Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano

La detección temprana de hepatitis B y C es crucial para mejorar los resultados en el trata-miento de estas enfermedades infecciosas. Este estudio evalúa la aplicabilidad de sensores moleculares —electroquímicos, colorimétricos y fluorimétricos— en el diagnóstico eficiente de estos virus en el conte...

Full description

Autores:
Quintero Rivas, Sofia Alejandra
Vega Pérez , Flor Alejandra
Sarmiento Monsalve, Jeymy Tatiana
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/13236
Acceso en línea:
https://hdl.handle.net/20.500.12495/13236
Palabra clave:
Hepatitis B
Hepatitis C
Sensores moleculares
Diagnóstico
Detección
Biosensores
Electroquímica
Colorimetría
Fluorimetría
Biomarcadores
615.19
Hepatitis B
Hepatitis C
Molecular Sensors
Diagnosis
Detection
Biosensors
Electrochemistry
Colorimetry
Fluorimetry
Biomarkers
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNBOSQUE2_2d7b2c74ab2f7f52c3ea447e870a5ff8
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/13236
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
dc.title.translated.none.fl_str_mv Molecular biosensors (colorimetric, fluorimetric or electrochemical) for the detection of hepatitis B and C: Current status and perspectives in the Colombian context
title Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
spellingShingle Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
Hepatitis B
Hepatitis C
Sensores moleculares
Diagnóstico
Detección
Biosensores
Electroquímica
Colorimetría
Fluorimetría
Biomarcadores
615.19
Hepatitis B
Hepatitis C
Molecular Sensors
Diagnosis
Detection
Biosensors
Electrochemistry
Colorimetry
Fluorimetry
Biomarkers
title_short Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
title_full Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
title_fullStr Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
title_full_unstemmed Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
title_sort Biosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombiano
dc.creator.fl_str_mv Quintero Rivas, Sofia Alejandra
Vega Pérez , Flor Alejandra
Sarmiento Monsalve, Jeymy Tatiana
dc.contributor.advisor.none.fl_str_mv Sarmiento Monsalve, Jeymy Tatiana
dc.contributor.author.none.fl_str_mv Quintero Rivas, Sofia Alejandra
Vega Pérez , Flor Alejandra
Sarmiento Monsalve, Jeymy Tatiana
dc.subject.none.fl_str_mv Hepatitis B
Hepatitis C
Sensores moleculares
Diagnóstico
Detección
Biosensores
Electroquímica
Colorimetría
Fluorimetría
Biomarcadores
topic Hepatitis B
Hepatitis C
Sensores moleculares
Diagnóstico
Detección
Biosensores
Electroquímica
Colorimetría
Fluorimetría
Biomarcadores
615.19
Hepatitis B
Hepatitis C
Molecular Sensors
Diagnosis
Detection
Biosensors
Electrochemistry
Colorimetry
Fluorimetry
Biomarkers
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Hepatitis B
Hepatitis C
Molecular Sensors
Diagnosis
Detection
Biosensors
Electrochemistry
Colorimetry
Fluorimetry
Biomarkers
description La detección temprana de hepatitis B y C es crucial para mejorar los resultados en el trata-miento de estas enfermedades infecciosas. Este estudio evalúa la aplicabilidad de sensores moleculares —electroquímicos, colorimétricos y fluorimétricos— en el diagnóstico eficiente de estos virus en el contexto colombiano. Se realizó una revisión exhaustiva de la literatura, recopilando 109 artículos académicos, de los cuales 27 se enfocan en sensores moleculares desde 2010. Los hallazgos revelan que estos sensores ofrecen ventajas significativas en limites de detección y tiempos de respuesta frente a métodos convencionales, además de facilitar la diferenciación entre los virus. La capacidad de interacción efectiva con las moléculas diana optimiza su uso diagnóstico. En conclusión, los biosensores moleculares se presentan como alternativas viables para el diagnóstico temprano de hepatitis B y C. Se recomienda que futuras investigaciones se concentren en su implementación en el sistema de salud colom-biano para mejorar la efectividad diagnóstica y prevenir complicaciones severas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-19T14:16:05Z
dc.date.available.none.fl_str_mv 2024-11-19T14:16:05Z
dc.date.issued.none.fl_str_mv 2024-10
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/13236
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/13236
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv [1] L. Salas Zapata, “Dirección de Promoción y Prevención Grupo de Sexualidad, Derechos Sexuales y Derechos Reproductivos Grupo de endemo-epidémicas,” 2020. [Online]. Available: https://www.ins.gov.co/buscador-
[2] C. Shih, C. C. Yang, G. Choijilsuren, C. H. Chang, and A. T. Liou, “Hepatitis B Virus,” Trends Microbiol, vol. 26, no. 4, pp. 386–387, Apr. 2018, doi: 10.1016/j.tim.2018.01.009.
[3] N. Echeverría, G. Moratorio, J. Cristina, and P. Moreno, “Hepatitis C virus genetic variability and evolution,” World J Hepatol, vol. 7, no. 6, p. 831, Apr. 2015, doi: 10.4254/WJH.V7.I6.831.
[4] D. Castaneda, A. J. Gonzalez, M. Alomari, K. Tandon, and X. B. Zervos, “From hepatitis A to E: A critical review of viral hepatitis,” Apr. 28, 2021, Baishideng Publishing Group Co. doi: 10.3748/wjg.v27.i16.1691.
[5] Organización Mundial de la Salud, “La OMS da la alarma sobre las hepatitis víricas que se cobran 3500 vidas al día.” Accessed: Jun. 25, 2024. [Online]. Available: https://www.who.int/es/news/item/09-04-2024-who-sounds-alarm-on-viral-hepatitis-infections-claiming-3500-lives-each-day
[6] H. Sepúlveda, “Informe de evento. Hepatitis B, C y coinfección B-D. Periodo epidemiológico III. Colombia, 2023,” 2023. [Online]. Available: www.ins.gov.co
[7] D. Romero and L. Daza, “Protocolo de Vigilancia de Hepatitis B, C y coinfección/superinfección Hepatitis B-Delta Protocolo de Vigilancia de,” 2022, doi: 10.33610/infoeventos.56.
[8] M. Makvandi, “Update on occult hepatitis B virus infection,” Oct. 21, 2016, Baishideng Publishing Group Co. doi: 10.3748/wjg.v22.i39.8720.
[9] Ö. Kirişci and A. Calıskan, “Threshold value of the anti-HCV test in the diagnosis of HCV infection,” The Journal of Infection in Developing Countries, vol. 13, no. 10, pp. 914–919, Oct. 2019, doi: 10.3855/jidc.11657.
[10] J. Uribe et al., “Guía de Práctica Clínica Para la tamización, diagnóstico y tratamiento de personas con infección por el virus de la hepatitis C,” 2018, Accessed: Nov. 17, 2023. [Online]. Available: https://www.acin.org/images/guias/GPC_Hep_C_2018_FINAL.pdf
[11] C. Abella, “Guía para la vigilancia por laboratorio de hepatitis virales,” 2019, Accessed: Jul. 13, 2023. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Informacin%20de%20laboratorio/Guia-Vigilancia-por-Laboratorio-Hepatitis-Virales.pdf
[12] I. García-Bermejo and F. de Ory, “Diagnóstico rápido en serología,” Enferm Infecc Microbiol Clin, vol. 35, no. 4, pp. 246–254, Apr. 2017, doi: 10.1016/J.EIMC.2016.12.013.
[13] N. Hasaneen, S. Akhtarian, R. Pulicharla, S. K. Brar, and P. Rezai, “Surface molecularly imprinted polymer-based sensors for antibiotic detection,” TrAC Trends in Analytical Chemistry, vol. 170, p. 117389, Jan. 2024, doi: 10.1016/J.TRAC.2023.117389.
[14] N. Chauhan, T. Maekawa, and D. N. S. Kumar, “Graphene based biosensors - Accelerating medical diagnostics to new-dimensions,” Aug. 14, 2017, Cambridge University Press. doi: 10.1557/jmr.2017.91.
[15] M. Derakhshan, E. Molaakbari, T. Shamspur, and A. Mostafavi, “Novel hybridization indicator for DNA sequences related to the hepatitis B virus: Electrochemical and in-silico approach,” Microchemical Journal, vol. 193, p. 109118, Oct. 2023, doi: 10.1016/J.MICROC.2023.109118.
[16] T. Beduk et al., “A Portable Molecularly Imprinted Sensor for On-Site and Wireless Environmental Bisphenol A Monitoring,” Front Chem, vol. 10, p. 833899, Feb. 2022, doi: 10.3389/FCHEM.2022.833899/BIBTEX.
[17] M. Heiat, R. Ranjbar, ; Seyed, and M. Alavian, “Classical and Modern Approaches Used for Viral Hepatitis Diagnosis,” vol. 14, no. 4, p. 17632, 2014, doi: 10.5812/hepatmon.17632.
[18] J. I. Marín and A. Toro, “Biomarcadores convencionales y emergentes en hepatitis B.” Accessed: Jun. 27, 2024. [Online]. Available: https://revistahepatologia.org/index.php/hepa/article/view/82/66
[19] M. A. Odenwald and S. Paul, “Viral hepatitis: Past, present, and future,” World J Gastroenterol, vol. 28, no. 14, p. 1405, Apr. 2022, doi: 10.3748/WJG.V28.I14.1405.
[20] S. Tsukuda and K. Watashi, “Hepatitis B virus biology and life cycle,” Antiviral Res, vol. 182, p. 104925, Oct. 2020, doi: 10.1016/J.ANTIVIRAL.2020.104925.
[21] A. Gaviria et al., “Guía de Práctica Clínica Diagnostivo y tratamiento de Hepatitis B crónica,” 2016, Accessed: Nov. 17, 2023. [Online]. Available: https://www.hepb.org/assets/Uploads/GPC-Hep-B.pdf
[22] A. I. Toro and J. C. Gutiérrez, “Hepatitis B,” vol. 17, pp. 7–8, 2011.
[23] S. Nate and J. Pavan, “BIOLOGÍA DE LOS VIRUS,” vol. 1, 2019.
[24] M. Guvenir and A. Arikan, “Hepatitis B virus: From Diagnosis to Treatment,” Dec. 01, 2020, Polish Society of Microbiolo-gists. doi: 10.33073/PJM-2020-044.
[25] M. Houghton, “Hepatitis C Virus: 30 Years after Its Discovery,” Cold Spring Harb Perspect Med, vol. 9, no. 12, Dec. 2019, doi: 10.1101/CSHPERSPECT.A037069.
[26] A. Aguilera, R. Alonso, J. Córdoba, and A. Fuertes, “Diagnóstico microbiológico de las hepatitis víricas,” 2014.
[27] L. Sánchez, J. Ortega, and A. Nieto, “El virus de la hepatitis C: Retos asociados a su control epidémico,” 2023. Accessed: Nov. 17, 2023. [Online]. Available: http://www.encuentros-multidisciplinares.org/revista-73/lucia-sanchez-y-otros.pdf
[28] D. B. Smith et al., “Expanded Classification of Hepatitis C Virus Into 7 Genotypes and 67 Subtypes: Updated Criteria and Genotype Assignment Web Resource,” Hepatology, vol. 59, no. 1, p. 318, Jan. 2014, doi: 10.1002/HEP.26744.
[29] J. C. Restrepo and I. Montoya, “La clínica y el laboratorio Hepatitis C Hepatitis C,” 2011.
[30] M. García Deltoro and C. Ricart Olmos, “Infección por el virus de la hepatitis C y nuevas estrategias de tratamiento,” Enferm Infecc Microbiol Clin, vol. 37, pp. 15–19, May 2019, doi: 10.1016/S0213-005X(19)30177-6.
[31] National Institute of Diabetes and Digestive and Kidney Diseases, “Hepatitis B.” Accessed: Jul. 18, 2024. [Online]. Available: https://www.niddk.nih.gov/health-information/informacion-de-la-salud/enfermedades-higado/hepatitis-viral/hepatitis-b
[32] S. Traipop, S. Jampasa, P. Tangkijvanich, N. Chuaypen, and O. Chailapakul, “Dual-label vertical flow-based electrochemical immunosensor for rapid and simultaneous detection of hepatitis B surface and E virus antigens,” Sens Actuators B Chem, vol. 387, p. 133769, Jul. 2023, doi: 10.1016/J.SNB.2023.133769.
[33] M. García Deltoro and C. Ricart Olmos, “Hepatitis C virus infection and new treatment strategies,” Enferm Infecc Microbiol Clin, vol. 37, pp. 15–19, May 2019, doi: 10.1016/S0213-005X(19)30177-6.
[34] Abbott, “RealTime HBV Viral Load Assay | Abbott Molecular.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.molecular.abbott/int/en/products/infectious-disease/realtime-hbv-viral-load
[35] S. H. Kim, “ELISA for Quantitative Determination of Hepatitis B Virus Surface Antigen,” Immune Netw, vol. 17, no. 6, p. 451, Dec. 2017, doi: 10.4110/IN.2017.17.6.451.
[36] Abbott, “Determine HBsAg 2 | Análisis de diagnóstico inmediato – Abbott.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.globalpointofcare.abbott/co/es/product-details/determine-hbsag-2.html
[37] T. Kimura et al., “New Enzyme Immunoassay for Detection of Hepatitis B Virus Core Antigen (HBcAg) and Relation between Levels of HBcAg and HBV DNA,” J Clin Microbiol, vol. 41, no. 5, p. 1901, May 2003, doi: 10.1128/JCM.41.5.1901-1906.2003.
[38] ReactLab, “Inmunoensayo.” Accessed: Sep. 18, 2024. [Online]. Available: https://reactlab.com.ec/productos/inmunoensayo/
[39] ReactLab, “Inmunoensayo HBsAg CLIA Micropartículas,” 2022.
[40] J. M. Freiman et al., “Deriving the optimal limit of detection for an HCV point-of-care test for viraemic infection: analysis of a multi-country dataset,” J Hepatol, vol. 71, no. 1, p. 62, Jul. 2019, doi: 10.1016/J.JHEP.2019.02.011.
[41] A. Aguilera, J. C. Alados, R. Alonso, J. M. Eiros, and F. García, “Posición actual de la carga viral frente a la determinación de antígeno core del virus de la hepatitis C,” Enferm Infecc Microbiol Clin, vol. 38, pp. 12–18, Jan. 2020, doi: 10.1016/J.EIMC.2020.02.003.
[42] P. Braun et al., “European Multicenter Study on Analytical Performance of DxN Veris System HCV Assay,” J Clin Microbiol, vol. 55, no. 4, p. 1186, Apr. 2017, doi: 10.1128/JCM.02163-16.
[43] R. Wasitthankasem et al., “HCV core antigen is an alternative marker to HCV RNA for evaluating active HCV infection: Implications for improved diagnostic option in an era of affordable DAAs,” PeerJ, vol. 2017, no. 11, 2017, doi: 10.7717/PEERJ.4008/SUPP-4.
[44] J. R. Morgan et al., “Determining the lower limit of detection required for HCV viral load assay for test of cure following direct‐acting antiviral‐based treatment regimens: Evidence from a global data set,” J Viral Hepat, vol. 29, no. 6, p. 474, Jun. 2022, doi: 10.1111/JVH.13672.
[45] Cigna, “Prueba ELISA HCV Anticuerpo - Inserto.” Accessed: Sep. 18, 2024. [Online]. Available: https://biolore.com.co/wp-content/uploads/2019/08/INSERTO_I231-1031_HCV_EIA.pdf
[46] Centros para el Control y Prevención de Enfermedades, “Hepatitis C Testing - What to expect when getting tested,” 2024, Accessed: Sep. 18, 2024. [Online]. Available: www.cdc.gov/hepatitis
[47] S. R. Lee et al., “Evaluation of a rapid, point-of-care test device for the diagnosis of hepatitis C infection,” Journal of Clinical Virology, vol. 48, no. 1, pp. 15–17, May 2010, doi: 10.1016/J.JCV.2010.02.018.
[48] P. Zachary et al., “Evaluation of three commercially available hepatitis C virus antibody detection assays under the conditions of a clinical virology laboratory,” Journal of Clinical Virology, vol. 34, no. 3, pp. 207–210, Nov. 2005, doi: 10.1016/J.JCV.2005.06.005.
[49] World Health Organization, “Prequalification of In Vitro Diagnostics.” Accessed: Sep. 18, 2024. [Online]. Available: https://extranet.who.int/prequal/sites/default/files/whopr_files/PQDx_0374-130-00_ARCHITECT-HCV_v1.0.pdf
[50] J. M. Freiman et al., “HCV Core Antigen Testing for Diagnosis of HCV Infection: A systematic review and meta-analysis,” Ann Intern Med, vol. 165, no. 5, p. 345, Sep. 2016, doi: 10.7326/M16-0065.
[51] J. M. Freiman et al., “Deriving the optimal limit of detection for an HCV point-of-care test for viraemic infection: analysis of a multi-country dataset,” J Hepatol, vol. 71, no. 1, p. 62, Jul. 2019, doi: 10.1016/J.JHEP.2019.02.011.
