Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
Computer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detect...
- Autores:
-
Tinoco, Nataly
Díaz, Daniela
Tarquino, Jonathan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/7065
- Palabra clave:
- Endoscopic images
Motion blur
Pattern recognition
Specular reflections
- Rights
- openAccess
- License
- Acceso abierto
id |
UNBOSQUE2_23ee8682c4a778dc54a7d0cacbcde0bb |
---|---|
oai_identifier_str |
oai:repositorio.unbosque.edu.co:20.500.12495/7065 |
network_acronym_str |
UNBOSQUE2 |
network_name_str |
Repositorio U. El Bosque |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
dc.title.translated.spa.fl_str_mv |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
title |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
spellingShingle |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers Endoscopic images Motion blur Pattern recognition Specular reflections |
title_short |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
title_full |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
title_fullStr |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
title_full_unstemmed |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
title_sort |
Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers |
dc.creator.fl_str_mv |
Tinoco, Nataly Díaz, Daniela Tarquino, Jonathan |
dc.contributor.author.none.fl_str_mv |
Tinoco, Nataly Díaz, Daniela Tarquino, Jonathan |
dc.subject.keywords.spa.fl_str_mv |
Endoscopic images Motion blur Pattern recognition Specular reflections |
topic |
Endoscopic images Motion blur Pattern recognition Specular reflections |
description |
Computer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detection become in a crucial step for training such supporting tools, even those based on convolutional neural networks (CNN). This work presents an automatic method for detecting the two most frequent artifacts in EIs, specular reflections (SR) and motion blur (MB), as a pre-processing tool for identifying informative frames, suitable for training automatic methods used in CAD tools. The proposed method identifies artifact patterns by utilizing coherence features, between regions with low and high frequencies (brightness, contrast, Comparative Gaussian-Frame Changes- CGFC), and using them to feed two complementary binary classifiers, achieving a precision of 96 % for the identification of SR and 76 % for MB. © 2021 Institution of Engineering and Technology. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-02T20:45:27Z |
dc.date.available.none.fl_str_mv |
2022-03-02T20:45:27Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.local.none.fl_str_mv |
Artículo de revista |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12495/7065 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1049/icp.2021.1432 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad El Bosque |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad El Bosque |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repositorio.unbosque.edu.co |
url |
http://hdl.handle.net/20.500.12495/7065 https://doi.org/10.1049/icp.2021.1432 |
identifier_str_mv |
instname:Universidad El Bosque reponame:Repositorio Institucional Universidad El Bosque repourl:https://repositorio.unbosque.edu.co |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.spa.fl_str_mv |
IET Conference Publications, Vol 2021, 2021, pag 127-132 |
dc.relation.uri.none.fl_str_mv |
https://digital-library.theiet.org/content/conferences/10.1049/icp.2021.1432 |
dc.rights.local.spa.fl_str_mv |
Acceso abierto |
dc.rights.accessrights.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess Acceso abierto |
rights_invalid_str_mv |
Acceso abierto http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Institution of Engineering and Technology |
dc.publisher.journal.spa.fl_str_mv |
IET Conference Publications |
institution |
Universidad El Bosque |
bitstream.url.fl_str_mv |
https://repositorio.unbosque.edu.co/bitstreams/7afdfc62-0aad-4ec9-a4b9-5afe1225f7b0/download https://repositorio.unbosque.edu.co/bitstreams/44046576-505f-4667-94c8-9d9a981509bd/download https://repositorio.unbosque.edu.co/bitstreams/87fc0097-03ed-4caa-962f-8751b20d7454/download |
bitstream.checksum.fl_str_mv |
394676c3389aaeaf019c6d45a11b77e9 8a4605be74aa9ea9d79846c1fba20a33 56c6ce8af9aa607a4926da6a3e88d080 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad El Bosque |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814100797034594304 |
spelling |
Tinoco, NatalyDíaz, DanielaTarquino, Jonathan2022-03-02T20:45:27Z2022-03-02T20:45:27Z2021http://hdl.handle.net/20.500.12495/7065https://doi.org/10.1049/icp.2021.1432instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengInstitution of Engineering and TechnologyIET Conference PublicationsIET Conference Publications, Vol 2021, 2021, pag 127-132https://digital-library.theiet.org/content/conferences/10.1049/icp.2021.1432Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiersAutomatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiersArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Endoscopic imagesMotion blurPattern recognitionSpecular reflectionsComputer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detection become in a crucial step for training such supporting tools, even those based on convolutional neural networks (CNN). This work presents an automatic method for detecting the two most frequent artifacts in EIs, specular reflections (SR) and motion blur (MB), as a pre-processing tool for identifying informative frames, suitable for training automatic methods used in CAD tools. The proposed method identifies artifact patterns by utilizing coherence features, between regions with low and high frequencies (brightness, contrast, Comparative Gaussian-Frame Changes- CGFC), and using them to feed two complementary binary classifiers, achieving a precision of 96 % for the identification of SR and 76 % for MB. © 2021 Institution of Engineering and Technology.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abiertoORIGINALArchivo en blanco.txtArchivo en blanco.txtAutomatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifierstext/plain16https://repositorio.unbosque.edu.co/bitstreams/7afdfc62-0aad-4ec9-a4b9-5afe1225f7b0/download394676c3389aaeaf019c6d45a11b77e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/44046576-505f-4667-94c8-9d9a981509bd/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTArchivo en blanco.txt.txtArchivo en blanco.txt.txtExtracted texttext/plain17https://repositorio.unbosque.edu.co/bitstreams/87fc0097-03ed-4caa-962f-8751b20d7454/download56c6ce8af9aa607a4926da6a3e88d080MD5320.500.12495/7065oai:repositorio.unbosque.edu.co:20.500.12495/70652024-02-07 07:01:08.257open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |