The influence of biogeographic history on the structure and functioning of Neotropical tree communities.

Ilustraciones

Autores:
González Caro, Jilbert Sebastián
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80352
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80352
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
580 - Plantas
Biogeografía
Phylogeny
Filogenía
Amazonia
Andes
phylogenetic structure
phylogenetic similarity
historical dispersal
environmental gradients
South America biogeography
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_fe96effa2da8d656dca0b533a06a98c0
oai_identifier_str oai:repositorio.unal.edu.co:unal/80352
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
dc.title.translated.spa.fl_str_mv La influencia de la historia biogeográfica en la estructura de comunidades de árboles neotropicales.
title The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
spellingShingle The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
550 - Ciencias de la tierra
580 - Plantas
Biogeografía
Phylogeny
Filogenía
Amazonia
Andes
phylogenetic structure
phylogenetic similarity
historical dispersal
environmental gradients
South America biogeography
title_short The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
title_full The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
title_fullStr The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
title_full_unstemmed The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
title_sort The influence of biogeographic history on the structure and functioning of Neotropical tree communities.
dc.creator.fl_str_mv González Caro, Jilbert Sebastián
dc.contributor.advisor.none.fl_str_mv Duque Montoya, Álvaro Javier
dc.contributor.author.none.fl_str_mv González Caro, Jilbert Sebastián
dc.contributor.researchgroup.spa.fl_str_mv Conservación, uso y biodiversidad
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
580 - Plantas
topic 550 - Ciencias de la tierra
580 - Plantas
Biogeografía
Phylogeny
Filogenía
Amazonia
Andes
phylogenetic structure
phylogenetic similarity
historical dispersal
environmental gradients
South America biogeography
dc.subject.agrovocuri.spa.fl_str_mv Biogeografía
dc.subject.lemb.eng.fl_str_mv Phylogeny
dc.subject.lemb.spa.fl_str_mv Filogenía
dc.subject.proposal.eng.fl_str_mv Amazonia
Andes
phylogenetic structure
phylogenetic similarity
historical dispersal
environmental gradients
South America biogeography
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-01T19:21:28Z
dc.date.available.none.fl_str_mv 2021-10-01T19:21:28Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80352
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80352
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv Agrovoc
dc.relation.references.spa.fl_str_mv Adams, M. A., Turnbull, T. L., Sprent, J. I., & Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences, 113(15), 4098-4103
Aldana, A. M., Carlucci, M. B., Fine, P. V., & Stevenson, P. R. (2017). Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia, 183(2), 327-335.
Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039
Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., ... & Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21(12), 1179-1190.
Bernal, R., S.R. Gradstein & M. Celis (eds.). 2019. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.co
Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190
Cárdenas, D., González-Caro, S., Duivenvoorden, J., Feeley, K., & Duque, A. (2017). Asymmetrical niche determinism across geological units shapes phylogenetic tree communities in the Colombian Amazonia. Perspectives in Plant Ecology, Evolution and Systematics, 28, 1-9
Cavender-Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), 693-715
Cayuela, L., Benayas, J. M. R., Justel, A., & Salas-Rey, J. (2006). Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 15(6), 602-613.
Condit, R., Engelbrecht, B. M., Pino, D., Pérez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, 110(13), 5064-5068
Dexter, K. G., Lavin, M., Torke, B. M., Twyford, A. D., Kursar, T. A., Coley, P. D., ... & Pennington, R. T. (2017). Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences, 114(10), 2645-2650
Duivenvoorden, J. F., & Lips, J. M. (1993). Landscape ecology of the middle Caqueta basin: explanatory notes to the maps (+ maps, scale 1: 25,000). Tropenbos-Colombia. Duivenvoorden, J. E. (1995). Tree species composition and rain forest-environment relationships in the middle Caquetá area, Colombia, NW Amazonia. Vegetatio, 120(2), 91-113
Duque, A., Muller-Landau, H. C., Valencia, R., Cardenas, D., Davies, S., de Oliveira, A., ... & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation, 26(3), 669-686.
Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, T. L., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific reports, 3(1), 1-8.
Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., ... & Feeley, K. J. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207-212.
Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., ... & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791
Fine, P. V., & Ree, R. H. (2006). Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. The American Naturalist, 168(6), 796-804
Fine, P. V., Zapata, F., & Daly, D. C. (2014). Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution, 68(7), 1988-2004.
Fine, P. V., & Baraloto, C. (2016). Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica, 48(1), 24-33
Graham, C. H., Parra, J. L., Rahbek, C., & McGuire, J. A. (2009). Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19673-19678.
