Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2

El Furfural es un compuesto de gran interés industrial debido a su uso como solvente, en la producción de resinas, y como intermediario en la síntesis de productos químicos más complejos. El presente estudio evalúa la producción de furfural a partir de xilosa, utilizando VW/SiO2 como catalizador het...

Full description

Autores:
Barreto Quintero , Deissy Juliana
Feria Cacais, Mariana Alejandra
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/14390
Acceso en línea:
https://hdl.handle.net/20.500.12495/14390
Palabra clave:
Furfural
Xilosa
Catalizador heterogéneo
Temperatura
Tiempo
Cromatografía líquida de alta eficiencia
615.19
Furfural
Xylose
Heterogeneous catalyst
Temperature
Time
High performance liquid chromatography
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id UNBOSQUE2_15a84171ed25e98d4bc92b74cd5331be
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/14390
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
dc.title.translated.none.fl_str_mv Production of furfural from xylose using VW/SiO2 catalysts
title Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
spellingShingle Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
Furfural
Xilosa
Catalizador heterogéneo
Temperatura
Tiempo
Cromatografía líquida de alta eficiencia
615.19
Furfural
Xylose
Heterogeneous catalyst
Temperature
Time
High performance liquid chromatography
title_short Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
title_full Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
title_fullStr Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
title_full_unstemmed Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
title_sort Producción de furfural a partir de xilosa empleando catalizadores de VW/SiO2
dc.creator.fl_str_mv Barreto Quintero , Deissy Juliana
Feria Cacais, Mariana Alejandra
dc.contributor.advisor.none.fl_str_mv Cortés Ortiz, William Giovanni
dc.contributor.author.none.fl_str_mv Barreto Quintero , Deissy Juliana
Feria Cacais, Mariana Alejandra
dc.subject.none.fl_str_mv Furfural
Xilosa
Catalizador heterogéneo
Temperatura
Tiempo
Cromatografía líquida de alta eficiencia
topic Furfural
Xilosa
Catalizador heterogéneo
Temperatura
Tiempo
Cromatografía líquida de alta eficiencia
615.19
Furfural
Xylose
Heterogeneous catalyst
Temperature
Time
High performance liquid chromatography
dc.subject.ddc.none.fl_str_mv 615.19
dc.subject.keywords.none.fl_str_mv Furfural
Xylose
Heterogeneous catalyst
Temperature
Time
High performance liquid chromatography
description El Furfural es un compuesto de gran interés industrial debido a su uso como solvente, en la producción de resinas, y como intermediario en la síntesis de productos químicos más complejos. El presente estudio evalúa la producción de furfural a partir de xilosa, utilizando VW/SiO2 como catalizador heterogéneo, evaluando la temperatura y tiempo de reacción. Para esto se planteó un diseño factorial 2 a la 2 donde se evalúo la influencia de las variables, temperatura (170 o 200 °C) y el tiempo de reacción (1 o 2 horas) en términos de conversión, selectividad y rendimiento a furfural. Para llevar a cabo la reacción, se utilizó un reactor tipo Batch, y el producto resultante se cuantificó mediante cromatografía líquida de alta eficiencia (HPLC) utilizando el método de patrón interno. Los rendimientos obtenidos fueron del 13,6 %, 12,8 %, 18,5 % y 17,8 %, siendo el mejor resultado alcanzado a 200 °C durante 1 hora. A partir de los resultados obtenidos y tras realizar un análisis estadístico, se confirma que las variables temperatura y tiempo influyen significativamente en el rendimiento del proceso de reacción.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-11
dc.date.accessioned.none.fl_str_mv 2025-05-19T16:52:48Z
dc.date.available.none.fl_str_mv 2025-05-19T16:52:48Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_ab4af688f83e57aa
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/14390
dc.identifier.instname.spa.fl_str_mv Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/14390
identifier_str_mv Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv 1. L. Zhang, H. Yu, P. Wang, and Y. Li, “Production of furfural from xylose, xylan and corncob in gamma valerolactone using FeCl3·6H2O as catalyst,” Bioresour Technol, vol. 151, pp. 355–360, Jan. 2014, doi: 10.1016/J.BIORTECH.2013.10.099.
