Gas exchange and mass distribution of the cowpea (vigna unguiculata [l.] walp.) under water deficit
Drought tolerance is important for the survival and productivityof plants in environments where drought periods areincreasing as a result of climate variability attributable tonatural causes and climate change caused by human activities.The objective of this study was to evaluate the dynamicsof phot...
- Autores:
-
Cardona Ayala, Carlos Enrique
Jarma Orozco, Alfredo De Jesús
AraméndizTatis, Hermes
Perneth Montaño, Marvin José
Vergara Córdoba, César Augusto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/72664
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/72664
http://bdigital.unal.edu.co/37138/
- Palabra clave:
- stomatal conductance
photosynthesis
drought
delayed leaf senescence.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Drought tolerance is important for the survival and productivityof plants in environments where drought periods areincreasing as a result of climate variability attributable tonatural causes and climate change caused by human activities.The objective of this study was to evaluate the dynamicsof photosynthesis (A), stomatal conductance (gs) and intrinsicwater-use efficiency (WUE=A/gs) as a function of soil moisturecontent over a period of drought and the post-stress recoveryof 14 cowpea genotypes. The studied genotypes tolerated soilmoisture tensions close to -2 Mpa with no permanent wilting.Starting at a soil hydric potential of -0.7 MPa, decreases inphotosynthesis (A), stomatal conductance (gs) and transpiration(E) were evident, as well as an increase in A/gs, whichvaried by genotype. Estimating with regression models allowedfor the discrimination of the degrees of drought tolerancebetween the cultivars. At 4 days after resuming hydration, nosignificant differences were found between the means of A, gs,A/gs and E, suggesting drought tolerance in all genotypes. Thegenotypes: L-047 and L-034 conserved between 4 and 6 leaves,displaying the highest delayed leaf senescence during drought.Furthermore, they presented the highest biomass at 16 dayspost-stress recovery. |
---|