Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing
An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the biological behavior of neurons and the brain structure. The brain is a complex system; its basic processing unit are the neurons, which are distributed massively in the brain sharing multiple connectio...
- Autores:
-
Guzmán, Eduardo
Vázquez, Mario
Del Valle, David
Pérez-Rodríguez, Paulino
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66483
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66483
http://bdigital.unal.edu.co/67511/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Empirical Bayes
Nonlinear models
Parallel processing
Bayes emp\'irico
modelos no lineales
procesamiento en paralelo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_ffd163d239b8a930dd72bfd6dfead193 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66483 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
title |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
spellingShingle |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Empirical Bayes Nonlinear models Parallel processing Bayes emp\'irico modelos no lineales procesamiento en paralelo |
title_short |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
title_full |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
title_fullStr |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
title_full_unstemmed |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
title_sort |
Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing |
dc.creator.fl_str_mv |
Guzmán, Eduardo Vázquez, Mario Del Valle, David Pérez-Rodríguez, Paulino |
dc.contributor.author.spa.fl_str_mv |
Guzmán, Eduardo Vázquez, Mario Del Valle, David Pérez-Rodríguez, Paulino |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Empirical Bayes Nonlinear models Parallel processing Bayes emp\'irico modelos no lineales procesamiento en paralelo |
dc.subject.proposal.spa.fl_str_mv |
Empirical Bayes Nonlinear models Parallel processing Bayes emp\'irico modelos no lineales procesamiento en paralelo |
description |
An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the biological behavior of neurons and the brain structure. The brain is a complex system; its basic processing unit are the neurons, which are distributed massively in the brain sharing multiple connections between them. The ANNs try to emulate some characteristics of humans, and can be thought as intelligent systems that perform some tasks in a different way that actual computer does. The ANNs can be used to perform complex activities, for example: pattern recognition and classification, weather prediction, genetic values prediction, etc. The algorithms used to train the ANN, are in general complex, so therefore there is a need to have alternatives which lead to a significant reduction of times employed to train an ANN. In this work, we present an algorithm based in the strategy ``divide and conquer'' which allows to train an ANN with a single hidden layer. Part of the sub problems of the general algorithm used for training are solved by using parallel computing techniques, which allows to improve the performance of the resulting application. The proposed algorithm was implemented using the C++ programming language, and the libraries Open MPI and ScaLAPACK. We present some application examples and we asses the application performance. The results shown that it is possible to reduce significantly the time necessary to execute the program that implements the algorithm to train the ANN. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:12:54Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:12:54Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66483 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67511/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66483 http://bdigital.unal.edu.co/67511/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/55250 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Guzmán, Eduardo and Vázquez, Mario and Del Valle, David and Pérez-Rodríguez, Paulino (2018) Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing. Revista Colombiana de Estadística, 41 (2). pp. 173-189. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66483/1/55250-390957-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66483/2/55250-390957-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
ff56d3e25b8d2be3cc3d78b23499e092 5a3e3641ab3d5c7fe44ab0e342f465c7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089708311937024 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guzmán, Eduardo24b45206-f105-48c6-84c6-2024b0402ee1300Vázquez, Mario8283177f-5057-4ae7-ad6a-a86903a87c98300Del Valle, Davidc42e5e59-23df-465c-8dbd-4d6ff47309d8300Pérez-Rodríguez, Paulino8ec13c44-fdd4-4fd1-83cf-82a80ef5facd3002019-07-03T02:12:54Z2019-07-03T02:12:54Z2018-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66483http://bdigital.unal.edu.co/67511/An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the biological behavior of neurons and the brain structure. The brain is a complex system; its basic processing unit are the neurons, which are distributed massively in the brain sharing multiple connections between them. The ANNs try to emulate some characteristics of humans, and can be thought as intelligent systems that perform some tasks in a different way that actual computer does. The ANNs can be used to perform complex activities, for example: pattern recognition and classification, weather prediction, genetic values prediction, etc. The algorithms used to train the ANN, are in general complex, so therefore there is a need to have alternatives which lead to a significant reduction of times employed to train an ANN. In this work, we present an algorithm based in the strategy ``divide and conquer'' which allows to train an ANN with a single hidden layer. Part of the sub problems of the general algorithm used for training are solved by using parallel computing techniques, which allows to improve the performance of the resulting application. The proposed algorithm was implemented using the C++ programming language, and the libraries Open MPI and ScaLAPACK. We present some application examples and we asses the application performance. The results shown that it is possible to reduce significantly the time necessary to execute the program that implements the algorithm to train the ANN.Una Red Neuronal Articial (RNA) es un paradigma de aprendizaje yprocesamiento automático inspirado en el comportamiento biológico de las neuronas y en la estructura del cerebro. El cerebro es un sistema altamente complejo; su unidad básica de procesamiento son las neuronas, las cuales se encuentra distribuidas de forma masiva compartiendo múltiples conexionesentre ellas. Las RNAs intentan emular ciertas características propias de los humanos, pueden ser vistas como un sistema inteligente que lleva a cabo tareas de manera distinta a como lo hacen las computadoras actuales. Las RNAs pueden emplearse para realizar actividades complejas, por ejemplo: reconocimiento y clasicación de patrones, predicción del clima, predicción de valores genéticos, etc. Los algoritmos utilizados para entrenar las redes, son en general complejos, por lo cual surge la necesidad de contar con alternativas que permitan reducir de manera signicativa el tiempo necesario para entrenar una red. En este trabajo se presenta una propuesta de algoritmos basados en la estrategia divide y conquista que permiten entrenar las RNAs de una sola capa oculta. Parte de los sub problemas del algoritmo general de entrenamiento se resuelven utilizando técnicas de cómputo paralelo, lo que permite mejorar el desempeño de la aplicación resultante. El algoritmo propuesto fue implementado utilizando el lenguaje de programación C++, así como las librerías Open MPI y ScaLAPACK. Se presentan algunos ejemplos de aplicación y se evalúa el desempeño del programa resultante. Los resultados obtenidos muestran que es posible reducir de manera signicativa los tiempos necesarios para ejecutar el programa que implementa el algoritmo para el ajuste de la RNA.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/55250Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaGuzmán, Eduardo and Vázquez, Mario and Del Valle, David and Pérez-Rodríguez, Paulino (2018) Artificial Neuronal Networks: A Bayesian Approach Using Parallel Computing. Revista Colombiana de Estadística, 41 (2). pp. 173-189. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsEmpirical BayesNonlinear modelsParallel processingBayes emp\'iricomodelos no linealesprocesamiento en paraleloArtificial Neuronal Networks: A Bayesian Approach Using Parallel ComputingArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL55250-390957-1-PB.pdfapplication/pdf1337346https://repositorio.unal.edu.co/bitstream/unal/66483/1/55250-390957-1-PB.pdfff56d3e25b8d2be3cc3d78b23499e092MD51THUMBNAIL55250-390957-1-PB.pdf.jpg55250-390957-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6039https://repositorio.unal.edu.co/bitstream/unal/66483/2/55250-390957-1-PB.pdf.jpg5a3e3641ab3d5c7fe44ab0e342f465c7MD52unal/66483oai:repositorio.unal.edu.co:unal/664832023-05-25 23:02:52.874Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |