Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos

Los dientes tratados endodónticamente (DTE) tienden a ser más frágiles y propensos a fracturas debido a que con la realización de la cavidad de acceso y la preparación endodóntica, pierden colágeno, afectando las propiedades físicas y mecánicas de la dentina. Para la restauración conservadora de est...

Full description

Autores:
Beltran Charpentier, Keinly Maythe
Castillo Sanchez, Julieth Marcela
Martinez Avila, Aryerith Daniela
Tipo de recurso:
https://purl.org/coar/resource_type/c_7a1f
Fecha de publicación:
2024
Institución:
Universidad El Bosque
Repositorio:
Repositorio U. El Bosque
Idioma:
spa
OAI Identifier:
oai:repositorio.unbosque.edu.co:20.500.12495/12875
Acceso en línea:
https://hdl.handle.net/20.500.12495/12875
Palabra clave:
Endocorona
Biomecánica
CAD-CAM
Análisis de elementos finitos
Molares superiores
Endocrown
Biomechanics
CAD-CAM
Finite Element Analysis
Upper molars
WU 500
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNBOSQUE2_1315bc8f75e709b79b839924f801580c
oai_identifier_str oai:repositorio.unbosque.edu.co:20.500.12495/12875
network_acronym_str UNBOSQUE2
network_name_str Repositorio U. El Bosque
repository_id_str
dc.title.none.fl_str_mv Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
dc.title.translated.none.fl_str_mv Assessment of the mechanical behavior in upper molars of endocrowns made in different CAD-CAM materials. Finite element analysis
title Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
spellingShingle Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
Endocorona
Biomecánica
CAD-CAM
Análisis de elementos finitos
Molares superiores
Endocrown
Biomechanics
CAD-CAM
Finite Element Analysis
Upper molars
WU 500
title_short Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
title_full Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
title_fullStr Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
title_full_unstemmed Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
title_sort Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitos
dc.creator.fl_str_mv Beltran Charpentier, Keinly Maythe
Castillo Sanchez, Julieth Marcela
Martinez Avila, Aryerith Daniela
dc.contributor.advisor.none.fl_str_mv Luna Angel, Luis Eduardo
Tamayo muñoz, Martha Cecilia
Rios Linares, Ricardo Augusto
dc.contributor.author.none.fl_str_mv Beltran Charpentier, Keinly Maythe
Castillo Sanchez, Julieth Marcela
Martinez Avila, Aryerith Daniela
dc.subject.none.fl_str_mv Endocorona
Biomecánica
CAD-CAM
Análisis de elementos finitos
Molares superiores
topic Endocorona
Biomecánica
CAD-CAM
Análisis de elementos finitos
Molares superiores
Endocrown
Biomechanics
CAD-CAM
Finite Element Analysis
Upper molars
WU 500
dc.subject.keywords.none.fl_str_mv Endocrown
Biomechanics
CAD-CAM
Finite Element Analysis
Upper molars
dc.subject.nlm.none.fl_str_mv WU 500
description Los dientes tratados endodónticamente (DTE) tienden a ser más frágiles y propensos a fracturas debido a que con la realización de la cavidad de acceso y la preparación endodóntica, pierden colágeno, afectando las propiedades físicas y mecánicas de la dentina. Para la restauración conservadora de estos dientes se ha sugerido el uso de las endocoronas, que son restauraciones monobloque CAD-CAM que se retienen macro-mecánicamente en la parte interna de la cámara pulpar, micro-mecánicamente mediante unión adhesiva a la estructura dental remanente. Sin embargo, se ha observado que la altura de las paredes remanentes del diente y las características mecánicas de los diferentes materiales de restauración pueden afectar el comportamiento mecánico de estas restauraciones por lo que es muy importante su estudio. Objetivo: Examinar el comportamiento mecánico de un molar superior preparado con diferentes alturas de tejido dental remanente restaurado con endocoronas elaboradas en diferentes materiales CAD-CAM mediante el método de elementos finitos EF. Métodos: En este estudio experimental con modelo de simulación matemático por computador, se desarrollaron 8 modelos de EF de endocoronas sobre un molar superior con dos alturas DE remanente dentario; 1.5 y 2mm, fabricadas en cuatro materiales CAD-CAM: Disilicato de litio[LS2], cerámica híbrida [CH], bloques de resina compuesta [BRC] y polímero de alto rendimiento [PAR]. Los datos de características mecánicas de los materiales de- modulo elástico [ME] y Coeficiente de Poisson [CP]– fueron extraídos de fichas técnicas, de estudios experimentales in vitro y de experimentales de EF seleccionados a partir búsquedas sistematizadas de literatura. A partir de ellos se estructuraron las matrices con los datos con mayor moda los cuales fueron aplicados a los modelos de EF diagramados. En una segunda fase se realizó la diagramación y análisis de EF; el modelo de la estructura dental se obtuvo a partir de una tomografía axial de haz cónico del diente 26 tratado endodónticamente. Se diagramaron tres dibujos bidimensionales: 2 relacionados con la altura del remanente dental y el otro con diseño de la endocorona, los cuales se importaron en formato STL al programa ANSYS Workbench, donde se aplicó el modelo. Los resultados se evaluaron de manera cualitativa y cuantitativa mediante los parámetros de Von-Mises. Resultados: Con base en los resultados de búsqueda se establecieron los siguientes para datos de ME y CP para DL [ME=95.000-CP=0,21], para CH [ME=37.800-CP=0,24], para BRC [ME=10.300 -CP=0,3] y para PAR [ME=4.100-CP=0,3]. A partir de la búsqueda también se determinó que la magnitud de la fuerza aplicada de manera axial seria de 600N distribuida en los puntos simulados ABC. En la fase de diagramación se elaboró cada modelo con 1´589.550 nodos y 1´103.114 elementos tetraedros. Los resultados del análisis muestran que a nivel de esfuerzo los modelos de L2S fueron los que presentaron el mejor comportamiento mecánico para la endocorona tanta en altura de tejido remanente de 1.5 mm (Esfuerzo: 487,19 MPa) como para 2mm (Esfuerzo: 504,28 MPa). Y en cuanto a la mayor deformación se observó en el modelo de PAR también para las dos alturas de remante dentario; para 1.5 mm (Deformación 0,11558 mm/mm), y para 2 mm (Deformación 0,11463 mm/mm). Conclusiones: Dentro de los límites de este estudio se puede concluir que los materiales menos rígidos son los que ayudan a disipar las cargas axiales en el diente tratado endodónticamente por ende son los ideales para aumentar su longevidad.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-14T02:35:20Z
dc.date.available.none.fl_str_mv 2024-08-14T02:35:20Z
dc.date.issued.none.fl_str_mv 2024-07
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.coar.none.fl_str_mv https://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coarversion.none.fl_str_mv https://purl.org/coar/version/c_970fb48d4fbd8a85
format https://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12495/12875
dc.identifier.instname.spa.fl_str_mv instname:Universidad El Bosque
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad El Bosque
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.unbosque.edu.co
url https://hdl.handle.net/20.500.12495/12875
identifier_str_mv instname:Universidad El Bosque
reponame:Repositorio Institucional Universidad El Bosque
repourl:https://repositorio.unbosque.edu.co
dc.language.iso.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abtahi S, Alikhasi M, Siadat H. Biomechanical behavior of endocrown restorations with different cavity design and CAD-CAM materials under a static and vertical load: A finite element analysis. J Prosthet Dent. 2022;8: S0022-3913(21)00696-X.