[52] M. B. Pisano, C. G. Giadans, D. M. Flichman, V. E. Ré, M. V Preciado, and P. Valva, “World Journal of Gastroenterology Viral hepatitis update: Progress and perspectives Conflict-of-interest statement,” World J Gastroenterol, vol. 27, no. 26, pp. 4018–4044, 2021, doi: 10.3748/wjg.v27.i26.4018.
[53] M. Kumar, S. Pahuja, P. Khare, and A. Kumar, “Current Challenges and Future Perspectives of Diagnosis of Hepatitis B Virus,” Diagnostics, vol. 13, no. 3, Feb. 2023, doi: 10.3390/DIAGNOSTICS13030368.
[54] J. E. Song and D. Y. Kim, “Diagnosis of hepatitis B,” Ann Transl Med, vol. 4, no. 18, Sep. 2016, doi: 10.21037/ATM.2016.09.11.
[55] J. I. Marín and A. I. Toro, “Biomarcadores convencionales y emergentes en hepatitis B,” Hepatología, vol. 4, no. 2, pp. 131–151, May 2023, doi: 10.59093/27112322.173.
[56] F. M. Hanif, Z. Majid, N. H. Luck, A. A. Tasneem, S. M. Laeeq, and M. Mubarak, “Revolution in the diagnosis and management of hepatitis C virus infection in current era,” World J Hepatol, vol. 14, no. 4, p. 647, Apr. 2022, doi: 10.4254/WJH.V14.I4.647.
[57] M. Ciotti, C. D’Agostini, and A. Marrone, “Advances in the Diagnosis and Monitoring of Hepatitis C Virus Infection,” Gastroenterology Res, vol. 6, no. 5, p. 161, 2013, doi: 10.4021/GR576E.
[58] National Institute of Biomedical Imaging and Bioengineering, “Sensores.” Accessed: Jul. 22, 2024. [Online]. Available: https://www.nibib.nih.gov/espanol/temas-cientificos/sensores
[59] A. Tárraga and C. Vidal, “Sensores moleculares: un reto para el químico, un demanda social,” 2012. Accessed: Nov. 17, 2023. [Online]. Available: https://docplayer.es/85314097-Sensores-moleculares-un-reto-para-el-quimico-una-demanda-social.html
[60] F. Ortega, “Biosensores y Biochips: Herramientas para el diagnóstico y la terapéutica,” 2006.
[61] P. J. Gomez, K. L. Ochoa, D. O. Corona, J. Juarez, and V. Reyes, “Materiales supramoleculares: quimiosensores y otras aplicaciones prácticas,” TECNOCIENCIA Chihuahua, vol. 17, no. 4, p. e1318, Dec. 2023, doi: 10.54167/TCH.V17I4.1316.
[62] M. Gómez and S. Alegret, “Los sensores químicos: una aportación a la instrumentación analítica,” 1989. Accessed: Nov. 17, 2023. [Online]. Available: https://revistas.unam.mx/index.php/req/article/download/66596/58496
[63] C. Jiménez and D. León, “Biosensores: aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios,” Vitae, vol. 16, no. 1, pp. 144–154, 2009, Accessed: Jul. 23, 2024. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042009000100017&lng=en&nrm=iso&tlng=es
[64] M. Y. Chae and A. W. Czarnik, “Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling,” 1992, Accessed: Nov. 17, 2023. [Online]. Available: https://doi.org/10.1021/ja00050a085
[65] V. Parra, “Sensores químicos basados en materiales moleculares: De la molécula al material, del material al dispositivo,” 2008. [Online]. Available: www.rseq.org
[66] A. M. Nivia Vargas and I. Jaramillo Jaramillo, “La industria de sensores en Colombia,” Tecnura, vol. 22, no. 57, pp. 44–54, Jul. 2018, doi: 10.14483/22487638.13518.
[67] P. Arango, “Semillero de investigación en sensores aplicados a la medicina - DIMA - Universidad Nacional de Colombia.” Accessed: Oct. 19, 2024. [Online]. Available: http://investigacion.manizales.unal.edu.co/semilleros/2222
[68] S. Cesar, “Grupo de Investigación en Macromoléculas.” Accessed: Oct. 19, 2024. [Online]. Available: http://www.hermes.unal.edu.co/pages/Consultas/Grupo.xhtml?idGrupo=957&opcion=1
[69] S. Perdomo, “Estudiante de doctorado creó un sensor para medir la producción de glucosa molecular en plantas | Pontificia Universidad Javeriana, Cali.” Accessed: Oct. 19, 2024. [Online]. Available: https://www.javerianacali.edu.co/noticias/estudiante-de-doctorado-creo-un-sensor-para-medir-la-produccion-de-glucosa-molecular-en
[70] Y. Reyes and Ó. Torres, “Vista de Sensores moleculares con respuesta fluorescente para detección de metales pesados en matrices ambientales.” Accessed: Oct. 19, 2024. [Online]. Available: https://acofipapers.org/index.php/eiei/article/view/3389/2244
[71] Universidad del Valle, “Investigación - Facultad de Ciencias Naturales y Exactas.” Accessed: Oct. 19, 2024. [Online]. Available: https://ciencias.univalle.edu.co/departamento-de-quimica/investigacion
[72] A. Montenegro and W. Torres Hernández, “Diseño y construcción de un sensor electroquímico para la detección enantioselectiva de triptófano usando un electrodo de oro modificado con polipirrol sobreoxidado mediante la tecnolo-gía de impresión molecular (MIP),” 2014.
[73] D. Vasquez, “Sensor electroquímico de impresión molecular basado en polipirrol para la detección de Acido Ascórbico.,” 2021.
[74] Instituto Nacional de Vigilancia de Medicamentos y Alimentos, “Implementación de Metodologías Moleculares para el Análisis de Alimentos,” 2021.
[75] M. Restrepo-Arango, L. María Martínez-Sánchez, and I. J. Escudero-Hernández, “Virus Hepatitis B: métodos moleculares, PCR, biosensores y pruebas rápidas, en su detección y diagnóstico / Hepatitis B virus: molecular biology, PCR, biosensors and rapid tests, in its detection and diagnosis,” Co munidad y Salud Año, vol. 16, no. 2, 2018.
[76] A. Piriya V.S, P. Joseph, K. Daniel S.C.G., S. Lakshmanan, T. Kinoshita, and S. Muthusamy, “Colorimetric sensors for rapid detection of various analytes,” Materials Science and Engineering: C, vol. 78, pp. 1231–1245, Sep. 2017, doi: 10.1016/J.MSEC.2017.05.018.
[77] G. Ammanath et al., “Flow-through colorimetric assay for detection of nucleic acids in plasma,” Anal Chim Acta, vol. 1066, pp. 102–111, Aug. 2019, doi: 10.1016/J.ACA.2019.03.036.
[78] L. Ma, Y. Abugalyon, and X. Li, “Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases,” 2021, doi: 10.1007/s00216-021-03359-8/Published.
[79] D. C. Harris and V. Berenguer, “Análisis químico cuantitativo,” 2007, Accessed: Nov. 17, 2023. [Online]. Available: http://opac.univalle.edu.co/cgi-olib/?infile=details.glu&loid=703165&rs=4249379&hitno=1
[80] J. Guo, H. Zhang, J. Yang, Y. Zhang, J. Wang, and G. Yan, “ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA,” Arabian Journal of Chemistry, vol. 16, no. 4, Apr. 2023, doi: 10.1016/j.arabjc.2023.104582.
[81] P. Teengam, N. Nisab, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection,” Biosens Bioelectron, vol. 189, Oct. 2021, doi: 10.1016/j.bios.2021.113381.
[82] X. H. Li et al., “Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B vi-rus infection,” Talanta, vol. 191, pp. 277–282, Jan. 2019, doi: 10.1016/J.TALANTA.2018.08.064.
[83] X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang, “A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer,” Analyst, vol. 138, no. 2, pp. 642–650, Dec. 2012, doi: 10.1039/C2AN36099C.
[84] Z. Štukovnik and U. Bren, “Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection,” Dec. 01, 2022, MDPI. doi: 10.3390/ijms232415922.
[85] S. Hassanpour et al., “Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements,” Dec. 01, 2018, Springer-Verlag Wien. doi: 10.1007/s00604-018-3088-8.
[86] L. E. Ahangar and M. A. Mehrgardi, “Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform,” Bioelectrochemistry, vol. 117, pp. 83–88, Oct. 2017, doi: 10.1016/J.BIOELECHEM.2017.06.006.
[87] C. C. Chen, Z. L. Lai, G. J. Wang, and C. Y. Wu, “Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor,” Biosens Bioelectron, vol. 77, pp. 603–608, Mar. 2016, doi: 10.1016/J.BIOS.2015.10.028.