2. Determinacion de Furfural - VSIP.INFO.Accessed: Apr. 30, 2023. [Online]. Available: https://vsip.info/determinacion-de-furfural-pdf-free.html
3. W. Yang, P. Li, D. Bo, and H. Chang, “The optimization of formic acid hydrolysis of xylose in furfural production,” Carbohydr Res, vol. 357, pp. 53–61, Aug. 2012, doi: 10.1016/J.CARRES.2012.05.020.
4. M. Del Carmen and D. Serrano, “Química verde: un nuevo enfoque para el cuidado del medio ambiente,” Educación química, vol. 20, no. 4, pp. 412–420, 2009, Accessed: Apr. 30, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2009000400004&lng=es&nrm=iso&tlng=es
5. P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem Soc Rev, vol. 39, no. 1, pp. 301–312, Dec. 2010, doi: 10.1039/B918763B.
6. Green Chemistry - Current and Future Issues, Pol J Environ Stud, vol. 14, no. 4, pp. 389–395, Accessed: Apr. 28, 2023. [Online]. Available: http://www.pjoes.com/Green-Chemistry-Current-and-Future-Issues,87771,0,2.html
7. A. Aghababai Beni and H. Jabbari, “Nanomaterials for Environmental Applications,” Results in Engineering, vol. 15, Sep. 2022, doi: 10.1016/J.RINENG.2022.100467.
8. T. Tongtummachat, A. Jaree, and N. Akkarawatkhoosith, “Continuous hydrothermal furfural production from xylose in a microreactor with dual-acid catalysts,” RSC Adv, vol. 12, no. 36, pp. 23366–23378, Aug. 2022, doi: 10.1039/D2RA03609F.
9. M. Baron et al., “Resolving the Atomic Structure of Vanadia Monolayer Catalysts: Monomers, Trimers, and Oligomers on Ceria,” Angewandte Chemie International Edition, vol. 48, no. 43, pp. 8006–8009, Oct. 2009, doi: 10.1002/ANIE.200903085.
10. S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Processing Technology, vol. 175, pp. 90–96, Jun. 2018, doi: 10.1016/J.FUPROC.2018.04.005.
11. A. Deng et al., “A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system,” Bioresour Technol, vol. 216, pp. 754–760, Sep. 2016, doi: 10.1016/J.BIORTECH.2016.06.002.
12. L. Zhu, “Surface Temperature Excess in Heterogeneous Catalysis ,” 2005.
13. K. Zheng, G. Yang, W. Shen, Q. Xu, F. Hu, and Z. Li, “Preparation and Denitration Performance of V-W/TiO2-SiO2 Nanotube Catalysts,” Water Air Soil Pollut, vol. 229, no. 4, Apr. 2018, doi: 10.1007/S11270-018-3768-3.
14. B. Wang, Y. Bian, S. Feng, S. Q. Wang, and B. X. Shen, “Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx,” Journal of Fuel Chemistry and Technology, vol. 50, no. 4, pp. 503–512, Apr. 2022, doi: 10.1016/S1872-5813(21)60177-9.
15. A. Marberger, D. Ferri, D. Rentsch, F. Krumeich, M. Elsener, and O. Kröcher, “Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3,” Catal Today, vol. 320, pp. 123–132, Jan. 2019, doi: 10.1016/J.CATTOD.2017.11.037.
16. X. Zhang, P. Zhu, Q. Li, and H. Xia, “Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents,” Front Chem, vol. 10, p. 911674, May 2022, doi: 10.3389/FCHEM.2022.911674/BIBTEX.
17. L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou, and H. Zuo, “Transformation of corncob into furfural by a bifunctional solid acid catalyst,” Bioresour Technol, vol. 276, pp. 60–64, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.094.