AboElhassan RG, Watts DC, Alamoush RA, Elraggal A. Biomechanical behavior and Weibull survival of CAD-CAM endocrowns with different marginal designs: A 3D finite element analysis. Dent Mater. 2024;40(2):227-235.
Acar DH, Kalyoncuoğlu E. The fracture strength of endocrowns manufactured from different hybrid blocks under axial and lateral forces. Clin Oral Investig. 2021;25(4):1889-1897.
Aguirre A, Rodríguez T, Abad Y. Endodontically treated posterior teeth: Alternatives for their rehabilitation based on scientific evidence. Literature review. 2021;10(3):2525-3409.
Al-Dabbagh RA. Survival and success of endocrowns: A systematic review and meta-analysis. J Prosthet Dent. 2021;125(3): 415.e1-415.
Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;23;2018:4893143.
Amini A, Zeighami S, Ghodsi S. Comparison of Marginal and Internal Adaptation in Endocrowns Milled from Translucent Zirconia and Zirconium Lithium Silicate. Int J Dent. 2021;7; 2021:1544067.
Ang Y, Tew IM. Conservative management of extensively damaged endodontically treated tooth using computer‐aided design and computer‐aided manufacturing‐based hybrid‐ceramic endocrown: A clinical report. J Conserv Dent 2020;23:644‐7.
Aparna J, Maiti S, Jessy P. Polyether ether ketone - As an alternative biomaterial for Metal Richmond crown-3-dimensional finite element analysis. J Conserv Dent. 2021;24(6):553-557.
Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-93.
Barallat L, Arregui M, Fernandez-Villar S, Paniagua B, Pascual-La Rocca A. Fracture Resistance in Non-Vital Teeth: Absence of Interproximal Ferrule and Influence of Preparation Depth in CAD/CAM Endocrown Overlays-An In Vitro Study. Materials (Basel). 2022;15(2):436.
Barreiro-Lara,Soto-Mestre. Diseño y elaboración de un programa de elemento finito para estudios de biomecánica en prostodoncia. Molares superiores e inferiores – validación de matrices. 2014.
Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. J Med Life. 2019;12(1):5-9.
Beauchamp TL, Childress JF. Principles of biomedical ethics. 6ª ed. New York (NY): Oxford University Press; 2009.
Biacchi GR, Mello B, Basting RT. The endocrown: an alternative approach for restoring extensively damaged molars. J Esthet Restor Dent. 2013;25(6):383-90.
Coldea A, Swain M V, Thiel N, Cam CAD. Mechanical properties of polymer-infiltratedceramic-network materials. Dent Mater. 2013;29(4):419–26.
Da Cunha LF, Gonzaga CC, Pissaia JF, Correr GM. Lithium silicate endocrown fabricated with a CAD-CAM system: A functional and esthetic protocol. J Prosthet Dent. 2017;118(2):131-134.
Da Fonseca GF, Dal Piva AM, Tribst JP, Borges AL. Influence of Restoration Height and Masticatory Load Orientation on Ceramic Endocrowns. J Contemp Dent Pract. 2018;19(9):1052-1057.
Dal Piva AMO, Tribst JPM, Borges ALS, Souza ROAE, Bottino MA. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent Mater. 2018;34(9):1342-1350.
Dartora G, Rocha Pereira GK, Varella de Carvalho R, Zucuni CP, Valandro LF, Cesar PF, Caldas RA, Bacchi A. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution. J Mech Behav Biomed Mater. 2019;100:103401.
Dartora NR, Maurício Moris IC, Poole SF, Bacchi A, Sousa-Neto MD, Silva-Sousa YT, Gomes EA. Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. J Prosthet Dent. 2021;125(1):117-125.
Darwich MA, Aljareh A, Alhouri N, Szávai S, Nazha HM, Duvigneau F, Juhre D. Biomechanical Assessment of Endodontically Treated Molars Restored by Endocrowns Made from Different CAD/CAM Materials. Materials (Basel). 2023;12;16(2):764.
Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater. 2013;29(12):e309-17.
Dejak B, Młotkowski A. A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication - FEA. Dent Mater. 2020;36(7):854-864.
Dimitriu B, Vârlan C, Suciu I, Vârlan V, Bodnar D. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy. J Med Life. 2009;2(1):60-5.
D’souza KM, Aras MA. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials. J Indian Prosthodont Soc.2017;17: 53-60.
Einhorn M, DuVall N, Wajdowicz M, Brewster J, Roberts H. Preparation Ferrule Design Effect on Endocrown Failure Resistance. J Prosthodont. 2019;28(1):e237-e242.
Elashmawy Y, Aboushelib M, Elshahawy W. Retention of different CAD/CAM endocrowns bonded to severely damaged endodontically treated teeth: An in vitro study. J Indian Prosthodont Soc. 2021;21:269-75.
El Ghoul WE, Özcan M, Silwadi M, Salameh Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J Esthet Restor Dent. 2019;31(4):378-387.
El Ghoul WE, Özcan M, Ounsi H, Tohme H, Salameh Z. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. J Prosthet Dent. 2020;123(1):128-134.
El Ghoul WE, Özcan M, Tribst JPM, Salameh Z. Fracture resistance, failure mode and stress concentration in a modified endocrown design. Biomater Investig Dent. 2020;7;7(1):110-119.
El-Ma'aita A, A Al-Rabab'ah M, Abu-Awwad M, Hattar S, Devlin H. Endocrowns Clinical Performance and Patient Satisfaction: A Randomized Clinical Trial of Three Monolithic Ceramic Restorations. J Prosthodont. 2022;31(1):30-37.
Eskitaşçioğlu, M., Küçük, O., Eskitaşçioğlu, G. et al. The Effect of Different Materials and Techniques on Stress Distribution in CAD/CAM Endocrowns. Strength Mater 2020; 52, 812–819.
Gong Q, Huang L, Luo J, Zhang Y, Meng Q, Quan J, Tong Z. The practicability of different preparation of mandibular molar restored by modified endocrown with intracanal extension: Computational analysis using finite element models. Comput Methods Programs Biomed. 2022;226:107178.
Govare N, Contrepois M. Endocrowns: A systematic review. J Prosthet Dent. 2020;123(3):411-418.
Gresnigt MM, Özcan M, van den Houten ML, Schipper L, Cune MS. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater. 2016; 32:607-14.
Grbović A, Mihajlović D. Practical Aspects of Finite Element Method Applications in Dentistry. Balk J Dent Med, 2017;69-77.