Gentry, A. H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny?. Annals of the Missouri Botanical Garden, 69(3), 557-593
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600-614.
Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., ... & Whittaker, R. J. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16(12), 3176-3192.
González-Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., & Yepes, A. (2020). The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 101(10), e03131.
Guevara, J. E., Damasco, G., Baraloto, C., Fine, P. V., Peñuela, M. C., Castilho, C., ... & ter Steege, H. (2016). Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica, 48(1), 34-46
Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., ... & Phillips, O. L. (2015). Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295-1307.
Hooghiemstra, H., Wijninga, V. M., & Cleef, A. M. (2006). The paleobotanical record of Colombia: implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden, 93(2), 297-325
Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334-10339.
Jablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314(5796), 102-106.
Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., ... & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464.
Kooyman, R. M., Wilf, P., Barreda, V. D., Carpenter, R. J., Jordan, G. J., Sniderman, J. K., ... & Weston, P. H. (2014). Paleo-Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the “southern wet forest survivors”. American Journal of Botany, 101(12), 2121-2135.
Leprieur, F., Albouy, C., De Bortoli, J., Cowman, P. F., Bellwood, D. R., & Mouillot, D. (2012). Quantifying phylogenetic beta diversity: distinguishing between ‘true’turnover of lineages and phylogenetic diversity gradients. PloS one, 7(8), e42760.
Linan, A. G., Myers, J. A., Edwards, C. E., Zanne, A. E., Smith, S. A., Arellano, G., ... & Tello, S. J. (2021). The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of pre-adapted clades?. bioRxiv, 2020-12.
Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A., Burgess, N. D., ... & Lewis, S. L. (2012). Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154, 20-33.
Mori, A. S., Shiono, T., Koide, D., Kitagawa, R., Ota, A. T., & Mizumachi, E. (2013). Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22(7), 878-888
Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., ... & Green, J. L. (2011). Spatial patterns of phylogenetic diversity. Ecology letters, 14(2), 141-149
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., ... & MéndezAlonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences, 115(29), 7551-7556.
Phillips, O. L., Vargas, P. N., Monteagudo, A. L., Cruz, A. P., Zans, M. E. C., Sánchez, W. G., ... & Rose, S. (2003). Habitat association among Amazonian tree species: a landscape-scale approach. Journal of ecology, 91(5), 757-775.
Pitman, N. C., Andino, J. E. G., Aulestia, M., Cerón, C. E., Neill, D. A., Palacios, W., ... & Terborgh, J. W. (2014). Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography, 37(9), 902-915.
Rapp, J. M., Silman, M. R., Clark, J. S., Girardin, C. A., Galiano, D., & Tito, R. (2012). Intra-and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology, 93(9), 2061-2072.
Ruokolainen, K., Moulatlet, G. M., Zuquim, G., Hoorn, C., & Tuomisto, H. (2019). Geologically recent rearrangements in central Amazonian river network and their importance for the riverine barrier hypothesis. Frontiers of Biogeography, 11(3).
Schepaschenko, D., Chave, J., Phillips, O. L., Lewis, S. L., Davies, S. J., Réjou-Méchain, M., ... & Zo-Bi, I. C. (2019). The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific data, 6(1), 1-11.
Segovia, R. A., Pennington, R. T., Baker, T. R., De Souza, F. C., Neves, D. M., Davis, C. C., ... & Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6(19), eaaz5373.
Slik, J. F., Arroyo-Rodríguez, V., Aiba, S. I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., ... & Valencia, R. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472-7477.
Swenson, N. G., Enquist, B. J., Thompson, J., & Zimmerman, J. K. (2007). The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88(7), 1770- 1780.
Tilman, D. (1987). The importance of the mechanisms of interspecific competition. The American Naturalist, 129(5), 769-774
ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., ... & Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156).
ter Steege, H., Henkel, T. W., Helal, N., Marimon, B. S., Marimon-Junior, B. H., Huth, A., ... & Pinto, L. F. M. (2019). Rarity of monodominance in hyperdiverse Amazonian forests. Scientificreports, 9(1), 1-15.
Unger, M., Homeier, J., & Leuschner, C. (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263-274.
Wang, S., Chen, A., Fang, J., & Pacala, S. W. (2013). Why abundant tropical tree species are phylogenetically old. Proceedings of the National Academy of Sciences, 110(40), 16039-16043.
Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in ecology & evolution, 19(12), 639-644.
Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., ... & Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89-92.