18. Kevin René Suárez Suárez, “Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio,” 2023. Accessed: Sep. 18, 2024. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/84882/1031127909.2023.pdf?sequence=2
19. S. Arias-Giraldo and D. M. López-Velasco, “Reacciones químicas de los azúcares simples empleados en la industria alimentaria,” Lámpsakos (revista descontinuada), no. 22, pp. 123–135, Nov. 2019, doi: 10.21501/21454086.3252.
20. Choudhary, S. I. Sandler, and D. G. Vlachos, “Conversión de xilosa a furfural utilizando catalizadores ácidos de Lewis y Brønsted en medios acuosos,” Catálisis ACS, vol. 2, no. 9, pp. 2022–2028, doi: 10.1021/cs300265d.
21. K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 663–676, Oct. 2014, doi: 10.1016/J.RSER.2014.07.003.
22. I. Muylaert and P. Van Der Voort, “Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy,” Physical Chemistry Chemical Physics, vol. 11, no. 16, pp. 2826–2832, Apr. 2009, doi: 10.1039/B819808J.
23. D. C. Crans, D. Gambino, and S. B. Etcheverry, “Vanadium science: chemistry, catalysis, materials, biological and medicinal studies,” New Journal of Chemistry, vol. 43, no. 45, pp. 17535–17537, Nov. 2019, doi: 10.1039/C9NJ90156F.
24. Q. Zhang, C. Wang, J. Mao, S. Ramaswamy, X. Zhang, and F. Xu, “Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent,” Ind Crops Prod, vol. 138, p. 111454, Oct. 2019, doi: 10.1016/J.INDCROP.2019.06.017.
25. D. Padovan, K. Nakajima, and E. J. M. Hensen, “Metal Oxide Catalysts for the Valorization of Biomass-Derived Sugars,” Crystalline Metal Oxide Catalysts, pp. 325–347, Jan. 2022, doi: 10.1007/978-981-19-5013-1_11.
26. M. Sajid, M. Rizwan Dilshad, M. Saif Ur Rehman, D. Liu, and X. Zhao, “Catalytic Conversion of Xylose to Furfural by p-Toluenesulfonic Acid (pTSA) and Chlorides: Process Optimization and Kinetic Modeling,” Molecules, vol. 26, no. 8, Apr. 2021, doi: 10.3390/MOLECULES26082208.
27. G. Xu, Z. Tu, X. Hu, M. Li, X. Zhang, and Y. Wu, “Ionic buffering biphase systems as catalysts and solvents for efficient dehydration of xylose and hemicellulose to furfural,” J Mol Liq, vol. 381, p. 121836, Jul. 2023, doi: 10.1016/J.MOLLIQ.2023.121836.
28. Conversión catalítica de xilosa a furfural empleando catalizadores V/SiO2, W/SiO2 y VW/SiO2 sintetizados por el método sol-gel asistido por microondas. Accessed: Sep. 18, 2024. [Online]. Available: https://www.abq.org.br/cbq/2022/trabalhos/12/368-675.html
29. Residual Sum of Squares (RSS): What It Is and How to Calculate It. Accessed: Sep. 19, 2024. [Online]. Available: https://www.investopedia.com/terms/r/residual-sum-of-squares.asp
30. S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Processing Technology, vol. 175, pp. 90–96, Jun. 2018, doi: 10.1016/J.FUPROC.2018.04.005.
31. E. Lam, E. Majid, A. C. W. Leung, J. H. Chong, K. A. Mahmoud, and J. H. T. Luong, “Synthesis of Furfural from Xylose by Heterogeneous and Reusable Nafion Catalysts,” ChemSusChem, vol. 4, no. 4, pp. 535–541, Apr. 2011, doi: 10.1002/CSSC.201100023.
32. J. Zhang, L. Lin, and S. Liu, “Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process,” Energy and Fuels, vol. 26, no. 7, pp. 4560–4567, Jul. 2012, doi: 10.1021/EF300606V.