Haralur SB, Alamrey AA, Alshehri SA, Alzahrani DS, Alfarsi M. Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns. J Appl Biomater Funct Mater. 2020;18:2280800020947329.
Hafez Shereen, Hafez Amir, Amr Haitham, Aboudorra Hesham. Effect of Different Filler Loading on Fracture Resistance of CAD/CAM Resin Composite restoration in Premolar Teeth: An In vitro Study. Egyptian Dental Journal. 2019;2457-2465.
Helal MA, Wang Z. Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post-Retained Conventional Crown: 3D Finite Element Analysis. J Prosthodont. 2019;28(9):988-996.
Jaramillo H. Resistencia de materiales, algunos temas especiales. Universidad Autónoma de occidente; 2017.
Joshna B, Kuzhanchinathan M, Balaji L. Biomechanical stress analysis of ceramic and indirect hybrid composite endocrowns: A three-dimensional finite element analysis. Endodontology.2022;34(2),115-120.
Konda Prasad, SA Tarannum, Basic principles of finite element method and its applications in orthodontics journal of pharmaceutical and biomedical sciences S, 2012, 16(11)
Lin J, Lin Z, Zheng Z. Effect of different restorative crown design and materials on stress distribution in endodontically treated molars: a finite element analysis study. BMC Oral Health. 2020 Aug 18;20(1):226.
Li X, Kang T, Zhan D, Xie J, Guo L. Biomechanical behavior of endocrowns vs fiber post-core-crown vs cast post-core-crown for the restoration of maxillary central incisors with 1 mm and 2 mm ferrule height: A 3D static linear finite element analysis. Medicine (Baltimore). 2020;23;99(43):e22648.
Mann S, Kumar S, Paul R. Endocrown: an alternative approach for post endodontic restoration in molars. Department of Conservative Dentistry & Endodontics. 2020.
Meng Q, Zhang Y, Chi D, Gong Q, Tong Z. Resistance fracture of minimally prepared endocrowns made by three types of restorative materials: a 3D finite element analysis. J Mater Sci Mater Med. 2021 Oct 30;32(11):137.
Papalexopoulos D, Samartzi TK, Sarafianou A. A Thorough Analysis of the Endocrown Restoration: A Literature Review. J Contemp Dent Pract. 2021;1;22(4):422-426.
Rao, S. The finite element method in engineering. 6ta ed. United Kingdom: Butterworth-heinemann;2017.
Russell AA, Chandler NP, Friedlander LT. Vertical root fractures in root canal-treated teeth. Endodontic Practice Today. ENDO (Lond Engl). 2017;11(3):173–82.
Sahebi M, Ghodsi S, Berahman P, Amini A, Zeighami S. Comparison of retention and fracture load of endocrowns made from zirconia and zirconium lithium silicate after aging: an in vitro study. BMC Oral Health. 2022;16;22(1):41
Salazar Marocho SM, Studart AR, Bottino MA, Bona AD. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater. 2010;26(5):483-90.
Schwartz RS, Robbins JW. Post Placement and Restoration of Endodontically Treated Teeth: A Literature Review. 2004;(14).
Shams A, Elsherbini M, Elsherbiny AA, Özcan M, Sakrana AA. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater. 2022;126:105031.
Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H, Arksornnukit M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J. 2016;35(4):668-74.
Soares CJ, Rodrigues MP, Faria-E-Silva AL, Santos-Filho PCF, Veríssimo C, Kim HC, Versluis A. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz Oral Res. 2018;18;32(suppl 1):e76.
Soliman M, Alshamrani L, Yahya B, Alajlan G, Aldegheishem A, Eldwakhly E. Monolithic Endocrown Vs. Hybrid Intraradicular Post/Core/Crown Restorations for Endodontically Treated Teeth; Cross-sectional Study. Saudi J Biol Sci. 2021;28(11):6523-6531.
Sumit D, Debkant J, Sashirekha G, Siba Prasad J, Naomi Ranjan S. Endocrowns: A Comprehensive Review. Indian J Forensic Med Toxicol, 2020;14;4, 8360–8364.
Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res. 2010;21(3):425-32.
Taha D, Spintzyk S, Sabet A, Wahsh M, Salah T. Assessment of marginal adaptation and fracture resistance of endocrown restorations utilizing different machinable blocks subjected to thermomechanical aging. J Esthet Restor Dent. 2018;30(4):319-328.
Theivendran K, Arshad F, Hanif UK, Reito A, Griffin X, Foote CJ. Carbon fibre reinforced PEEK versus traditional metallic implants for orthopaedic trauma surgery: A systematic review. J Clin Orthop Trauma. 2021;28.23:101674
Tribst JPM, Dal Piva AMO, Madruga CFL, Valera MC, Borges ALS, Bresciani E, de Melo RM. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;34(10):1466-73.
Tribst JP, Dal Piva AO, Madruga CF, Valera MC, Bresciani E, Bottino MA, de Melo RM. The impact of restorative material and ceramic thickness on CAD\CAM endocrowns. J Clin Exp Dent. 2019;1;11(11):e969-e977.
Tribst JPM, Dal Piva AMO, de Jager N, Bottino MA, de Kok P, Kleverlaan CJ. Full-Crown Versus Endocrown Approach: A 3D-Analysis of Both Restorations and the Effect of Ferrule and Restoration Material. J Prosthodont. 2021;30(4):335-344.
Tribst JPM, Lo Giudice R, Dos Santos AFC, Borges ALS, Silva-Concílio LR, Amaral M, Lo Giudice G. Lithium Disilicate Ceramic Endocrown Biomechanical Response According to Different Pulp Chamber Extension Angles and Filling Materials. Materials (Basel). 2021;9;14(5):1307.
Turkistani AA, Dimashkieh M, Rayyan M. Fracture resistance of teeth restored with endocrowns: An in vitro study. J Esthet Restor Dent. 2020;32(4):389-394.
Türksayar AAD, Atsü SS. Fracture Resistance of Zirconia, Polyetheretherketone, and Polyetherketoneketone Implant Abutments After Aging. Int J Oral Maxillofac Implants. 2021
Ural Ç, Çağlayan E. A 3-dimensional finite element and in vitro analysis of endocrown restorations fabricated with different preparation designs and various restorative materials. J Prosthet Dent. 2021;126(4):586.e1-586.e9.
Vaidyanathan AK, Banu RF. Finite element analysis - Concepts for knowledge and implementation in dental research. J Indian Prosthodont Soc. 2022 Jul-Sep;22 (3):211-214
Yang J, Han F, Chen C, Xie H. Comparison of stress distribution between zirconia/alloy endocrown and CAD/CAM multi-piece zirconia post-crown: three-dimensional finite element analysis. Clin Oral Investig. 2022;26(7):5007-5017.
Yildirim G, Demir C, Güven MÇ, Koç O, Dalkiliç EE. Influence of fiber insertion and different material type on stress distribution in endocrown restorations: a 3D-FEA study. Comput Methods Biomech Biomed Engin. 2022;25(13):1509-1519.
