Desarrollo de un modelo de predicción de crecimiento craneofacial en pacientes con labio y paladar hendido asistido por inteligencia artificial-Primera fase
Antecedentes: La Inteligencia artificial (IA) es la tecnología que permite desarrollar un software o una máquina que puede imitar la inteligencia humana, disminuye el trabajo manual y aumenta la exactitud. En la actualidad no existen estudios relacionados a la inteligencia artificial con un modelo d...
- Autores:
-
Portuese Martínez, Valentina
Sánchez Vargas, Ana Cristina
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad El Bosque
- Repositorio:
- Repositorio U. El Bosque
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unbosque.edu.co:20.500.12495/11266
- Acceso en línea:
- http://hdl.handle.net/20.500.12495/11266
- Palabra clave:
- Inteligencia artificial
Crecimiento craneofacial
Tecnología
Ortodoncia
Labio y paladar hendido
Artificial Intelligence
Cranio-facial growth
Technology
Orthodontics
Cleft lip and palate
WU400
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
Summary: | Antecedentes: La Inteligencia artificial (IA) es la tecnología que permite desarrollar un software o una máquina que puede imitar la inteligencia humana, disminuye el trabajo manual y aumenta la exactitud. En la actualidad no existen estudios relacionados a la inteligencia artificial con un modelo de predicción y labio y paladar hendido. Objetivo General: Desarrollar un modelo de predicción basado en inteligencia artificial por medio de imágenes cefálicas de paciente con labio y paladar hendido. Específicos: Desarrollar en la primera fase de la investigación un modelo de clasificación de labio y paladar hendido basado en inteligencia artificial por medio de imágenes cefálicas. Entrenar en la etapa final de la investigación un modelo de clasificación de hendiduras por medio de IA en pacientes con LPH. Diseñar en la segunda fase de estudio un software piloto que prediga el crecimiento craneofacial basado en inteligencia artificial por medio de imágenes digitales. Métodos: La recolección de las radiografías cefálicas se realizó en el archivo del Hospital universitario San José infantil (Bogotá, Colombia), Se realizó una base de datos con la información recolectada y las covaribles a tener en cuenta en este proyecto: Sexo de asignación, edad, diagnóstico de LPHB, LPHUI, LPHUD, fecha de nacimiento, fecha de la toma de las radiografías y número de radiografías laterales cefalicas por paciente. Cada paciente fue identificado de manera anónima con un número consecutivo; estas radiografías fueron escaneadas con el dispositivo Epson Expression 1680 y posteriormente se creó un piloto de software por parte de ingeniería de sistemas, con las radiografías cefálicas laterales ya digitalizadas, se realizó un ensayo de identificación de las hendiduras, clasificándolas en LPHB, LPHUI, LPHUD por medio de inteligencia artificial. Resultados: Se obtuvo como resultado 80 radiografías cefálicas que se dividieron en 19 LPHUD 26 LPHUI Y 36 LPHB y se desarrolló un software de identificación de hendiduras en radiografías cefálicas de pacientes con labio y paladar hendido. El cual fue construido por medio de diferentes fases, la fase de análisis, fase de diseño, fase de construcción, fase de pruebas y por último una fase de despliegue. Dicho software es capaz de identificar hendidura de LPHUD, LPHUI Y LPHB con una precisión de 61% y exactitud de 75%. Conclusiones: En el presente proyecto se ejecutó la primera fase del estudio que fue la creación de un software de imágenes de radiografías de perfil de pacientes con LPH. El cual identifica las estructuras de un paciente con esta anomalía y la clasifica según la hendidura. Se entrenó el software con las 8o radiografías de perfil, el cual arrojó una precisión de 61% y una exactitud de 75% aceptable, sin embargo, se necesita seguir entrenando el modelo para aumentar dicha precisión y exactitud. En una segunda fase se continuará entrenando el software y adicionalmente se realizará la ejecución de modelo de predicción de crecimiento craneofacial en pacientes con labio y paladar Hendido. |
---|