33. R. Weingarten, J. Cho, W. C. Conner, and G. W. Huber, “Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating,” Green Chemistry, vol. 12, no. 8, pp. 1423–1429, Aug. 2010, doi: 10.1039/C003459B.
34. C. Sener, A. H. Motagamwala, D. M. Alonso, and J. A. Dumesic, “Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures,” ChemSusChem, vol. 11, no. 14, pp. 2321–2331, Jul. 2018, doi: 10.1002/CSSC.201800730.
35. T. Huang et al., “Preparation of Furfural From Xylose Catalyzed by Diimidazole Hexafluorophosphate in Microwave,” Front Chem, vol. 9, p. 727382, Sep. 2021, doi: 10.3389/FCHEM.2021.727382/BIBTEX.
36. E. Rakić, A. Kostyniuk, N. Nikačević, and B. Likozar, “Reaction microkinetic model of xylose dehydration to furfural over beta zeolite catalyst,” Biomass Convers Biorefin, vol. 1, pp. 1–15, Oct. 2023, doi: 10.1007/S13399-023-04969-1/TABLES/2.
37.A. F. Siegel and M. R. Wagner, “ANOVA: Testing for Differences Among Many Samples and Much More,” Practical Business Statistics, pp. 485–510, Jan. 2022, doi: 10.1016/B978-0-12-820025-4.00015-4.
38. G. Gómez Millán, Z. El Assal, K. Nieminen, S. Hellsten, J. Llorca, and H. Sixta, “Fast furfural formation from xylose using solid acid catalysts assisted by a microwave reactor,” Fuel Processing Technology, vol. 182, pp. 56–67, Dec. 2018, doi: 10.1016/J.FUPROC.2018.10.013.
39. Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating. Energy & Fuels, 26(2), 1298–1304 | 10.1021/ef2014106.” Accessed: Apr. 02, 2023. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ef2014106
40. W. Cortés and A. María Campos Rosario, “CONVERSION OF D-XYLOSE INTO FURFURAL WITH ALUMINUM AND HAFNIUM PILLARED CLAYS AS CATALYST CONVERSION DE D-XILOSA A FURFURAL CON ARCILLAS PILARIZADAS CON ALUMINIO Y HAFNIO COMO CATALIZADORES YINETH PIÑEROS-CASTRO,” vol. 80, pp. 105–112, 2013, Accessed: Aug. 14, 2024. [Online]. Available: http://www.redalyc.org/articulo.oa?id=49627455015
41. C. Xiouras, N. Radacsi, G. Sturm, and G. D. Stefanidis, “Furfural synthesis from D-xylose in the presence of sodium chloride: Microwave versus conventional heating,” ChemSusChem, vol. 9, no. 16, pp. 2159–2166, Aug. 2016, doi: 10.1002/cssc.201600446.
42. L. Ye, Y. Han, X. Wang, X. Lu, X. Qi, and H. Yu, “Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection,” Molecular Catalysis, vol. 515, p. 111899, Oct. 2021, doi: 10.1016/J.MCAT.2021.111899.