Zeil, W. (1979). The Andes-a geological review).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 150 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Amazonía Colombiana
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Doctorado en Ecología
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Forestales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80352/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80352/4/1022942509.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80352/5/1022942509.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
6feec8598ca9437ebb1c4b69a365b5a8
42196a2139f4c6e0c61adf3fb1e0ea1b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089976096227328
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Duque Montoya, Álvaro Javier749d6becedd1d80b24bcffd78d7e1ff3600González Caro, Jilbert Sebastián29335a3fac92c931972a3c86acf93ef8Conservación, uso y biodiversidad2021-10-01T19:21:28Z2021-10-01T19:21:28Z2021https://repositorio.unal.edu.co/handle/unal/80352Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThe biogeographic history is an overlooked component of community assembly analysis and its implications on ecosystem functioning. In this dissertation, we incorporated the geological history of South America to assess hypotheses about the mechanisms that drive the community assembly of Neotropical tree communities. We combined phylogenetic and vegetation plots across the Amazon and the Andean regions to evaluate the role of historical dispersal and environmental gradients as drivers of the phylogenetic structure, diversity, and phylogenetic differentiation among tree communities: 1. We assessed the role of geology, soil conditions, and flooding as environmental drivers of the Amazon tree phylogenetic diversity relative to historical dispersal. We found that historical dispersal overrides environmental at large spatial scales, while environmental conditions drive community assembly at local scales. 2. We tested the dispersal of temperate tree clades to tropical highlands after the Andean uplift and their implications on the phylogenetic diversity and forest structure. We found that the colonization of temperate clades on the tropical Andes increases the phylogenetic diversity, which increases elevation in three independent datasets (at local scales elevational gradient, at the regional scale in plots across Colombia, and at the continental scale across the subtropical and tropical Andes). We also reported the influence of temperate clades as drivers of large carbon stocks in tropical highlands because these trees maintain large sizes in cold conditions. 3. We highlight the importance of dispersal of temperate clades in the formation of tropical Andean flora. In summary, historical dispersal is a key mechanism overlooked in Neotropical tree community assembly.La historia biogeográfica es un componente que generalmente no se tiene en cuenta en el análisis de ecología de comunidades y en el funcionamiento de los ecosistemas. En esta disertación, incorporamos la historia geológica de América del Sur para evaluar hipótesis sobre los mecanismos que determinan el ensamblaje de comunidades arbóreas neotropicales. Nosotros combinamos información filogenética y parcelas de vegetación a lo largo de las regiones amazónica y andina andinas para evaluar el papel de la dispersión histórica y los gradientes ambientales como determinantes de la estructura filogenética, la diversidad y la diferenciación filogenética entre las comunidades de árboles: 1. Evaluamos el papel de la geología, las condiciones del suelo y las inundaciones como determinantes ambientales de la diversidad filogenética de los árboles del Amazonas relativo a la dispersión histórica. Encontramos que la dispersión histórica es más importante que el medio ambiente a grandes escalas espaciales como determinante del ensamble de comunidades, mientras que las condiciones ambientales impulsan el ensamblaje de la comunidad a escalas locales. 2. Probamos la dispersión de linajes arbóreos templados a las tierras altas tropicales después del levantamiento de los Andes y sus implicaciones en la diversidad filogenética y la estructura del bosque. Encontramos que la colonización de linajes templados en los Andes tropicales aumenta la diversidad filogenética, a lo largo del gradiente de elevación en tres conjuntos de datos independientes (en un gradiente de elevación a escala local, a escala regional en parcelas a lo largo de los Andes en Colombia, y a escala continental a lo largo de los Andes subtropicales y tropicales). También, encontramos que la presencia de los linajes templados determina la estructura de los bosques Andinos y su capacidad de almacenar carbono, porque estos árboles son capaces de mantener grandes tamaños en condiciones frías. 3. Destacamos la importancia de la dispersión de los linajes templados en la formación de la flora andina tropical. En resumen, la dispersión histórica es un mecanismo clave que se pasa por alto en el ensamblaje de comunidades arbóreas neotropicales. (Texto tomado de la fuente)DoctoradoDoctor en EcologíaTropical forest ecologyxviii, 150 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Doctorado en EcologíaDepartamento de Ciencias ForestalesFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra580 - PlantasBiogeografíaPhylogenyFilogeníaAmazoniaAndesphylogenetic structurephylogenetic similarityhistorical dispersalenvironmental gradientsSouth America biogeographyThe influence of biogeographic history on the structure and functioning of Neotropical tree communities.La influencia de la historia biogeográfica en la estructura de comunidades de árboles neotropicales.