[88] M. Antipchik, J. Reut, A. G. Ayankojo, A. Öpik, and V. Syritski, “MIP-based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein,” Talanta, vol. 250, Dec. 2022, doi: 10.1016/j.talanta.2022.123737.
[89] C. Srisomwat, P. Teengam, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Pop-up paper electro-chemical device for label-free hepatitis B virus DNA detection,” Sens Actuators B Chem, vol. 316, p. 128077, Aug. 2020, doi: 10.1016/J.SNB.2020.128077.
[90] F. Zhao et al., “New electrochemical DNA sensor based on nanoflowers of Cu3(PO4)2-BSA-GO for hepatitis B virus DNA detection,” Journal of Electroanalytical Chemistry, vol. 867, Jun. 2020, doi: 10.1016/j.jelechem.2020.114184.
[91] S. K. Yong, S. K. Shen, C. W. Chiang, Y. Y. Weng, M. P. Lu, and Y. S. Yang, “Silicon nanowire field-effect transistor as label-free detection of hepatitis b virus proteins with opposite net charges,” Biosensors (Basel), vol. 11, no. 11, Nov. 2021, doi: 10.3390/bios11110442.
[92] C. Singhal, A. Ingle, D. Chakraborty, A. K. PN, C. S. Pundir, and J. Narang, “Impedimetric genosensor for detection of hepatitis C virus (HCV1) DNA using viral probe on methylene blue doped silica nanoparticles,” Int J Biol Macromol, vol. 98, pp. 84–93, May 2017, doi: 10.1016/J.IJBIOMAC.2017.01.093.
[93] J. Li et al., “Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite,” Electrochem commun, vol. 110, p. 106601, Jan. 2020, doi: 10.1016/J.ELECOM.2019.106601.
[94] A. Valipour and M. Roushani, “Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe,” Biosens Bioelectron, vol. 89, pp. 946–951, Mar. 2017, doi: 10.1016/J.BIOS.2016.09.086.
[95] A. C. H. de Castro et al., “Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma,” Appl Biochem Biotechnol, vol. 194, no. 6, pp. 2604–2619, Jun. 2022, doi: 10.1007/S12010-022-03829-4/METRICS.
[96] P. Jiang, Y. Li, T. Ju, W. Cheng, J. Xu, and K. Han, “Ultrasensitive Detection of Hepatitis C Virus DNA Subtypes Based on Cucurbituril and Graphene Oxide Nano-composite,” Chem Res Chin Univ, vol. 36, no. 2, pp. 307–312, Apr. 2020, doi: 10.1007/S40242-020-9111-8/METRICS.
[97] F. Li et al., “A ‘signal on’ protection-displacement-hybridization-based electrochemical hepatitis B virus gene sequence sensor with high sensitivity and peculiar adjustable specificity,” Biosens Bioelectron, vol. 82, pp. 212–216, Aug. 2016, doi: 10.1016/J.BIOS.2016.04.014.
[98] Z. Tan et al., “A label-free immunosensor based on PtPd NCs@MoS2 nanoenzymes for hepatitis B surface antigen detection,” Biosens Bioelectron, vol. 142, p. 111556, Oct. 2019, doi: 10.1016/J.BIOS.2019.111556.
[99] M. Shariati and M. Sadeghi, “Ultrasensitive DNA biosensor for hepatitis B virus detection based on tin-doped WO3/In2O3 heterojunction nanowire photoelectrode under laser amplification,” Anal Bioanal Chem, vol. 412, no. 22, pp. 5367–5377, Sep. 2020, doi: 10.1007/s00216-020-02752-z.
[100] Y. Tao et al., “Noble metal-molybdenum disulfide nanohybrids as dual fluorometric and colorimetric sensor for hepatitis B virus DNA detection,” Talanta, vol. 234, p. 122675, Nov. 2021, doi: 10.1016/j.talanta.2021.122675.
[101] L. Liu et al., “Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles,” Anal Chim Acta, vol. 916, pp. 92–101, Apr. 2016, doi: 10.1016/j.aca.2016.02.024.
[102] Y. Li, S. Liu, Q. Deng, and L. Ling, “A sensitive colorimetric DNA biosensor for specific detection of the HBV gene based on silver-coated glass slide and G-quadruplex-hemin DNAzyme,” J Med Virol, vol. 90, no. 4, pp. 699–705, Apr. 2018, doi: 10.1002/jmv.24993.
[103] L. Wang, J. Yang, S. He, H. Gong, C. Chen, and C. Cai, “A mild and safe gas-responsive molecularly imprinted sensor for highly specific recognition of hepatitis B virus,” Sens Actuators B Chem, vol. 366, Sep. 2022, doi: 10.1016/j.snb.2022.131990.
[104] A. Graci Brito-Madurro et al., “Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma,” 2021, doi: 10.21203/rs.3.rs-544015/v1.
[105] P. Teengam, N. Nisab, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection,” Biosens Bioelectron, vol. 189, Oct. 2021, doi: 10.1016/j.bios.2021.113381.
[106] J. Li et al., “Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite,” Electrochem commun, vol. 110, p. 106601, Jan. 2020, doi: 10.1016/J.ELECOM.2019.106601.
[107] J. Narang et al., “Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites,” Biosens Bioelectron, vol. 86, pp. 566–574, Dec. 2016, doi: 10.1016/J.BIOS.2016.07.013.
[108] Y. P. Liu and C. Y. Yao, “Rapid and quantitative detection of hepatitis B virus,” World J Gastroenterol, vol. 21, no. 42, p. 11954, Nov. 2015, doi: 10.3748/WJG.V21.I42.11954.
[109] C.-Y. Yao and W. L. Fu, “Biosensors for hepatitis B virus detection,” World J Gastroenterol, vol. 20, no. 35, p. 12485, Sep. 2014, doi: 10.3748/wjg.v20.i35.12485.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
dc.source.url.none.fl_str_mv https://docs.google.com/spreadsheets/d/1_p_41rZbXzBUV80FUdXyTyW3-yEEWYQD-X5Y8YbW0HQ/edit?usp=sharing
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/a2817912-00b9-45d3-9f8e-c6cf1697df64/download
https://repositorio.unbosque.edu.co/bitstreams/bc91579a-b757-46da-a208-135a4abb50c0/download
https://repositorio.unbosque.edu.co/bitstreams/dc789d10-f59b-4643-850c-c346081fb767/download
https://repositorio.unbosque.edu.co/bitstreams/b6ae6dc4-ae5c-4893-8baa-4e1ea1915ebb/download
https://repositorio.unbosque.edu.co/bitstreams/4e9d2f43-d851-4866-be08-f5974d7de8cf/download
https://repositorio.unbosque.edu.co/bitstreams/eec3394f-4f7b-4ebb-842e-842fbd03a929/download
https://repositorio.unbosque.edu.co/bitstreams/03065cbe-699b-4660-93de-b0082105a26c/download
https://repositorio.unbosque.edu.co/bitstreams/e34deb44-978b-4941-9034-b46a91fc37e0/download
https://repositorio.unbosque.edu.co/bitstreams/ac2f3f80-b1cf-4f91-bc3a-e9b35522dfe8/download
https://repositorio.unbosque.edu.co/bitstreams/69186073-dc6c-4bbc-80fb-c62897034e28/download
https://repositorio.unbosque.edu.co/bitstreams/caba2933-8a96-4f2a-9a25-8dff6b346722/download
https://repositorio.unbosque.edu.co/bitstreams/8a2cf0e0-4e9f-46a7-99b8-095a13671b93/download
https://repositorio.unbosque.edu.co/bitstreams/7685656f-2964-4286-9180-f998f50a7353/download
bitstream.checksum.fl_str_mv 17cc15b951e7cc6b3728a574117320f9
47c663c92589b38dd6c5fe930ea69b42
af75fd5a990f38c4d8774a5e758bcafd
9832b799035b6c42f88d9d6ed8fd500f
0e83aa89370de6f76ef914f6f491b41b
cede8bbdf0fd0fd1ed26d7ea91ca1057
3b6ce8e9e36c89875e8cf39962fe8920
fd91142dd5316ef4bcdd18c6005d574f
de5223a518f91d88eccbcec13fc10ecd
5f4e1786bd5105c3b7cc9d56a468dab2
e255de6db19ad37f9bc840dc83c3dd92
5bb3204b5e49a38e582d65b397a758e0
74b36487ca4028d4b8d2292217c44ca4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1828164654005747712
spelling Sarmiento Monsalve, Jeymy TatianaQuintero Rivas, Sofia AlejandraVega Pérez , Flor AlejandraSarmiento Monsalve, Jeymy Tatiana2024-11-19T14:16:05Z2024-11-19T14:16:05Z2024-10https://hdl.handle.net/20.500.12495/13236Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLa detección temprana de hepatitis B y C es crucial para mejorar los resultados en el trata-miento de estas enfermedades infecciosas. Este estudio evalúa la aplicabilidad de sensores moleculares —electroquímicos, colorimétricos y fluorimétricos— en el diagnóstico eficiente de estos virus en el contexto colombiano. Se realizó una revisión exhaustiva de la literatura, recopilando 109 artículos académicos, de los cuales 27 se enfocan en sensores moleculares desde 2010. Los hallazgos revelan que estos sensores ofrecen ventajas significativas en limites de detección y tiempos de respuesta frente a métodos convencionales, además de facilitar la diferenciación entre los virus. La capacidad de interacción efectiva con las moléculas diana optimiza su uso diagnóstico. En conclusión, los biosensores moleculares se presentan como alternativas viables para el diagnóstico temprano de hepatitis B y C. Se recomienda que futuras investigaciones se concentren en su implementación en el sistema de salud colom-biano para mejorar la efectividad diagnóstica y prevenir complicaciones severas.PregradoQuímico FarmacéuticoEarly detection of hepatitis B and C is essential for improving treatment outcomes for these infectious diseases. This study assesses the applicability of molecular sensors—electrochemical, colorimetric, and fluorimetric—for efficient diagnosis of these viruses within the Colombian context. A comprehensive literature review was conducted, compiling 109 academic articles, of which 27 focus on molecular sensors published since 2010. The findings indicate that these sensors offer significant advantages in detection limits and response times over conventional methods, as well as facilitating differentiation between the viruses. Their effective interaction with target molecules enhances diagnostic applicability. In conclusion, molecular biosensors emerge as viable alternatives for the early diagnosis of hepatitis B and C. Future research is recommended to focus on their implementation in the Colombian healthcare system to improve diagnostic effectiveness and prevent severe complications.application/pdfAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2Hepatitis BHepatitis CSensores molecularesDiagnósticoDetecciónBiosensoresElectroquímicaColorimetríaFluorimetríaBiomarcadores615.19Hepatitis BHepatitis CMolecular SensorsDiagnosisDetectionBiosensorsElectrochemistryColorimetryFluorimetryBiomarkersBiosensores moleculares (colorimétricos, fluorimétricos o electroquímicos) para la detección de hepatitis B y C: Estado actual y perspectivas en el contexto colombianoMolecular biosensors (colorimetric, fluorimetric or electrochemical) for the detection of hepatitis B and C: Current status and perspectives in the Colombian contextQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa[1] L. Salas Zapata, “Dirección de Promoción y Prevención Grupo de Sexualidad, Derechos Sexuales y Derechos Reproductivos Grupo de endemo-epidémicas,” 2020. [Online]. Available: https://www.ins.gov.co/buscador-[2] C. Shih, C. C. Yang, G. Choijilsuren, C. H. Chang, and A. T. Liou, “Hepatitis B Virus,” Trends Microbiol, vol. 26, no. 4, pp. 386–387, Apr. 2018, doi: 10.1016/j.tim.2018.01.009.[3] N. Echeverría, G. Moratorio, J. Cristina, and P. Moreno, “Hepatitis C virus genetic variability and evolution,” World J Hepatol, vol. 7, no. 6, p. 831, Apr. 2015, doi: 10.4254/WJH.V7.I6.831.[4] D. Castaneda, A. J. Gonzalez, M. Alomari, K. Tandon, and X. B. Zervos, “From hepatitis A to E: A critical review of viral hepatitis,” Apr. 28, 2021, Baishideng Publishing Group Co. doi: 10.3748/wjg.v27.i16.1691.[5] Organización Mundial de la Salud, “La OMS da la alarma sobre las hepatitis víricas que se cobran 3500 vidas al día.” Accessed: Jun. 25, 2024. [Online]. Available: https://www.who.int/es/news/item/09-04-2024-who-sounds-alarm-on-viral-hepatitis-infections-claiming-3500-lives-each-day[6] H. Sepúlveda, “Informe de evento. Hepatitis B, C y coinfección B-D. Periodo epidemiológico III. Colombia, 2023,” 2023. [Online]. Available: www.ins.gov.co[7] D. Romero and L. Daza, “Protocolo de Vigilancia de Hepatitis B, C y coinfección/superinfección Hepatitis B-Delta Protocolo de Vigilancia de,” 2022, doi: 10.33610/infoeventos.56.[8] M. Makvandi, “Update on occult hepatitis B virus infection,” Oct. 21, 2016, Baishideng Publishing Group Co. doi: 10.3748/wjg.v22.i39.8720.[9] Ö. Kirişci and A. Calıskan, “Threshold value of the anti-HCV test in the diagnosis of HCV infection,” The Journal of Infection in Developing Countries, vol. 13, no. 10, pp. 914–919, Oct. 2019, doi: 10.3855/jidc.11657.[10] J. Uribe et al., “Guía de Práctica Clínica Para la tamización, diagnóstico y tratamiento de personas con infección por el virus de la hepatitis C,” 2018, Accessed: Nov. 17, 2023. [Online]. Available: https://www.acin.org/images/guias/GPC_Hep_C_2018_FINAL.pdf[11] C. Abella, “Guía para la vigilancia por laboratorio de hepatitis virales,” 2019, Accessed: Jul. 13, 2023. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Informacin%20de%20laboratorio/Guia-Vigilancia-por-Laboratorio-Hepatitis-Virales.pdf[12] I. García-Bermejo and F. de Ory, “Diagnóstico rápido en serología,” Enferm Infecc Microbiol Clin, vol. 35, no. 4, pp. 246–254, Apr. 2017, doi: 10.1016/J.EIMC.2016.12.013.[13] N. Hasaneen, S. Akhtarian, R. Pulicharla, S. K. Brar, and P. Rezai, “Surface molecularly imprinted polymer-based sensors for antibiotic detection,” TrAC Trends in Analytical Chemistry, vol. 170, p. 117389, Jan. 2024, doi: 10.1016/J.TRAC.2023.117389.[14] N. Chauhan, T. Maekawa, and D. N. S. Kumar, “Graphene based biosensors - Accelerating medical diagnostics to new-dimensions,” Aug. 14, 2017, Cambridge University Press. doi: 10.1557/jmr.2017.91.[15] M. Derakhshan, E. Molaakbari, T. Shamspur, and A. Mostafavi, “Novel hybridization indicator for DNA sequences related to the hepatitis B virus: Electrochemical and in-silico approach,” Microchemical Journal, vol. 193, p. 109118, Oct. 2023, doi: 10.1016/J.MICROC.2023.109118.[16] T. Beduk et al., “A Portable Molecularly Imprinted Sensor for On-Site and Wireless Environmental Bisphenol A Monitoring,” Front Chem, vol. 10, p. 833899, Feb. 2022, doi: 10.3389/FCHEM.2022.833899/BIBTEX.[17] M. Heiat, R. Ranjbar, ; Seyed, and M. Alavian, “Classical and Modern Approaches Used for Viral Hepatitis Diagnosis,” vol. 14, no. 4, p. 17632, 2014, doi: 10.5812/hepatmon.17632.[18] J. I. Marín and A. Toro, “Biomarcadores convencionales y emergentes en hepatitis B.” Accessed: Jun. 27, 2024. [Online]. Available: https://revistahepatologia.org/index.php/hepa/article/view/82/66[19] M. A. Odenwald and S. Paul, “Viral hepatitis: Past, present, and future,” World J Gastroenterol, vol. 28, no. 14, p. 1405, Apr. 2022, doi: 10.3748/WJG.V28.I14.1405.[20] S. Tsukuda and K. Watashi, “Hepatitis B virus biology and life cycle,” Antiviral Res, vol. 182, p. 104925, Oct. 2020, doi: 10.1016/J.ANTIVIRAL.2020.104925.[21] A. Gaviria et al., “Guía de Práctica Clínica Diagnostivo y tratamiento de Hepatitis B crónica,” 2016, Accessed: Nov. 17, 2023. [Online]. Available: https://www.hepb.org/assets/Uploads/GPC-Hep-B.pdf[22] A. I. Toro and J. C. Gutiérrez, “Hepatitis B,” vol. 17, pp. 7–8, 2011.[23] S. Nate and J. Pavan, “BIOLOGÍA DE LOS VIRUS,” vol. 1, 2019.