43. C. P. Jiménez-Gómez, “Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts”.
dc.rights.en.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv https://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
https://purl.org/coar/access_right/c_abf2
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Química Farmacéutica
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/2fd3137e-493d-4655-975c-a22930205563/download
https://repositorio.unbosque.edu.co/bitstreams/6f5be495-06bc-489d-a4bc-4af630510ab9/download
https://repositorio.unbosque.edu.co/bitstreams/c83127de-f46c-4d04-82d4-cb503ac80a5b/download
https://repositorio.unbosque.edu.co/bitstreams/885814fd-4943-43e3-96ea-011fc7bf3e23/download
https://repositorio.unbosque.edu.co/bitstreams/54445c60-fb3f-4a37-8c33-364b0ce131a1/download
bitstream.checksum.fl_str_mv 94a0e17495246cc93fa5c0143df16719
17cc15b951e7cc6b3728a574117320f9
5643bfd9bcf29d560eeec56d584edaa9
8b173fb8fafc3482fa3ecc225e6081d8
839d6eae03bc3fe5c023254816695884
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1834107888688168960
spelling Cortés Ortiz, William GiovanniBarreto Quintero , Deissy JulianaFeria Cacais, Mariana Alejandra2025-05-19T16:52:48Z2025-05-19T16:52:48Z2024-11https://hdl.handle.net/20.500.12495/14390Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coEl Furfural es un compuesto de gran interés industrial debido a su uso como solvente, en la producción de resinas, y como intermediario en la síntesis de productos químicos más complejos. El presente estudio evalúa la producción de furfural a partir de xilosa, utilizando VW/SiO2 como catalizador heterogéneo, evaluando la temperatura y tiempo de reacción. Para esto se planteó un diseño factorial 2 a la 2 donde se evalúo la influencia de las variables, temperatura (170 o 200 °C) y el tiempo de reacción (1 o 2 horas) en términos de conversión, selectividad y rendimiento a furfural. Para llevar a cabo la reacción, se utilizó un reactor tipo Batch, y el producto resultante se cuantificó mediante cromatografía líquida de alta eficiencia (HPLC) utilizando el método de patrón interno. Los rendimientos obtenidos fueron del 13,6 %, 12,8 %, 18,5 % y 17,8 %, siendo el mejor resultado alcanzado a 200 °C durante 1 hora. A partir de los resultados obtenidos y tras realizar un análisis estadístico, se confirma que las variables temperatura y tiempo influyen significativamente en el rendimiento del proceso de reacción.PregradoQuímico FarmacéuticoFurfural is a compound of great industrial interest due to its use as a solvent, in the production of resins, and as an intermediate in the synthesis of more complex chemical products. The present study evaluates the production of furfural from xylose, using VW/SiO2 as heterogeneous catalyst, evaluating the temperature and reaction time. A 2 to 2 factorial design was used to evaluate the influence of the variables temperature (170 or 200 °C) and reaction time (1 or 2 hours) in terms of conversion, selectivity and furfural yield. A batch reactor was used to carry out the reaction, and the resulting product was quantified by high performance liquid chromatography (HPLC) using the internal standard method. The yields obtained were 13.6 %, 12.8 %, 18.5 % and 17.8 %, the best result being achieved at 200 °C for 1 hour. From the results obtained and after performing a statistical analysis, it is confirmed that the variables temperature and time have a significant influence on the yield of the reaction process.application/pdfAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttps://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2FurfuralXilosaCatalizador