Zimmermann M, Ender A, Egli G, Özcan M, Mehl A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Investig. 2019;23(6):2777-2784.
Zou Y, Bai J, Xiang J. Clinical performance of CAD/CAM-fabricated monolithic zirconia endocrowns on molars with extensive coronal loss of substance. Int J Comput Dent. 2018;21(3):225-232.
Zulfa Noor HF, Abidin T, Tarigan R, Indra. A Simulation of Fracture Resistance and Stress Distribution of Endocrown in Different Depth of Pulp Chamber and Modification: Finite Element Analysis. J Int Dent Med Res 2021; 14(2): 606-612.
Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.
Zhang Y, Lai H, Meng Q, Gong Q, Tong Z. The synergetic effect of pulp chamber extension depth and occlusal thickness on stress distribution of molar endocrowns: a 3-dimensional finite element analysis. J Mater Sci Mater Med. 2022;20;33(7):56.
Zheng Z, He Y, Ruan W, Ling Z, Zheng C, Gai Y, Yan W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J Prosthet Dent. 2021;125(6):890-899.
Zheng Z, Sun J, Jiang L, Wu Y, He J, Ruan W, Yan W. Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis. BMC Oral Health. 2022;22(1):30.
Zhu J, Wang D, Rong Q, Qian J, Wang X. Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars. Dent Mater J. 2020;39(3):464-470.
Zhu J, Li S, Wang D, Li D, Wang X, Rong Q. Effect of remaining pericervical dentin on biomechanical behavior of endocrown-restored molars with different materials: Three-dimensional finite element and Weibull analyses. Dent Mater J. 2023;29;42(5):683-691.
dc.rights.en.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.local.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Especialización en prostodoncia
dc.publisher.grantor.spa.fl_str_mv Universidad El Bosque
dc.publisher.faculty.spa.fl_str_mv Facultad de Odontología
institution Universidad El Bosque
bitstream.url.fl_str_mv https://repositorio.unbosque.edu.co/bitstreams/fcdd35ee-8459-4e63-8931-441e7d898ec9/download
https://repositorio.unbosque.edu.co/bitstreams/4a040346-3a40-493a-8579-0f60f6ab1536/download
https://repositorio.unbosque.edu.co/bitstreams/7b76c0ff-126f-412d-b468-c31135707f0e/download
https://repositorio.unbosque.edu.co/bitstreams/9e4fea0a-4678-4ba9-bd7b-7e81140bcf1d/download
https://repositorio.unbosque.edu.co/bitstreams/a22ddb52-5ca9-4be4-b300-7a3bc2d7d7f7/download
https://repositorio.unbosque.edu.co/bitstreams/6c5b5965-c4e2-4395-9ee1-82a26a02ac54/download
https://repositorio.unbosque.edu.co/bitstreams/e5794b91-7b74-4461-b651-13cf4ccffaed/download
https://repositorio.unbosque.edu.co/bitstreams/c9c96d48-9a5f-4dde-995e-e2761b5c8427/download
bitstream.checksum.fl_str_mv 6b9165d1198ae4c6ee446e43270de0f8
5643bfd9bcf29d560eeec56d584edaa9
17cc15b951e7cc6b3728a574117320f9
775da328cc16b889bb1aab26bd2a2a3c
7bb615f164080acaccef597ec964eda7
3563f826aa0a4b0ce7382a4e3c9bf758
74143b3af75a9f9a0b8e1f563d4ebe76
72494b053d61ac539fa524c5174ae039
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad El Bosque
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1808397386344562688
spelling Luna Angel, Luis EduardoTamayo muñoz, Martha CeciliaRios Linares, Ricardo AugustoBeltran Charpentier, Keinly MaytheCastillo Sanchez, Julieth MarcelaMartinez Avila, Aryerith Daniela2024-08-14T02:35:20Z2024-08-14T02:35:20Z2024-07https://hdl.handle.net/20.500.12495/12875instname:Universidad El Bosquereponame:Repositorio Institucional Universidad El Bosquerepourl:https://repositorio.unbosque.edu.coLos dientes tratados endodónticamente (DTE) tienden a ser más frágiles y propensos a fracturas debido a que con la realización de la cavidad de acceso y la preparación endodóntica, pierden colágeno, afectando las propiedades físicas y mecánicas de la dentina. Para la restauración conservadora de estos dientes se ha sugerido el uso de las endocoronas, que son restauraciones monobloque CAD-CAM que se retienen macro-mecánicamente en la parte interna de la cámara pulpar, micro-mecánicamente mediante unión adhesiva a la estructura dental remanente. Sin embargo, se ha observado que la altura de las paredes remanentes del diente y las características mecánicas de los diferentes materiales de restauración pueden afectar el comportamiento mecánico de estas restauraciones por lo que es muy importante su estudio. Objetivo: Examinar el comportamiento mecánico de un molar superior preparado con diferentes alturas de tejido dental remanente restaurado con endocoronas elaboradas en diferentes materiales CAD-CAM mediante el método de elementos finitos EF. Métodos: En este estudio experimental con modelo de simulación matemático por computador, se desarrollaron 8 modelos de EF de endocoronas sobre un molar superior con dos alturas DE remanente dentario; 1.5 y 2mm, fabricadas en cuatro materiales CAD-CAM: Disilicato de litio[LS2], cerámica híbrida [CH], bloques de resina compuesta [BRC] y polímero de alto rendimiento [PAR]. Los datos de características mecánicas de los materiales de- modulo elástico [ME] y Coeficiente de Poisson [CP]– fueron extraídos de fichas técnicas, de estudios experimentales in vitro y de experimentales de EF seleccionados a partir búsquedas sistematizadas de literatura. A partir de ellos se estructuraron las matrices con los datos con mayor moda los cuales fueron aplicados a los modelos de EF diagramados. En una segunda fase se realizó la diagramación y análisis de EF; el modelo de la estructura dental se obtuvo a partir de una tomografía axial de haz cónico del diente 26 tratado endodónticamente. Se diagramaron tres dibujos bidimensionales: 2 relacionados con la altura del remanente dental y el otro con diseño de la endocorona, los cuales se importaron en formato STL al programa ANSYS Workbench, donde se aplicó el modelo. Los resultados se evaluaron de manera cualitativa y cuantitativa mediante los parámetros de Von-Mises. Resultados: Con base en los resultados de búsqueda se establecieron los siguientes para datos de ME y CP para DL [ME=95.000-CP=0,21], para CH [ME=37.800-CP=0,24], para BRC [ME=10.300 -CP=0,3] y para PAR [ME=4.100-CP=0,3]. A partir de la búsqueda también se determinó que la magnitud de la fuerza aplicada de manera axial seria de 600N distribuida