[24] M. Guvenir and A. Arikan, “Hepatitis B virus: From Diagnosis to Treatment,” Dec. 01, 2020, Polish Society of Microbiolo-gists. doi: 10.33073/PJM-2020-044.[25] M. Houghton, “Hepatitis C Virus: 30 Years after Its Discovery,” Cold Spring Harb Perspect Med, vol. 9, no. 12, Dec. 2019, doi: 10.1101/CSHPERSPECT.A037069.[26] A. Aguilera, R. Alonso, J. Córdoba, and A. Fuertes, “Diagnóstico microbiológico de las hepatitis víricas,” 2014.[27] L. Sánchez, J. Ortega, and A. Nieto, “El virus de la hepatitis C: Retos asociados a su control epidémico,” 2023. Accessed: Nov. 17, 2023. [Online]. Available: http://www.encuentros-multidisciplinares.org/revista-73/lucia-sanchez-y-otros.pdf[28] D. B. Smith et al., “Expanded Classification of Hepatitis C Virus Into 7 Genotypes and 67 Subtypes: Updated Criteria and Genotype Assignment Web Resource,” Hepatology, vol. 59, no. 1, p. 318, Jan. 2014, doi: 10.1002/HEP.26744.[29] J. C. Restrepo and I. Montoya, “La clínica y el laboratorio Hepatitis C Hepatitis C,” 2011.[30] M. García Deltoro and C. Ricart Olmos, “Infección por el virus de la hepatitis C y nuevas estrategias de tratamiento,” Enferm Infecc Microbiol Clin, vol. 37, pp. 15–19, May 2019, doi: 10.1016/S0213-005X(19)30177-6.[31] National Institute of Diabetes and Digestive and Kidney Diseases, “Hepatitis B.” Accessed: Jul. 18, 2024. [Online]. Available: https://www.niddk.nih.gov/health-information/informacion-de-la-salud/enfermedades-higado/hepatitis-viral/hepatitis-b[32] S. Traipop, S. Jampasa, P. Tangkijvanich, N. Chuaypen, and O. Chailapakul, “Dual-label vertical flow-based electrochemical immunosensor for rapid and simultaneous detection of hepatitis B surface and E virus antigens,” Sens Actuators B Chem, vol. 387, p. 133769, Jul. 2023, doi: 10.1016/J.SNB.2023.133769.[33] M. García Deltoro and C. Ricart Olmos, “Hepatitis C virus infection and new treatment strategies,” Enferm Infecc Microbiol Clin, vol. 37, pp. 15–19, May 2019, doi: 10.1016/S0213-005X(19)30177-6.[34] Abbott, “RealTime HBV Viral Load Assay | Abbott Molecular.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.molecular.abbott/int/en/products/infectious-disease/realtime-hbv-viral-load[35] S. H. Kim, “ELISA for Quantitative Determination of Hepatitis B Virus Surface Antigen,” Immune Netw, vol. 17, no. 6, p. 451, Dec. 2017, doi: 10.4110/IN.2017.17.6.451.[36] Abbott, “Determine HBsAg 2 | Análisis de diagnóstico inmediato – Abbott.” Accessed: Sep. 18, 2024. [Online]. Available: https://www.globalpointofcare.abbott/co/es/product-details/determine-hbsag-2.html[37] T. Kimura et al., “New Enzyme Immunoassay for Detection of Hepatitis B Virus Core Antigen (HBcAg) and Relation between Levels of HBcAg and HBV DNA,” J Clin Microbiol, vol. 41, no. 5, p. 1901, May 2003, doi: 10.1128/JCM.41.5.1901-1906.2003.[38] ReactLab, “Inmunoensayo.” Accessed: Sep. 18, 2024. [Online]. Available: https://reactlab.com.ec/productos/inmunoensayo/[39] ReactLab, “Inmunoensayo HBsAg CLIA Micropartículas,” 2022.[40] J. M. Freiman et al., “Deriving the optimal limit of detection for an HCV point-of-care test for viraemic infection: analysis of a multi-country dataset,” J Hepatol, vol. 71, no. 1, p. 62, Jul. 2019, doi: 10.1016/J.JHEP.2019.02.011.[41] A. Aguilera, J. C. Alados, R. Alonso, J. M. Eiros, and F. García, “Posición actual de la carga viral frente a la determinación de antígeno core del virus de la hepatitis C,” Enferm Infecc Microbiol Clin, vol. 38, pp. 12–18, Jan. 2020, doi: 10.1016/J.EIMC.2020.02.003.[42] P. Braun et al., “European Multicenter Study on Analytical Performance of DxN Veris System HCV Assay,” J Clin Microbiol, vol. 55, no. 4, p. 1186, Apr. 2017, doi: 10.1128/JCM.02163-16.[43] R. Wasitthankasem et al., “HCV core antigen is an alternative marker to HCV RNA for evaluating active HCV infection: Implications for improved diagnostic option in an era of affordable DAAs,” PeerJ, vol. 2017, no. 11, 2017, doi: 10.7717/PEERJ.4008/SUPP-4.[44] J. R. Morgan et al., “Determining the lower limit of detection required for HCV viral load assay for test of cure following direct‐acting antiviral‐based treatment regimens: Evidence from a global data set,” J Viral Hepat, vol. 29, no. 6, p. 474, Jun. 2022, doi: 10.1111/JVH.13672.[45] Cigna, “Prueba ELISA HCV Anticuerpo - Inserto.” Accessed: Sep. 18, 2024. [Online]. Available: https://biolore.com.co/wp-content/uploads/2019/08/INSERTO_I231-1031_HCV_EIA.pdf[46] Centros para el Control y Prevención de Enfermedades, “Hepatitis C Testing - What to expect when getting tested,” 2024, Accessed: Sep. 18, 2024. [Online]. Available: www.cdc.gov/hepatitis[47] S. R. Lee et al., “Evaluation of a rapid, point-of-care test device for the diagnosis of hepatitis C infection,” Journal of Clinical Virology, vol. 48, no. 1, pp. 15–17, May 2010, doi: 10.1016/J.JCV.2010.02.018.[48] P. Zachary et al., “Evaluation of three commercially available hepatitis C virus antibody detection assays under the conditions of a clinical virology laboratory,” Journal of Clinical Virology, vol. 34, no. 3, pp. 207–210, Nov. 2005, doi: 10.1016/J.JCV.2005.06.005.[49] World Health Organization, “Prequalification of In Vitro Diagnostics.” Accessed: Sep. 18, 2024. [Online]. Available: https://extranet.who.int/prequal/sites/default/files/whopr_files/PQDx_0374-130-00_ARCHITECT-HCV_v1.0.pdf[50] J. M. Freiman et al., “HCV Core Antigen Testing for Diagnosis of HCV Infection: A systematic review and meta-analysis,” Ann Intern Med, vol. 165, no. 5, p. 345, Sep. 2016, doi: 10.7326/M16-0065.[51] J. M. Freiman et al., “Deriving the optimal limit of detection for an HCV point-of-care test for viraemic infection: analysis of a multi-country dataset,” J Hepatol, vol. 71, no. 1, p. 62, Jul. 2019, doi: 10.1016/J.JHEP.2019.02.011.[52] M. B. Pisano, C. G. Giadans, D. M. Flichman, V. E. Ré, M. V Preciado, and P. Valva, “World Journal of Gastroenterology Viral hepatitis update: Progress and perspectives Conflict-of-interest statement,” World J Gastroenterol, vol. 27, no. 26, pp. 4018–4044, 2021, doi: 10.3748/wjg.v27.i26.4018.[53] M. Kumar, S. Pahuja, P. Khare, and A. Kumar, “Current Challenges and Future Perspectives of Diagnosis of Hepatitis B Virus,” Diagnostics, vol. 13, no. 3, Feb. 2023, doi: 10.3390/DIAGNOSTICS13030368.[54] J. E. Song and D. Y. Kim, “Diagnosis of hepatitis B,” Ann Transl Med, vol. 4, no. 18, Sep. 2016, doi: 10.21037/ATM.2016.09.11.[55] J. I. Marín and A. I. Toro, “Biomarcadores convencionales y emergentes en hepatitis B,” Hepatología, vol. 4, no. 2, pp. 131–151, May 2023, doi: 10.59093/27112322.173.[56] F. M. Hanif, Z. Majid, N. H. Luck, A. A. Tasneem, S. M. Laeeq, and M. Mubarak, “Revolution in the diagnosis and management of hepatitis C virus infection in current era,” World J Hepatol, vol. 14, no. 4, p. 647, Apr. 2022, doi: 10.4254/WJH.V14.I4.647.[57] M. Ciotti, C. D’Agostini, and A. Marrone, “Advances in the Diagnosis and Monitoring of Hepatitis C Virus Infection,” Gastroenterology Res, vol. 6, no. 5, p. 161, 2013, doi: 10.4021/GR576E.