heterogéneoTemperaturaTiempoCromatografía líquida de alta eficiencia615.19FurfuralXyloseHeterogeneous catalystTemperatureTimeHigh performance liquid chromatographyProducción de furfural a partir de xilosa empleando catalizadores de VW/SiO2Production of furfural from xylose using VW/SiO2 catalystsQuímica FarmacéuticaUniversidad El BosqueFacultad de CienciasTesis/Trabajo de grado - Monografía - Pregradohttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_ab4af688f83e57aa1. L. Zhang, H. Yu, P. Wang, and Y. Li, “Production of furfural from xylose, xylan and corncob in gamma valerolactone using FeCl3·6H2O as catalyst,” Bioresour Technol, vol. 151, pp. 355–360, Jan. 2014, doi: 10.1016/J.BIORTECH.2013.10.099.2. Determinacion de Furfural - VSIP.INFO.Accessed: Apr. 30, 2023. [Online]. Available: https://vsip.info/determinacion-de-furfural-pdf-free.html3. W. Yang, P. Li, D. Bo, and H. Chang, “The optimization of formic acid hydrolysis of xylose in furfural production,” Carbohydr Res, vol. 357, pp. 53–61, Aug. 2012, doi: 10.1016/J.CARRES.2012.05.020.4. M. Del Carmen and D. Serrano, “Química verde: un nuevo enfoque para el cuidado del medio ambiente,” Educación química, vol. 20, no. 4, pp. 412–420, 2009, Accessed: Apr. 30, 2023. [Online]. Available: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-893X2009000400004&lng=es&nrm=iso&tlng=es5. P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem Soc Rev, vol. 39, no. 1, pp. 301–312, Dec. 2010, doi: 10.1039/B918763B.6. Green Chemistry - Current and Future Issues, Pol J Environ Stud, vol. 14, no. 4, pp. 389–395, Accessed: Apr. 28, 2023. [Online]. Available: http://www.pjoes.com/Green-Chemistry-Current-and-Future-Issues,87771,0,2.html7. A. Aghababai Beni and H. Jabbari, “Nanomaterials for Environmental Applications,” Results in Engineering, vol. 15, Sep. 2022, doi: 10.1016/J.RINENG.2022.100467.8. T. Tongtummachat, A. Jaree, and N. Akkarawatkhoosith, “Continuous hydrothermal furfural production from xylose in a microreactor with dual-acid catalysts,” RSC Adv, vol. 12, no. 36, pp. 23366–23378, Aug. 2022, doi: 10.1039/D2RA03609F.9. M. Baron et al., “Resolving the Atomic Structure of Vanadia Monolayer Catalysts: Monomers, Trimers, and Oligomers on Ceria,” Angewandte Chemie International Edition, vol. 48, no. 43, pp. 8006–8009, Oct. 2009, doi: 10.1002/ANIE.200903085.10. S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Processing Technology, vol. 175, pp. 90–96, Jun. 2018, doi: 10.1016/J.FUPROC.2018.04.005.11. A. Deng et al., “A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system,” Bioresour Technol, vol. 216, pp. 754–760, Sep. 2016, doi: 10.1016/J.BIORTECH.2016.06.002.12. L. Zhu, “Surface Temperature Excess in Heterogeneous Catalysis ,” 2005.13. K. Zheng, G. Yang, W. Shen, Q. Xu, F. Hu, and Z. Li, “Preparation and Denitration Performance of V-W/TiO2-SiO2 Nanotube Catalysts,” Water Air Soil Pollut, vol. 229, no. 4, Apr. 2018, doi: 10.1007/S11270-018-3768-3.14. B. Wang, Y. Bian, S. Feng, S. Q. Wang, and B. X. Shen, “Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx,” Journal of Fuel Chemistry and Technology, vol. 50, no. 4, pp. 503–512, Apr. 2022, doi: 10.1016/S1872-5813(21)60177-9.15. A. Marberger, D. Ferri, D. Rentsch, F. Krumeich, M. Elsener, and O. Kröcher, “Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3,” Catal Today, vol. 320, pp. 123–132, Jan. 2019, doi: 10.1016/J.CATTOD.2017.11.037.16. X. Zhang, P. Zhu, Q. Li, and H. Xia, “Recent Advances in the Catalytic Conversion of Biomass to Furfural in Deep Eutectic Solvents,” Front Chem, vol. 10, p. 911674, May 2022, doi: 10.3389/FCHEM.2022.911674/BIBTEX.17. L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou, and H. Zuo, “Transformation of corncob into furfural by a bifunctional solid acid catalyst,” Bioresour Technol, vol. 276, pp. 60–64, Mar. 2019, doi: 10.1016/J.BIORTECH.2018.12.094.18. Kevin René Suárez Suárez, “Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio,” 2023. Accessed: Sep. 18, 2024. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/84882/1031127909.2023.pdf?sequence=219. S. Arias-Giraldo and D. M. López-Velasco, “Reacciones químicas de los azúcares simples empleados en la industria alimentaria,” Lámpsakos (revista descontinuada), no. 22, pp. 123–135, Nov. 2019, doi: 10.21501/21454086.3252.20. Choudhary, S. I. Sandler, and D. G. Vlachos, “Conversión de xilosa a furfural utilizando catalizadores ácidos de Lewis y Brønsted en medios acuosos,” Catálisis ACS, vol. 2, no. 9, pp. 2022–2028, doi: 10.1021/cs300265d.21. K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renewable and Sustainable Energy Reviews, vol. 38, pp. 663–676, Oct. 2014, doi: 10.1016/J.RSER.2014.07.003.22. I. Muylaert and P. Van Der Voort, “Supported vanadium oxide in heterogeneous catalysis: elucidating the structure–activity relationship with spectroscopy,” Physical Chemistry Chemical Physics, vol. 11, no. 16, pp. 2826–2832, Apr. 2009, doi: 10.1039/B819808J.23. D. C. Crans, D. Gambino, and S. B. Etcheverry, “Vanadium science: chemistry, catalysis, materials, biological and medicinal studies,” New Journal of Chemistry, vol. 43, no. 45, pp. 17535–17537, Nov. 2019, doi: 10.1039/C9NJ90156F.24. Q. Zhang, C. Wang, J. Mao, S. Ramaswamy, X. Zhang, and F. Xu, “Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent,” Ind Crops Prod, vol. 138, p. 111454, Oct. 2019, doi: 10.1016/J.INDCROP.2019.06.017.25. D. Padovan, K. Nakajima, and E. J. M. Hensen, “Metal Oxide Catalysts for the Valorization of Biomass-Derived Sugars,” Crystalline Metal Oxide Catalysts, pp. 325–347, Jan. 2022, doi: 10.1007/978-981-19-5013-1_11.26. M. Sajid, M. Rizwan Dilshad, M. Saif Ur Rehman, D. Liu, and X. Zhao, “Catalytic Conversion of Xylose to Furfural by p-Toluenesulfonic Acid (pTSA) and Chlorides: Process Optimization and Kinetic Modeling,” Molecules, vol. 26, no. 8, Apr. 2021, doi: 10.3390/MOLECULES26082208.27. G. Xu, Z. Tu, X. Hu, M. Li, X. Zhang, and Y. Wu, “Ionic buffering biphase systems as catalysts and solvents for efficient dehydration of xylose and hemicellulose to furfural,” J Mol Liq, vol. 381, p. 121836, Jul. 2023, doi: 10.1016/J.MOLLIQ.2023.121836.28. Conversión catalítica de xilosa a furfural empleando catalizadores V/SiO2, W/SiO2 y VW/SiO2 sintetizados por el método sol-gel asistido por microondas. Accessed: Sep. 18, 2024. [Online]. Available: https://www.abq.org.br/cbq/2022/trabalhos/12/368-675.html29. Residual Sum of Squares (RSS): What It Is and How to Calculate It. Accessed: Sep. 19, 2024. [Online]. Available: https://www.investopedia.com/terms/r/residual-sum-of-squares.asp30. S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Processing Technology, vol. 175, pp. 90–96, Jun. 2018, doi: 10.1016/J.FUPROC.2018.04.005.31. E. Lam, E. Majid, A. C. W. Leung, J. H. Chong, K. A. Mahmoud, and J. H. T. Luong, “Synthesis of Furfural from Xylose by Heterogeneous and Reusable Nafion Catalysts,” ChemSusChem, vol. 4, no. 4, pp. 535–541, Apr. 2011, doi: 10.1002/CSSC.201100023.32. J. Zhang, L. Lin, and S. Liu, “Efficient Production of Furan Derivatives from a Sugar Mixture by Catalytic