Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers

Computer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detect...

Full description

Autores:
Tinoco, Nataly
Díaz, Daniela
Tarquino, Jonathan
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
eng
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/7065
Acceso en línea:
http://hdl.handle.net/20.500.12495/7065
https://doi.org/10.1049/icp.2021.1432
Palabra clave:
Endoscopic images
Motion blur
Pattern recognition
Specular reflections
Rights
openAccess
License
Acceso abierto
id UNBOSQUE2_23ee8682c4a778dc54a7d0cacbcde0bb
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/7065
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.spa.fl_str_mv Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
dc.title.translated.spa.fl_str_mv Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
title Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
spellingShingle Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
Endoscopic images
Motion blur
Pattern recognition
Specular reflections
title_short Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
title_full Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
title_fullStr Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
title_full_unstemmed Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
title_sort Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiers
dc.creator.fl_str_mv Tinoco, Nataly
Díaz, Daniela
Tarquino, Jonathan
dc.contributor.author.none.fl_str_mv Tinoco, Nataly
Díaz, Daniela
Tarquino, Jonathan
dc.subject.keywords.spa.fl_str_mv Endoscopic images
Motion blur
Pattern recognition
Specular reflections
topic Endoscopic images
Motion blur
Pattern recognition
Specular reflections
description Computer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detection become in a crucial step for training such supporting tools, even those based on convolutional neural networks (CNN). This work presents an automatic method for detecting the two most frequent artifacts in EIs, specular reflections (SR) and motion blur (MB), as a pre-processing tool for identifying informative frames, suitable for training automatic methods used in CAD tools. The proposed method identifies artifact patterns by utilizing coherence features, between regions with low and high frequencies (brightness, contrast, Comparative Gaussian-Frame Changes- CGFC), and using them to feed two complementary binary classifiers, achieving a precision of 96 % for the identification of SR and 76 % for MB. © 2021 Institution of Engineering and Technology.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-02T20:45:27Z
dc.date.available.none.fl_str_mv 2022-03-02T20:45:27Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.none.fl_str_mv Artículo de revista
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12495/7065
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1049/icp.2021.1432
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url http://hdl.handle.net/20.500.12495/7065
https://doi.org/10.1049/icp.2021.1432
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv IET Conference Publications, Vol 2021, 2021, pag 127-132
dc.relation.uri.none.fl_str_mv https://digital-library.theiet.org/content/conferences/10.1049/icp.2021.1432
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
Acceso abierto
rights_invalid_str_mv Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institution of Engineering and Technology
dc.publisher.journal.spa.fl_str_mv IET Conference Publications
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/7afdfc62-0aad-4ec9-a4b9-5afe1225f7b0/download
https://repositorio.unbosque.edu.co/bitstreams/44046576-505f-4667-94c8-9d9a981509bd/download
https://repositorio.unbosque.edu.co/bitstreams/87fc0097-03ed-4caa-962f-8751b20d7454/download
bitstream.checksum.fl_str_mv 394676c3389aaeaf019c6d45a11b77e9
8a4605be74aa9ea9d79846c1fba20a33
56c6ce8af9aa607a4926da6a3e88d080
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814100797034594304
spelling Tinoco, NatalyDíaz, DanielaTarquino, Jonathan2022-03-02T20:45:27Z2022-03-02T20:45:27Z2021http://hdl.handle.net/20.500.12495/7065https://doi.org/10.1049/icp.2021.1432instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coapplication/pdfengInstitution of Engineering and TechnologyIET Conference PublicationsIET Conference Publications, Vol 2021, 2021, pag 127-132https://digital-library.theiet.org/content/conferences/10.1049/icp.2021.1432Automatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiersAutomatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifiersArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Endoscopic imagesMotion blurPattern recognitionSpecular reflectionsComputer Aided Diagnosis (CAD) tools have demonstrated high performance in the identification of gastrointestinal diseases through endoscopic images (EIs). However, such diagnostic support tools could be affected by image artifacts which may appear in real videos, making that precise artifact detection become in a crucial step for training such supporting tools, even those based on convolutional neural networks (CNN). This work presents an automatic method for detecting the two most frequent artifacts in EIs, specular reflections (SR) and motion blur (MB), as a pre-processing tool for identifying informative frames, suitable for training automatic methods used in CAD tools. The proposed method identifies artifact patterns by utilizing coherence features, between regions with low and high frequencies (brightness, contrast, Comparative Gaussian-Frame Changes- CGFC), and using them to feed two complementary binary classifiers, achieving a precision of 96 % for the identification of SR and 76 % for MB. © 2021 Institution of Engineering and Technology.Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAcceso abiertoORIGINALArchivo en blanco.txtArchivo en blanco.txtAutomatic method for detecting specular reflection and motion blur artifacts on endoscopic images using complementary binary classifierstext/plain16https://repositorio.unbosque.edu.co/bitstreams/7afdfc62-0aad-4ec9-a4b9-5afe1225f7b0/download394676c3389aaeaf019c6d45a11b77e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unbosque.edu.co/bitstreams/44046576-505f-4667-94c8-9d9a981509bd/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTArchivo en blanco.txt.txtArchivo en blanco.txt.txtExtracted texttext/plain17https://repositorio.unbosque.edu.co/bitstreams/87fc0097-03ed-4caa-962f-8751b20d7454/download56c6ce8af9aa607a4926da6a3e88d080MD5320.500.12495/7065oai:repositorio.unbosque.edu.co:20.500.12495/70652024-02-07 07:01:08.257open.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=