en los puntos simulados ABC. En la fase de diagramación se elaboró cada modelo con 1´589.550 nodos y 1´103.114 elementos tetraedros. Los resultados del análisis muestran que a nivel de esfuerzo los modelos de L2S fueron los que presentaron el mejor comportamiento mecánico para la endocorona tanta en altura de tejido remanente de 1.5 mm (Esfuerzo: 487,19 MPa) como para 2mm (Esfuerzo: 504,28 MPa). Y en cuanto a la mayor deformación se observó en el modelo de PAR también para las dos alturas de remante dentario; para 1.5 mm (Deformación 0,11558 mm/mm), y para 2 mm (Deformación 0,11463 mm/mm). Conclusiones: Dentro de los límites de este estudio se puede concluir que los materiales menos rígidos son los que ayudan a disipar las cargas axiales en el diente tratado endodónticamente por ende son los ideales para aumentar su longevidad.Grupo de investigacion UNIECLO-Unidad de Epidemiologia Clinica OralEspecialista en prostodonciaEspecializaciónEndodontically treated teeth (ETT) tend to be more fragile and prone to fractures because, with the completion of the access cavity and endodontic preparation, they lose collagen, affecting the physical and mechanical properties of dentin. For the conservative restoration of these teeth, the use of endocrowns has been suggested, which are CAD-CAM monobloc restorations that are retained macro-mechanically in the internal part of the pulp chamber, micro-mechanically by means of adhesive bonding to the remaining tooth structure. However, it has been observed that the height of the remaining walls of the tooth and the mechanical characteristics of the different restorative materials can affect the mechanical behavior of these restorations, making their study very important. Aim: To examine the mechanical behavior of an upper molar prepared with different heights of remaining tooth tissue restored with endocrowns made of different CAD-CAM materials using the FE finite element method. Methods: In this experimental study with a mathematical computer simulation model, 8 FE models of endocrowns were developed on an upper molar with two tooth remnant heights, 1.5 and 2mm, made in four CAD-CAM materials: lithium disilicate [LS2], hybrid ceramic [HC], composite resin blocks [CRB] and high-performance polymer [HPP]. The data on the mechanical characteristics of the materials - elastic modulus [EM] and Poisson's Coefficient [PC] - were extracted from data sheets, in vitro experimental studies, and FE experiments selected from systematized literature searches. Based on these data, matrices were structured with the data with the highest mode, which were applied to the diagrammed FE models. In a second phase, the FE diagramming and analysis were carried out; the tooth structure model was obtained from a cone beam axial tomography of endodontically treated tooth 26. Three two-dimensional drawings were diagrammed: 2 related to the height of the dental remnant and the other to the endocrowns design, which were imported in STL format into the ANSYS Workbench program, where the model was applied. The results were evaluated qualitatively and quantitatively using the Von-Mises parameters. Results: Based on the search results, the following were established for EM and PC data for LS2 [EM=95,000-PC=0.21], for HC [EM=37,800-PC=0.24], for CBR [EM=10,300 -PC=0.3] and for HPP [EM=4,100-PC=0.3]. From the search, it was also determined that the magnitude of the axially applied force would be 600N distributed over the simulated points ABC. In the diagramming phase, each model was prepared with 1,589,550 nodes and 1,103,114 tetrahedron elements. The results of the analysis show that at stress level, the LS2 models were the ones that presented the best mechanical behavior for the endocrown both in the height of the remaining tissue of 1.5 mm (Stress: 487.19 MPa) and for 2 mm (Stress: 504.28 MPa). The highest deformation was observed in the HPP model also for the two tooth remnant heights: 1.5 mm (Deformation 0.11558 mm/mm) and 2 mm (Deformation 0.11463 mm/mm). Conclusions: Within the limits of this study, it can be concluded that the less rigid materials are the ones that help dissipate axial loads in the endodontically treated tooth and, hence, are the ideal ones to increase its longevity.application/pdfAtribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertohttp://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessEndocoronaBiomecánicaCAD-CAMAnálisis de elementos finitosMolares superioresEndocrownBiomechanicsCAD-CAMFinite Element AnalysisUpper molarsWU 500Evaluación del comportamiento mecánico en molares superiores de las endocoronas fabricadas en diferentes materiales CAD-CAM. análisis de elementos finitosAssessment of the mechanical behavior in upper molars of endocrowns made in different CAD-CAM materials. Finite element analysisEspecialización en prostodonciaUniversidad El BosqueFacultad de OdontologíaTesis/Trabajo de grado - Monografía - Especializaciónhttps://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesishttps://purl.org/coar/version/c_970fb48d4fbd8a85Abtahi S, Alikhasi M, Siadat H. Biomechanical behavior of endocrown restorations with different cavity design and CAD-CAM materials under a static and vertical load: A finite element analysis. J Prosthet Dent. 2022;8: S0022-3913(21)00696-X.AboElhassan RG, Watts DC, Alamoush RA, Elraggal A. Biomechanical behavior and Weibull survival of CAD-CAM endocrowns with different marginal designs: A 3D finite element analysis. Dent Mater. 2024;40(2):227-235.Acar DH, Kalyoncuoğlu E. The fracture strength of endocrowns manufactured from different hybrid blocks under axial and lateral forces. Clin Oral Investig. 2021;25(4):1889-1897.Aguirre A, Rodríguez T, Abad Y. Endodontically treated posterior teeth: Alternatives for their rehabilitation based on scientific evidence. Literature review. 2021;10(3):2525-3409.Al-Dabbagh RA. Survival and success of endocrowns: A systematic review and meta-analysis. J Prosthet Dent. 2021;125(3): 415.e1-415.Alamoush RA, Silikas N, Salim NA, Al-Nasrawi S, Satterthwaite JD. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed Res Int. 2018;23;2018:4893143.Amini A, Zeighami S, Ghodsi S. Comparison of Marginal and Internal Adaptation in Endocrowns Milled from Translucent Zirconia and Zirconium Lithium Silicate. Int J Dent. 2021;7; 2021:1544067.Ang Y, Tew IM. Conservative management of extensively damaged endodontically treated tooth using computer‐aided design and computer‐aided manufacturing‐based hybrid‐ceramic endocrown: A clinical report. J Conserv Dent 2020;23:644‐7.Aparna J, Maiti S, Jessy P. Polyether ether ketone - As an alternative biomaterial for Metal Richmond crown-3-dimensional finite element analysis. J Conserv Dent. 2021;24(6):553-557.Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114(4):587-93.Barallat L, Arregui M, Fernandez-Villar S, Paniagua B, Pascual-La Rocca A. Fracture Resistance in Non-Vital Teeth: Absence of Interproximal Ferrule and Influence of Preparation Depth in CAD/CAM Endocrown Overlays-An In Vitro Study. Materials (Basel). 2022;15(2):436.Barreiro-Lara,Soto-Mestre. Diseño y elaboración de un programa de elemento finito para estudios de biomecánica en prostodoncia. Molares superiores e inferiores – validación de matrices. 2014.Bathala L, Majeti V, Rachuri N, Singh N, Gedela S. The Role of Polyether Ether Ketone (Peek) in Dentistry - A Review. J Med Life. 2019;12(1):5-9.Beauchamp TL, Childress JF. Principles of biomedical ethics. 6ª ed. New York (NY): Oxford University Press; 2009.Biacchi GR, Mello B, Basting RT. The endocrown: an alternative approach for restoring extensively damaged molars. J Esthet Restor Dent. 2013;25(6):383-90.Coldea A, Swain M V, Thiel N, Cam CAD. Mechanical properties of polymer-infiltratedceramic-network materials. Dent Mater. 2013;29(4):419–26.Da Cunha LF, Gonzaga CC, Pissaia JF, Correr GM. Lithium silicate endocrown fabricated with a CAD-CAM system: A functional and esthetic protocol. J Prosthet Dent. 2017;118(2):131-134.Da Fonseca GF, Dal Piva AM, Tribst JP, Borges AL. Influence of Restoration Height and Masticatory Load Orientation on Ceramic Endocrowns. J Contemp Dent Pract. 2018;19(9):1052-1057.Dal Piva AMO, Tribst JPM, Borges ALS, Souza ROAE, Bottino MA. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent Mater. 2018;34(9):1342-1350.Dartora G, Rocha Pereira GK, Varella de Carvalho R, Zucuni CP, Valandro LF, Cesar PF, Caldas RA, Bacchi A. Comparison of endocrowns made of lithium disilicate glass-ceramic or polymer-infiltrated ceramic networks and direct composite resin restorations: fatigue performance and stress distribution. J Mech Behav Biomed Mater. 2019;100:103401.Dartora NR, Maurício Moris IC, Poole SF, Bacchi A, Sousa-Neto MD, Silva-Sousa YT, Gomes EA. Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. J Prosthet Dent. 2021;125(1):117-125.Darwich MA, Aljareh A, Alhouri N, Szávai S, Nazha HM, Duvigneau F, Juhre D. Biomechanical Assessment of Endodontically Treated Molars Restored by Endocrowns Made from Different CAD/CAM Materials. Materials (Basel). 2023;12;16(2):764.Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater. 2013;29(12):e309-17.Dejak B, Młotkowski A. A comparison of mvM stress of inlays, onlays and endocrowns made from various materials and their bonding with molars in a computer simulation of mastication - FEA. Dent Mater. 2020;36(7):854-864.Dimitriu B, Vârlan C, Suciu I, Vârlan V, Bodnar D. Current considerations concerning endodontically treated teeth: alteration of hard dental tissues and biomechanical properties following endodontic therapy. J Med Life. 2009;2(1):60-5.D’souza KM, Aras MA. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials. J Indian Prosthodont Soc.2017;17: 53-60.Einhorn M, DuVall N, Wajdowicz M, Brewster J, Roberts H. Preparation Ferrule Design Effect on Endocrown Failure Resistance. J Prosthodont. 2019;28(1):e237-e242.Elashmawy Y, Aboushelib M, Elshahawy W. Retention of different CAD/CAM endocrowns bonded to severely damaged endodontically treated teeth: An in vitro study. J Indian Prosthodont Soc. 2021;21:269-75.El Ghoul WE, Özcan M, Silwadi M, Salameh Z. Fracture resistance and failure modes of endocrowns manufactured with different CAD/CAM materials under axial and lateral loading. J Esthet Restor Dent. 2019;31(4):378-387.El Ghoul WE, Özcan M, Ounsi H, Tohme H, Salameh Z. Effect of different CAD-CAM materials on the marginal and internal adaptation of endocrown restorations: An in vitro study. J Prosthet Dent. 2020;123(1):128-134.El Ghoul WE, Özcan M, Tribst JPM, Salameh Z. Fracture resistance, failure mode and stress concentration in a modified endocrown design. Biomater Investig Dent. 2020;7;7(1):110-119.El-Ma'aita A, A Al-Rabab'ah M, Abu-Awwad M, Hattar S, Devlin H. Endocrowns Clinical Performance and Patient Satisfaction: A Randomized Clinical Trial of Three Monolithic Ceramic Restorations. J Prosthodont. 2022;31(1):30-37.Eskitaşçioğlu, M., Küçük, O., Eskitaşçioğlu, G. et al. The Effect of Different Materials and Techniques on Stress Distribution in CAD/CAM Endocrowns. Strength Mater 2020; 52, 812–819.Gong Q, Huang L, Luo J, Zhang Y, Meng Q, Quan J, Tong Z. The practicability of different preparation of mandibular molar restored by modified endocrown with intracanal extension: Computational analysis using finite element models. Comput Methods Programs Biomed. 2022;226:107178.Govare N, Contrepois M. Endocrowns: A systematic review. J Prosthet Dent. 2020;123(3):411-418.Gresnigt MM, Özcan M, van den Houten ML, Schipper L, Cune MS. Fracture strength, failure type and Weibull characteristics of lithium disilicate and multiphase resin composite endocrowns under axial and lateral forces. Dent Mater. 2016; 32:607-14.Grbović A, Mihajlović D. Practical Aspects of Finite Element Method Applications in Dentistry. Balk J Dent Med, 2017;69-77.Haralur SB, Alamrey AA, Alshehri SA, Alzahrani DS, Alfarsi M. Effect of different preparation designs and all ceramic materials on fracture strength of molar endocrowns. J Appl Biomater Funct Mater. 2020;18:2280800020947329.Hafez Shereen, Hafez Amir, Amr Haitham, Aboudorra Hesham. Effect of Different Filler Loading on Fracture Resistance of CAD/CAM Resin Composite restoration in Premolar Teeth: An In vitro Study. Egyptian Dental Journal. 