Process,” Energy and Fuels, vol. 26, no. 7, pp. 4560–4567, Jul. 2012, doi: 10.1021/EF300606V.33. R. Weingarten, J. Cho, W. C. Conner, and G. W. Huber, “Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating,” Green Chemistry, vol. 12, no. 8, pp. 1423–1429, Aug. 2010, doi: 10.1039/C003459B.34. C. Sener, A. H. Motagamwala, D. M. Alonso, and J. A. Dumesic, “Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures,” ChemSusChem, vol. 11, no. 14, pp. 2321–2331, Jul. 2018, doi: 10.1002/CSSC.201800730.35. T. Huang et al., “Preparation of Furfural From Xylose Catalyzed by Diimidazole Hexafluorophosphate in Microwave,” Front Chem, vol. 9, p. 727382, Sep. 2021, doi: 10.3389/FCHEM.2021.727382/BIBTEX.36. E. Rakić, A. Kostyniuk, N. Nikačević, and B. Likozar, “Reaction microkinetic model of xylose dehydration to furfural over beta zeolite catalyst,” Biomass Convers Biorefin, vol. 1, pp. 1–15, Oct. 2023, doi: 10.1007/S13399-023-04969-1/TABLES/2.37.A. F. Siegel and M. R. Wagner, “ANOVA: Testing for Differences Among Many Samples and Much More,” Practical Business Statistics, pp. 485–510, Jan. 2022, doi: 10.1016/B978-0-12-820025-4.00015-4.38. G. Gómez Millán, Z. El Assal, K. Nieminen, S. Hellsten, J. Llorca, and H. Sixta, “Fast furfural formation from xylose using solid acid catalysts assisted by a microwave reactor,” Fuel Processing Technology, vol. 182, pp. 56–67, Dec. 2018, doi: 10.1016/J.FUPROC.2018.10.013.39. Selective Conversion of Biomass Hemicellulose to Furfural Using Maleic Acid with Microwave Heating. Energy & Fuels, 26(2), 1298–1304 | 10.1021/ef2014106.” Accessed: Apr. 02, 2023. [Online]. Available: https://pubs.acs.org/doi/abs/10.1021/ef201410640. W. Cortés and A. María Campos Rosario, “CONVERSION OF D-XYLOSE INTO FURFURAL WITH ALUMINUM AND HAFNIUM PILLARED CLAYS AS CATALYST CONVERSION DE D-XILOSA A FURFURAL CON ARCILLAS PILARIZADAS CON ALUMINIO Y HAFNIO COMO CATALIZADORES YINETH PIÑEROS-CASTRO,” vol. 80, pp. 105–112, 2013, Accessed: Aug. 14, 2024. [Online]. Available: http://www.redalyc.org/articulo.oa?id=4962745501541. C. Xiouras, N. Radacsi, G. Sturm, and G. D. Stefanidis, “Furfural synthesis from D-xylose in the presence of sodium chloride: Microwave versus conventional heating,” ChemSusChem, vol. 9, no. 16, pp. 2159–2166, Aug. 2016, doi: 10.1002/cssc.201600446.42. L. Ye, Y. Han, X. Wang, X. Lu, X. Qi, and H. Yu, “Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection,” Molecular Catalysis, vol. 515, p. 111899, Oct. 2021, doi: 10.1016/J.MCAT.2021.111899.43. C. P. Jiménez-Gómez, “Gas-phase hydrogenation of furfural over Cu/CeO2 catalysts”.spaORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1366461https://repositorio.unbosque.edu.co/bitstreams/2fd3137e-493d-4655-975c-a22930205563/download94a0e17495246cc93fa5c0143df16719MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/6f5be495-06bc-489d-a4bc-4af630510ab9/download17cc15b951e7cc6b3728a574117320f9MD57CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/c83127de-f46c-4d04-82d4-cb503ac80a5b/download5643bfd9bcf29d560eeec56d584edaa9MD58TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain66792https://repositorio.unbosque.edu.co/bitstreams/885814fd-4943-43e3-96ea-011fc7bf3e23/download8b173fb8fafc3482fa3ecc225e6081d8MD59THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg4926https://repositorio.unbosque.edu.co/bitstreams/54445c60-fb3f-4a37-8c33-364b0ce131a1/download839d6eae03bc3fe5c023254816695884MD51020.500.12495/14390oai:repositorio.unbosque.edu.co:20.500.12495/143902025-05-20 05:03:03.733http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=