[58] National Institute of Biomedical Imaging and Bioengineering, “Sensores.” Accessed: Jul. 22, 2024. [Online]. Available: https://www.nibib.nih.gov/espanol/temas-cientificos/sensores[59] A. Tárraga and C. Vidal, “Sensores moleculares: un reto para el químico, un demanda social,” 2012. Accessed: Nov. 17, 2023. [Online]. Available: https://docplayer.es/85314097-Sensores-moleculares-un-reto-para-el-quimico-una-demanda-social.html[60] F. Ortega, “Biosensores y Biochips: Herramientas para el diagnóstico y la terapéutica,” 2006.[61] P. J. Gomez, K. L. Ochoa, D. O. Corona, J. Juarez, and V. Reyes, “Materiales supramoleculares: quimiosensores y otras aplicaciones prácticas,” TECNOCIENCIA Chihuahua, vol. 17, no. 4, p. e1318, Dec. 2023, doi: 10.54167/TCH.V17I4.1316.[62] M. Gómez and S. Alegret, “Los sensores químicos: una aportación a la instrumentación analítica,” 1989. Accessed: Nov. 17, 2023. [Online]. Available: https://revistas.unam.mx/index.php/req/article/download/66596/58496[63] C. Jiménez and D. León, “Biosensores: aplicaciones y perspectivas en el control y calidad de procesos y productos alimenticios,” Vitae, vol. 16, no. 1, pp. 144–154, 2009, Accessed: Jul. 23, 2024. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-40042009000100017&lng=en&nrm=iso&tlng=es[64] M. Y. Chae and A. W. Czarnik, “Fluorometric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling,” 1992, Accessed: Nov. 17, 2023. [Online]. Available: https://doi.org/10.1021/ja00050a085[65] V. Parra, “Sensores químicos basados en materiales moleculares: De la molécula al material, del material al dispositivo,” 2008. [Online]. Available: www.rseq.org[66] A. M. Nivia Vargas and I. Jaramillo Jaramillo, “La industria de sensores en Colombia,” Tecnura, vol. 22, no. 57, pp. 44–54, Jul. 2018, doi: 10.14483/22487638.13518.[67] P. Arango, “Semillero de investigación en sensores aplicados a la medicina - DIMA - Universidad Nacional de Colombia.” Accessed: Oct. 19, 2024. [Online]. Available: http://investigacion.manizales.unal.edu.co/semilleros/2222[68] S. Cesar, “Grupo de Investigación en Macromoléculas.” Accessed: Oct. 19, 2024. [Online]. Available: http://www.hermes.unal.edu.co/pages/Consultas/Grupo.xhtml?idGrupo=957&opcion=1[69] S. Perdomo, “Estudiante de doctorado creó un sensor para medir la producción de glucosa molecular en plantas | Pontificia Universidad Javeriana, Cali.” Accessed: Oct. 19, 2024. [Online]. Available: https://www.javerianacali.edu.co/noticias/estudiante-de-doctorado-creo-un-sensor-para-medir-la-produccion-de-glucosa-molecular-en[70] Y. Reyes and Ó. Torres, “Vista de Sensores moleculares con respuesta fluorescente para detección de metales pesados en matrices ambientales.” Accessed: Oct. 19, 2024. [Online]. Available: https://acofipapers.org/index.php/eiei/article/view/3389/2244[71] Universidad del Valle, “Investigación - Facultad de Ciencias Naturales y Exactas.” Accessed: Oct. 19, 2024. [Online]. Available: https://ciencias.univalle.edu.co/departamento-de-quimica/investigacion[72] A. Montenegro and W. Torres Hernández, “Diseño y construcción de un sensor electroquímico para la detección enantioselectiva de triptófano usando un electrodo de oro modificado con polipirrol sobreoxidado mediante la tecnolo-gía de impresión molecular (MIP),” 2014.[73] D. Vasquez, “Sensor electroquímico de impresión molecular basado en polipirrol para la detección de Acido Ascórbico.,” 2021.[74] Instituto Nacional de Vigilancia de Medicamentos y Alimentos, “Implementación de Metodologías Moleculares para el Análisis de Alimentos,” 2021.[75] M. Restrepo-Arango, L. María Martínez-Sánchez, and I. J. Escudero-Hernández, “Virus Hepatitis B: métodos moleculares, PCR, biosensores y pruebas rápidas, en su detección y diagnóstico / Hepatitis B virus: molecular biology, PCR, biosensors and rapid tests, in its detection and diagnosis,” Co munidad y Salud Año, vol. 16, no. 2, 2018.[76] A. Piriya V.S, P. Joseph, K. Daniel S.C.G., S. Lakshmanan, T. Kinoshita, and S. Muthusamy, “Colorimetric sensors for rapid detection of various analytes,” Materials Science and Engineering: C, vol. 78, pp. 1231–1245, Sep. 2017, doi: 10.1016/J.MSEC.2017.05.018.[77] G. Ammanath et al., “Flow-through colorimetric assay for detection of nucleic acids in plasma,” Anal Chim Acta, vol. 1066, pp. 102–111, Aug. 2019, doi: 10.1016/J.ACA.2019.03.036.[78] L. Ma, Y. Abugalyon, and X. Li, “Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases,” 2021, doi: 10.1007/s00216-021-03359-8/Published.[79] D. C. Harris and V. Berenguer, “Análisis químico cuantitativo,” 2007, Accessed: Nov. 17, 2023. [Online]. Available: http://opac.univalle.edu.co/cgi-olib/?infile=details.glu&loid=703165&rs=4249379&hitno=1[80] J. Guo, H. Zhang, J. Yang, Y. Zhang, J. Wang, and G. Yan, “ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA,” Arabian Journal of Chemistry, vol. 16, no. 4, Apr. 2023, doi: 10.1016/j.arabjc.2023.104582.[81] P. Teengam, N. Nisab, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection,” Biosens Bioelectron, vol. 189, Oct. 2021, doi: 10.1016/j.bios.2021.113381.[82] X. H. Li et al., “Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B vi-rus infection,” Talanta, vol. 191, pp. 277–282, Jan. 2019, doi: 10.1016/J.TALANTA.2018.08.064.[83] X. Lu, X. Dong, K. Zhang, X. Han, X. Fang, and Y. Zhang, “A gold nanorods-based fluorescent biosensor for the detection of hepatitis B virus DNA based on fluorescence resonance energy transfer,” Analyst, vol. 138, no. 2, pp. 642–650, Dec. 2012, doi: 10.1039/C2AN36099C.[84] Z. Štukovnik and U. Bren, “Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection,” Dec. 01, 2022, MDPI. doi: 10.3390/ijms232415922.[85] S. Hassanpour et al., “Diagnosis of hepatitis via nanomaterial-based electrochemical, optical or piezoelectrical biosensors: a review on recent advancements,” Dec. 01, 2018, Springer-Verlag Wien. doi: 10.1007/s00604-018-3088-8.[86] L. E. Ahangar and M. A. Mehrgardi, “Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform,” Bioelectrochemistry, vol. 117, pp. 83–88, Oct. 2017, doi: 10.1016/J.BIOELECHEM.2017.06.006.[87] C. C. Chen, Z. L. Lai, G. J. Wang, and C. Y. Wu, “Polymerase chain reaction-free detection of hepatitis B virus DNA using a nanostructured impedance biosensor,” Biosens Bioelectron, vol. 77, pp. 603–608, Mar. 2016, doi: 10.1016/J.BIOS.2015.10.028.[88] M. Antipchik, J. Reut, A. G. Ayankojo, A. Öpik, and V. Syritski, “MIP-based electrochemical sensor for direct detection of hepatitis C virus via E2 envelope protein,” Talanta, vol. 250, Dec. 2022, doi: 10.1016/j.talanta.2022.123737.[89] C. Srisomwat, P. Teengam, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Pop-up paper electro-chemical device for label-free hepatitis B virus DNA detection,” Sens Actuators B Chem, vol. 316, p. 128077, Aug. 2020, doi: 10.1016/J.SNB.2020.128077.[90] F. Zhao et al., “New electrochemical DNA sensor based on nanoflowers of Cu3(PO4)2-BSA-GO for hepatitis B virus DNA detection,” Journal of Electroanalytical Chemistry, vol. 867, Jun. 2020, doi: 10.1016/j.jelechem.2020.114184.[91] S. K. Yong, S. K. Shen, C. W. Chiang, Y. Y. Weng, M. P. Lu, and Y. S. Yang, “Silicon nanowire field-effect transistor as label-free detection of hepatitis b virus proteins with opposite net charges,” Biosensors (Basel), vol. 11, no. 11, Nov. 2021, doi: 10.3390/bios11110442.