2019;2457-2465.Helal MA, Wang Z. Biomechanical Assessment of Restored Mandibular Molar by Endocrown in Comparison to a Glass Fiber Post-Retained Conventional Crown: 3D Finite Element Analysis. J Prosthodont. 2019;28(9):988-996.Jaramillo H. Resistencia de materiales, algunos temas especiales. Universidad Autónoma de occidente; 2017.Joshna B, Kuzhanchinathan M, Balaji L. Biomechanical stress analysis of ceramic and indirect hybrid composite endocrowns: A three-dimensional finite element analysis. Endodontology.2022;34(2),115-120.Konda Prasad, SA Tarannum, Basic principles of finite element method and its applications in orthodontics journal of pharmaceutical and biomedical sciences S, 2012, 16(11)Lin J, Lin Z, Zheng Z. Effect of different restorative crown design and materials on stress distribution in endodontically treated molars: a finite element analysis study. BMC Oral Health. 2020 Aug 18;20(1):226.Li X, Kang T, Zhan D, Xie J, Guo L. Biomechanical behavior of endocrowns vs fiber post-core-crown vs cast post-core-crown for the restoration of maxillary central incisors with 1 mm and 2 mm ferrule height: A 3D static linear finite element analysis. Medicine (Baltimore). 2020;23;99(43):e22648.Mann S, Kumar S, Paul R. Endocrown: an alternative approach for post endodontic restoration in molars. Department of Conservative Dentistry & Endodontics. 2020.Meng Q, Zhang Y, Chi D, Gong Q, Tong Z. Resistance fracture of minimally prepared endocrowns made by three types of restorative materials: a 3D finite element analysis. J Mater Sci Mater Med. 2021 Oct 30;32(11):137.Papalexopoulos D, Samartzi TK, Sarafianou A. A Thorough Analysis of the Endocrown Restoration: A Literature Review. J Contemp Dent Pract. 2021;1;22(4):422-426.Rao, S. The finite element method in engineering. 6ta ed. United Kingdom: Butterworth-heinemann;2017.Russell AA, Chandler NP, Friedlander LT. Vertical root fractures in root canal-treated teeth. Endodontic Practice Today. ENDO (Lond Engl). 2017;11(3):173–82.Sahebi M, Ghodsi S, Berahman P, Amini A, Zeighami S. Comparison of retention and fracture load of endocrowns made from zirconia and zirconium lithium silicate after aging: an in vitro study. BMC Oral Health. 2022;16;22(1):41Salazar Marocho SM, Studart AR, Bottino MA, Bona AD. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater. 2010;26(5):483-90.Schwartz RS, Robbins JW. Post Placement and Restoration of Endodontically Treated Teeth: A Literature Review. 2004;(14).Shams A, Elsherbini M, Elsherbiny AA, Özcan M, Sakrana AA. Rehabilitation of severely-destructed endodontically treated premolar teeth with novel endocrown system: Biomechanical behavior assessment through 3D finite element and in vitro analyses. J Mech Behav Biomed Mater. 2022;126:105031.Silthampitag P, Chaijareenont P, Tattakorn K, Banjongprasert C, Takahashi H, Arksornnukit M. Effect of surface pretreatments on resin composite bonding to PEEK. Dent Mater J. 2016;35(4):668-74.Soares CJ, Rodrigues MP, Faria-E-Silva AL, Santos-Filho PCF, Veríssimo C, Kim HC, Versluis A. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz Oral Res. 2018;18;32(suppl 1):e76.Soliman M, Alshamrani L, Yahya B, Alajlan G, Aldegheishem A, Eldwakhly E. Monolithic Endocrown Vs. Hybrid Intraradicular Post/Core/Crown Restorations for Endodontically Treated Teeth; Cross-sectional Study. Saudi J Biol Sci. 2021;28(11):6523-6531.Sumit D, Debkant J, Sashirekha G, Siba Prasad J, Naomi Ranjan S. Endocrowns: A Comprehensive Review. Indian J Forensic Med Toxicol, 2020;14;4, 8360–8364.Srirekha A, Bashetty K. Infinite to finite: an overview of finite element analysis. Indian J Dent Res. 2010;21(3):425-32.Taha D, Spintzyk S, Sabet A, Wahsh M, Salah T. Assessment of marginal adaptation and fracture resistance of endocrown restorations utilizing different machinable blocks subjected to thermomechanical aging. J Esthet Restor Dent. 2018;30(4):319-328.Theivendran K, Arshad F, Hanif UK, Reito A, Griffin X, Foote CJ. Carbon fibre reinforced PEEK versus traditional metallic implants for orthopaedic trauma surgery: A systematic review. J Clin Orthop Trauma. 2021;28.23:101674Tribst JPM, Dal Piva AMO, Madruga CFL, Valera MC, Borges ALS, Bresciani E, de Melo RM. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;34(10):1466-73.Tribst JP, Dal Piva AO, Madruga CF, Valera MC, Bresciani E, Bottino MA, de Melo RM. The impact of restorative material and ceramic thickness on CAD\CAM endocrowns. J Clin Exp Dent. 2019;1;11(11):e969-e977.Tribst JPM, Dal Piva AMO, de Jager N, Bottino MA, de Kok P, Kleverlaan CJ. Full-Crown Versus Endocrown Approach: A 3D-Analysis of Both Restorations and the Effect of Ferrule and Restoration Material. J Prosthodont. 2021;30(4):335-344.Tribst JPM, Lo Giudice R, Dos Santos AFC, Borges ALS, Silva-Concílio LR, Amaral M, Lo Giudice G. Lithium Disilicate Ceramic Endocrown Biomechanical Response According to Different Pulp Chamber Extension Angles and Filling Materials. Materials (Basel). 2021;9;14(5):1307.Turkistani AA, Dimashkieh M, Rayyan M. Fracture resistance of teeth restored with endocrowns: An in vitro study. J Esthet Restor Dent. 2020;32(4):389-394.Türksayar AAD, Atsü SS. Fracture Resistance of Zirconia, Polyetheretherketone, and Polyetherketoneketone Implant Abutments After Aging. Int J Oral Maxillofac Implants. 2021Ural Ç, Çağlayan E. A 3-dimensional finite element and in vitro analysis of endocrown restorations fabricated with different preparation designs and various restorative materials. J Prosthet Dent. 2021;126(4):586.e1-586.e9.Vaidyanathan AK, Banu RF. Finite element analysis - Concepts for knowledge and implementation in dental research. J Indian Prosthodont Soc. 2022 Jul-Sep;22 (3):211-214Yang J, Han F, Chen C, Xie H. Comparison of stress distribution between zirconia/alloy endocrown and CAD/CAM multi-piece zirconia post-crown: three-dimensional finite element analysis. Clin Oral Investig. 2022;26(7):5007-5017.Yildirim G, Demir C, Güven MÇ, Koç O, Dalkiliç EE. Influence of fiber insertion and different material type on stress distribution in endocrown restorations: a 3D-FEA study. Comput Methods Biomech Biomed Engin. 