromyography
dc.creator.fl_str_mv Jordanić, Mislav
Rojas-Martínez, Mónica
Mañanas, Miguel Angel
Francesc Alonso, Joan
Reza Marateb, Hamid
dc.contributor.author.none.fl_str_mv Jordanić, Mislav
Rojas-Martínez, Mónica
Mañanas, Miguel Angel
Francesc Alonso, Joan
Reza Marateb, Hamid
dc.subject.keywords.spa.fl_str_mv High-density electromyography
Mean shift
Myoelectric control
Pattern recognition
Prosthetics
topic High-density electromyography
Mean shift
Myoelectric control
Pattern recognition
Prosthetics
description Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-09T21:58:41Z
dc.date.available.none.fl_str_mv 2020-11-09T21:58:41Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1424-8220
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/4672
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/s17071597
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
identifier_str_mv 1424-8220
instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/4672
https://doi.org/10.3390/s17071597
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv Sensors, 1424-8220, Vol. 17, No. 7, 1597, 2017, p. 1-24
dc.relation.uri.none.fl_str_mv https://www.mdpi.com/1424-8220/17/7/1597
dc.rights.*.fl_str_mv Attribution 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Acceso abierto
dc.rights.creativecommons.none.fl_str_mv 2017-07
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
2017-07
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.journal.spa.fl_str_mv Sensors
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/220d1060-b0f2-4dba-b94b-f321b3df3023/download
https://repositorio.unbosque.edu.co/bitstreams/1573bbc6-e9b6-4ea3-8691-456e3f5c9884/download
https://repositorio.unbosque.edu.co/bitstreams/d51fb48c-f227-4469-a2ca-c2df03339e21/download
https://repositorio.unbosque.edu.co/bitstreams/27e1c5f9-df50-4ffb-9fa8-83ed777bcd27/download
https://repositorio.unbosque.edu.co/bitstreams/b11745f6-f407-4094-8b96-97a131cef095/download
bitstream.checksum.fl_str_mv 056c4d83cefe8843de1b6e29c0ae14d6
0175ea4a2d4caec4bbcc37e300941108
8a4605be74aa9ea9d79846c1fba20a33
5871483031c8392c83a03f153f0f78ae
4bcd16ef627634d8a13995047cf86a56
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100804022304768
spelling Jordanić, MislavRojas-Martínez, MónicaMañanas, Miguel AngelFrancesc Alonso, JoanReza Marateb, Hamid2020-11-09T21:58:41Z2020-11-09T21:58:41Z1424-8220http://hdl.handle.net/20.500.12495/4672https://doi.org/10.3390/s17071597instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengMDPISensorsSensors, 1424-8220, Vol. 17, No. 7, 1597, 2017, p. 1-24https://www.mdpi.com/1424-8220/17/7/1597Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abierto2017-07A novel spatial feature for the identification of motor tasks using high-density electromyographyA novel spatial feature for the identification of motor tasks using high-density electromyographyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85High-density electromyographyMean shiftMyoelectric controlPattern recognitionProstheticsEstimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.ORIGINALJordanić_Mislav_2017.pdfJordanić_Mislav_2017.pdfapplication/pdf6888650https://repositorio.unbosque.edu.co/bitstreams/220d1060-b0f2-4dba-b94b-f321b3df3023/download056c4d83cefe8843de1b6e29c0ae14d6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unbosque.edu.co/bitstreams/1573bbc6-e9b6-4ea3-8691-456e3f5c9884/download0175ea4a2d4caec4bbcc37e300941108MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/d51fb48c-f227-4469-a2ca-c2df03339e21/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILJordanić_Mislav_2017.pdf.jpgJordanić_Mislav_2017.pdf.jpgIM Thumbnailimage/jpeg11571https://repositorio.unbosque.edu.co/bitstreams/27e1c5f9-df50-4ffb-9fa8-83ed777bcd27/download5871483031c8392c83a03f153f0f78aeMD54TEXTJordanić_Mislav_2017.pdf.txtJordanić_Mislav_2017.pdf.txtExtracted texttext/plain89317https://repositorio.unbosque.edu.co/bitstreams/b11745f6-f407-4094-8b96-97a131cef095/download4bcd16ef627634d8a13995047cf86a56MD5520.500.12495/4672oai:repositorio.unbosque.edu.co:20.500.12495/46722024-02-07 08:00:10.215http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=