[92] C. Singhal, A. Ingle, D. Chakraborty, A. K. PN, C. S. Pundir, and J. Narang, “Impedimetric genosensor for detection of hepatitis C virus (HCV1) DNA using viral probe on methylene blue doped silica nanoparticles,” Int J Biol Macromol, vol. 98, pp. 84–93, May 2017, doi: 10.1016/J.IJBIOMAC.2017.01.093.[93] J. Li et al., “Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite,” Electrochem commun, vol. 110, p. 106601, Jan. 2020, doi: 10.1016/J.ELECOM.2019.106601.[94] A. Valipour and M. Roushani, “Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: Electrochemical oxidation of riboflavin was used as redox probe,” Biosens Bioelectron, vol. 89, pp. 946–951, Mar. 2017, doi: 10.1016/J.BIOS.2016.09.086.[95] A. C. H. de Castro et al., “Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma,” Appl Biochem Biotechnol, vol. 194, no. 6, pp. 2604–2619, Jun. 2022, doi: 10.1007/S12010-022-03829-4/METRICS.[96] P. Jiang, Y. Li, T. Ju, W. Cheng, J. Xu, and K. Han, “Ultrasensitive Detection of Hepatitis C Virus DNA Subtypes Based on Cucurbituril and Graphene Oxide Nano-composite,” Chem Res Chin Univ, vol. 36, no. 2, pp. 307–312, Apr. 2020, doi: 10.1007/S40242-020-9111-8/METRICS.[97] F. Li et al., “A ‘signal on’ protection-displacement-hybridization-based electrochemical hepatitis B virus gene sequence sensor with high sensitivity and peculiar adjustable specificity,” Biosens Bioelectron, vol. 82, pp. 212–216, Aug. 2016, doi: 10.1016/J.BIOS.2016.04.014.[98] Z. Tan et al., “A label-free immunosensor based on PtPd NCs@MoS2 nanoenzymes for hepatitis B surface antigen detection,” Biosens Bioelectron, vol. 142, p. 111556, Oct. 2019, doi: 10.1016/J.BIOS.2019.111556.[99] M. Shariati and M. Sadeghi, “Ultrasensitive DNA biosensor for hepatitis B virus detection based on tin-doped WO3/In2O3 heterojunction nanowire photoelectrode under laser amplification,” Anal Bioanal Chem, vol. 412, no. 22, pp. 5367–5377, Sep. 2020, doi: 10.1007/s00216-020-02752-z.[100] Y. Tao et al., “Noble metal-molybdenum disulfide nanohybrids as dual fluorometric and colorimetric sensor for hepatitis B virus DNA detection,” Talanta, vol. 234, p. 122675, Nov. 2021, doi: 10.1016/j.talanta.2021.122675.[101] L. Liu et al., “Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles,” Anal Chim Acta, vol. 916, pp. 92–101, Apr. 2016, doi: 10.1016/j.aca.2016.02.024.[102] Y. Li, S. Liu, Q. Deng, and L. Ling, “A sensitive colorimetric DNA biosensor for specific detection of the HBV gene based on silver-coated glass slide and G-quadruplex-hemin DNAzyme,” J Med Virol, vol. 90, no. 4, pp. 699–705, Apr. 2018, doi: 10.1002/jmv.24993.[103] L. Wang, J. Yang, S. He, H. Gong, C. Chen, and C. Cai, “A mild and safe gas-responsive molecularly imprinted sensor for highly specific recognition of hepatitis B virus,” Sens Actuators B Chem, vol. 366, Sep. 2022, doi: 10.1016/j.snb.2022.131990.[104] A. Graci Brito-Madurro et al., “Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma,” 2021, doi: 10.21203/rs.3.rs-544015/v1.[105] P. Teengam, N. Nisab, N. Chuaypen, P. Tangkijvanich, T. Vilaivan, and O. Chailapakul, “Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection,” Biosens Bioelectron, vol. 189, Oct. 2021, doi: 10.1016/j.bios.2021.113381.[106] J. Li et al., “Sensitive electrochemical detection of hepatitis C virus subtype based on nucleotides assisted magnetic reduced graphene oxide-copper nano-composite,” Electrochem commun, vol. 110, p. 106601, Jan. 2020, doi: 10.1016/J.ELECOM.2019.106601.[107] J. Narang et al., “Impedimetric genosensor for ultratrace detection of hepatitis B virus DNA in patient samples assisted by zeolites and MWCNT nano-composites,” Biosens Bioelectron, vol. 86, pp. 566–574, Dec. 2016, doi: 10.1016/J.BIOS.2016.07.013.[108] Y. P. Liu and C. Y. Yao, “Rapid and quantitative detection of hepatitis B virus,” World J Gastroenterol, vol. 21, no. 42, p. 11954, Nov. 2015, doi: 10.3748/WJG.V21.I42.11954.[109] C.-Y. Yao and W. L. Fu, “Biosensors for hepatitis B virus detection,” World J Gastroenterol, vol. 20, no. 35, p. 12485, Sep. 2014, doi: 10.3748/wjg.v20.i35.12485.https://docs.google.com/spreadsheets/d/1_p_41rZbXzBUV80FUdXyTyW3-yEEWYQD-X5Y8YbW0HQ/edit?usp=sharingspaLICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/a2817912-00b9-45d3-9f8e-c6cf1697df64/download17cc15b951e7cc6b3728a574117320f9MD51Acta de aprobacion.pdfapplication/pdf1006359https://repositorio.unbosque.edu.co/bitstreams/bc91579a-b757-46da-a208-135a4abb50c0/download47c663c92589b38dd6c5fe930ea69b42MD512Carta de autorizacion.pdfapplication/pdf208549https://repositorio.unbosque.edu.co/bitstreams/dc789d10-f59b-4643-850c-c346081fb767/downloadaf75fd5a990f38c4d8774a5e758bcafdMD513ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1093494https://repositorio.unbosque.edu.co/bitstreams/b6ae6dc4-ae5c-4893-8baa-4e1ea1915ebb/download9832b799035b6c42f88d9d6ed8fd500fMD53Anexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdfAnexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdfapplication/pdf5539614https://repositorio.unbosque.edu.co/bitstreams/4e9d2f43-d851-4866-be08-f5974d7de8cf/download0e83aa89370de6f76ef914f6f491b41bMD59Anexo 2. Metodologia de Investigacion.pdfAnexo 2. Metodologia de Investigacion.pdfapplication/pdf259110https://repositorio.unbosque.edu.co/bitstreams/eec3394f-4f7b-4ebb-842e-842fbd03a929/downloadcede8bbdf0fd0fd1ed26d7ea91ca1057MD510CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repositorio.unbosque.edu.co/bitstreams/03065cbe-699b-4660-93de-b0082105a26c/download3b6ce8e9e36c89875e8cf39962fe8920MD511TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain102042https://repositorio.unbosque.edu.co/bitstreams/e34deb44-978b-4941-9034-b46a91fc37e0/downloadfd91142dd5316ef4bcdd18c6005d574fMD514Anexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdf.txtAnexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdf.txtExtracted texttext/plain10397https://repositorio.unbosque.edu.co/bitstreams/ac2f3f80-b1cf-4f91-bc3a-e9b35522dfe8/downloadde5223a518f91d88eccbcec13fc10ecdMD516Anexo 2. Metodologia de Investigacion.pdf.txtAnexo 2. Metodologia de Investigacion.pdf.txtExtracted texttext/plain3505https://repositorio.unbosque.edu.co/bitstreams/69186073-dc6c-4bbc-80fb-c62897034e28/download5f4e1786bd5105c3b7cc9d56a468dab2MD518THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg5311https://repositorio.unbosque.edu.co/bitstreams/caba2933-8a96-4f2a-9a25-8dff6b346722/downloade255de6db19ad37f9bc840dc83c3dd92MD515Anexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdf.jpgAnexo 1. Imagenes de apoyo mecanismos de sensores moleculares para deteccion de Hepatitis B y C.pdf.jpgGenerated Thumbnailimage/jpeg5680https://repositorio.unbosque.edu.co/bitstreams/8a2cf0e0-4e9f-46a7-99b8-095a13671b93/download5bb3204b5e49a38e582d65b397a758e0MD517Anexo 2. Metodologia de Investigacion.pdf.jpgAnexo 2. Metodologia de Investigacion.pdf.jpgGenerated Thumbnailimage/jpeg4734https://repositorio.unbosque.edu.co/bitstreams/7685656f-2964-4286-9180-f998f50a7353/download74b36487ca4028d4b8d2292217c44ca4MD51920.500.12495/13236oai:repositorio.unbosque.edu.co:20.500.12495/132362024-11-20 03:09:12.036http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=