2022;25(13):1509-1519.Zimmermann M, Ender A, Egli G, Özcan M, Mehl A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin Oral Investig. 2019;23(6):2777-2784.Zou Y, Bai J, Xiang J. Clinical performance of CAD/CAM-fabricated monolithic zirconia endocrowns on molars with extensive coronal loss of substance. Int J Comput Dent. 2018;21(3):225-232.Zulfa Noor HF, Abidin T, Tarigan R, Indra. A Simulation of Fracture Resistance and Stress Distribution of Endocrown in Different Depth of Pulp Chamber and Modification: Finite Element Analysis. J Int Dent Med Res 2021; 14(2): 606-612.Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-147.Zhang Y, Lai H, Meng Q, Gong Q, Tong Z. The synergetic effect of pulp chamber extension depth and occlusal thickness on stress distribution of molar endocrowns: a 3-dimensional finite element analysis. J Mater Sci Mater Med. 2022;20;33(7):56.Zheng Z, He Y, Ruan W, Ling Z, Zheng C, Gai Y, Yan W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J Prosthet Dent. 2021;125(6):890-899.Zheng Z, Sun J, Jiang L, Wu Y, He J, Ruan W, Yan W. Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis. BMC Oral Health. 2022;22(1):30.Zhu J, Wang D, Rong Q, Qian J, Wang X. Effect of central retainer shape and abduction angle during preparation of teeth on dentin and cement layer stress distributions in endocrown-restored mandibular molars. Dent Mater J. 2020;39(3):464-470.Zhu J, Li S, Wang D, Li D, Wang X, Rong Q. Effect of remaining pericervical dentin on biomechanical behavior of endocrown-restored molars with different materials: Three-dimensional finite element and Weibull analyses. Dent Mater J. 2023;29;42(5):683-691.spaORIGINALTrabajo final.pdfTrabajo final.pdfapplication/pdf8836575https://repositorio.unbosque.edu.co/bitstreams/fcdd35ee-8459-4e63-8931-441e7d898ec9/download6b9165d1198ae4c6ee446e43270de0f8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repositorio.unbosque.edu.co/bitstreams/4a040346-3a40-493a-8579-0f60f6ab1536/download5643bfd9bcf29d560eeec56d584edaa9MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82000https://repositorio.unbosque.edu.co/bitstreams/7b76c0ff-126f-412d-b468-c31135707f0e/download17cc15b951e7cc6b3728a574117320f9MD56Anexo 1 Acta de aprobacion.pdfapplication/pdf136506https://repositorio.unbosque.edu.co/bitstreams/9e4fea0a-4678-4ba9-bd7b-7e81140bcf1d/download775da328cc16b889bb1aab26bd2a2a3cMD57Anexo 2 Formato Biblioteca.pdfapplication/pdf334159https://repositorio.unbosque.edu.co/bitstreams/a22ddb52-5ca9-4be4-b300-7a3bc2d7d7f7/download7bb615f164080acaccef597ec964eda7MD58Carta de autorizacion.pdfapplication/pdf330521https://repositorio.unbosque.edu.co/bitstreams/6c5b5965-c4e2-4395-9ee1-82a26a02ac54/download3563f826aa0a4b0ce7382a4e3c9bf758MD59TEXTTrabajo final.pdf.txtTrabajo final.pdf.txtExtracted texttext/plain101740https://repositorio.unbosque.edu.co/bitstreams/e5794b91-7b74-4461-b651-13cf4ccffaed/download74143b3af75a9f9a0b8e1f563d4ebe76MD510THUMBNAILTrabajo final.pdf.jpgTrabajo final.pdf.jpgGenerated Thumbnailimage/jpeg2789https://repositorio.unbosque.edu.co/bitstreams/c9c96d48-9a5f-4dde-995e-e2761b5c8427/download72494b053d61ac539fa524c5174ae039MD51120.500.12495/12875oai:repositorio.unbosque.edu.co:20.500.12495/128752024-08-15 03:01:47.823http://creativecommons.org/licenses/by-nc-sa/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacionalopen.accesshttps://repositorio.unbosque.edu.coRepositorio Institucional Universidad El Bosquebibliotecas@biteca.comTGljZW5jaWEgZGUgRGlzdHJpYnVjacOzbiBObyBFeGNsdXNpdmEKClBhcmEgcXVlIGVsIFJlcG9zaXRvcmlvIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBhIHB1ZWRhIHJlcHJvZHVjaXIgeSBjb211bmljYXIgcMO6YmxpY2FtZW50ZSBzdSBkb2N1bWVudG8gZXMgbmVjZXNhcmlvIGxhIGFjZXB0YWNpw7NuIGRlIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcy4gUG9yIGZhdm9yLCBsZWEgbGFzIHNpZ3VpZW50ZXMgY29uZGljaW9uZXMgZGUgbGljZW5jaWE6CgoxLiBBY2VwdGFuZG8gZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yL2VzIG8gZWwgcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIGdhcmFudGl6YSBhIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSBhcmNoaXZhciwgcmVwcm9kdWNpciwgY29udmVydGlyIChjb21vIHNlIGRlZmluZSBtw6FzIGFiYWpvKSwgY29tdW5pY2FyIHkvbyBkaXN0cmlidWlyIHN1IGRvY3VtZW50byBtdW5kaWFsbWVudGUgZW4gZm9ybWF0byBlbGVjdHLDs25pY28uCgoyLiBUYW1iacOpbiBlc3TDoSBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgVW5pdmVyc2lkYWQgRWwgQm9zcXVlIHB1ZWRhIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGRvY3VtZW50byB5LCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8sIGNvbnZlcnRpcmxvIGEgY3VhbHF1aWVyIGZvcm1hdG8gZGUgZmljaGVybywgbWVkaW8gbyBzb3BvcnRlLCBwYXJhIHByb3DDs3NpdG9zIGRlIHNlZ3VyaWRhZCwgcHJlc2VydmFjacOzbiB5IGFjY2Vzby4KCjMuIERlY2xhcmEgcXVlIGVsIGRvY3VtZW50byBlcyB1biB0cmFiYWpvIG9yaWdpbmFsIHN1eW8geS9vIHF1ZSB0aWVuZSBlbCBkZXJlY2hvIHBhcmEgb3RvcmdhciBsb3MgZGVyZWNob3MgY29udGVuaWRvcyBlbiBlc3RhIGxpY2VuY2lhLiBUYW1iacOpbiBkZWNsYXJhIHF1ZSBzdSBkb2N1bWVudG8gbm8gaW5mcmluZ2UsIGVuIHRhbnRvIGVuIGN1YW50byBsZSBzZWEgcG9zaWJsZSBzYWJlciwgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIG5pbmd1bmEgb3RyYSBwZXJzb25hIG8gZW50aWRhZC4KCjQuIFNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIHNpbiByZXN0cmljY2nDs24gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBwYXJhIG90b3JnYXIgYSBsYSBVbml2ZXJzaWRhZCBFbCBCb3NxdWUgbG9zIGRlcmVjaG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIGVzZSBtYXRlcmlhbCBjdXlvcyBkZXJlY2hvcyBzb24gZGUgdGVyY2Vyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZW50cmVnYWRvLgoKNS4gU2kgZWwgZG9jdW1lbnRvIHNlIGJhc2EgZW4gdW5hIG9icmEgcXVlIGhhIHNpZG8gcGF0cm9jaW5hZGEgbyBhcG95YWRhIHBvciB1bmEgYWdlbmNpYSB1IG9yZ2FuaXphY2nDs24gZGlmZXJlbnRlIGRlIGxhIFVuaXZlcnNpZGFkIEVsIEJvc3F1ZSwgc2UgcHJlc3Vwb25lIHF1ZSBzZSBoYSBjdW1wbGlkbyBjb24gY3VhbHF1aWVyIGRlcmVjaG8gZGUgcmV2aXNpw7NuIHUgb3RyYXMgb2JsaWdhY2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVzdGUgY29udHJhdG8gbyBhY3VlcmRvLgoKNi4gVW5pdmVyc2lkYWQgRWwgQm9zcXVlIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdS9zIG5vbWJyZS9zIGNvbW8gZWwvbG9zIGF1dG9yL2VzIG8gcHJvcGlldGFyaW8vcyBkZSBsb3MgZGVyZWNob3MgZGVsIGRvY3VtZW50bywgeSBubyBoYXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGRlIHN1IGRvY3VtZW50byBkaWZlcmVudGUgYSBsYXMgcGVybWl0aWRhcyBlbiBlc3RhIGxpY2VuY2lhLgo=