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAmazonía ColombianaAgrovocAdams, M. A., Turnbull, T. L., Sprent, J. I., & Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences, 113(15), 4098-4103Aldana, A. M., Carlucci, M. B., Fine, P. V., & Stevenson, P. R. (2017). Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests. Oecologia, 183(2), 327-335.Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., & Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039Banin, L., Feldpausch, T. R., Phillips, O. L., Baker, T. R., Lloyd, J., Affum-Baffoe, K., ... & Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21(12), 1179-1190.Bernal, R., S.R. Gradstein & M. Celis (eds.). 2019. Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá. http://catalogoplantasdecolombia.unal.edu.coChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366.Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B., ... & Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), 3177-3190Cárdenas, D., González-Caro, S., Duivenvoorden, J., Feeley, K., & Duque, A. (2017). Asymmetrical niche determinism across geological units shapes phylogenetic tree communities in the Colombian Amazonia. Perspectives in Plant Ecology, Evolution and Systematics, 28, 1-9Cavender-Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), 693-715Cayuela, L., Benayas, J. M. R., Justel, A., & Salas-Rey, J. (2006). Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 15(6), 602-613.Condit, R., Engelbrecht, B. M., Pino, D., Pérez, R., & Turner, B. L. (2013). Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences, 110(13), 5064-5068Dexter, K. G., Lavin, M., Torke, B. M., Twyford, A. D., Kursar, T. A., Coley, P. D., ... & Pennington, R. T. (2017). Dispersal assembly of rain forest tree communities across the Amazon basin. Proceedings of the National Academy of Sciences, 114(10), 2645-2650Duivenvoorden, J. F., & Lips, J. M. (1993). Landscape ecology of the middle Caqueta basin: explanatory notes to the maps (+ maps, scale 1: 25,000). Tropenbos-Colombia. Duivenvoorden, J. E. (1995). Tree species composition and rain forest-environment relationships in the middle Caquetá area, Colombia, NW Amazonia. Vegetatio, 120(2), 91-113Duque, A., Muller-Landau, H. C., Valencia, R., Cardenas, D., Davies, S., de Oliveira, A., ... & Vicentini, A. (2017). Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodiversity and Conservation, 26(3), 669-686.Eiserhardt, W. L., Svenning, J. C., Baker, W. J., Couvreur, T. L., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific reports, 3(1), 1-8.Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., ... & Feeley, K. J. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207-212.Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., ... & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791Fine, P. V., & Ree, R. H. (2006). Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. The American Naturalist, 168(6), 796-804Fine, P. V., Zapata, F., & Daly, D. C. (2014). Investigating processes of neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Protieae (Burseraceae). Evolution, 68(7), 1988-2004.Fine, P. V., & Baraloto, C. (2016). Habitat endemism in white-sand forests: insights into the mechanisms of lineage diversification and community assembly of the Neotropical flora. Biotropica, 48(1), 24-33Graham, C. H., Parra, J. L., Rahbek, C., & McGuire, J. A. (2009). Phylogenetic structure in tropical hummingbird communities. Proceedings of the National Academy of Sciences, 106(Supplement 2), 19673-19678.Gentry, A. H. (1982). Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny?. Annals of the Missouri Botanical Garden, 69(3), 557-593Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V., & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29(5), 600-614.Girardin, C. A. J., Malhi, Y., Aragao, L. E. O. C., Mamani, M., Huaraca Huasco, W., Durand, L., ... & Whittaker, R. J. (2010). Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Global Change Biology, 16(12), 3176-3192.González-Caro, S., Duque, Á., Feeley, K. J., Cabrera, E., Phillips, J., Ramirez, S., & Yepes, A. (2020). The legacy of biogeographic history on the composition and structure of Andean forests. Ecology, 101(10), e03131.Guevara, J. E., Damasco, G., Baraloto, C., Fine, P. V., Peñuela, M. C., Castilho, C., ... & ter Steege, H. (2016). Low phylogenetic beta diversity and geographic neo-endemism in Amazonian white-sand forests. Biotropica, 48(1), 34-46Honorio Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., ... & Phillips, O. L. (2015). Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295-1307.Hooghiemstra, H., Wijninga, V. M., & Cleef, A. M. (2006). The paleobotanical record of Colombia: implications for biogeography and biodiversity. Annals of the Missouri Botanical Garden, 93(2), 297-325Hughes, C., & Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103(27), 10334-10339.Jablonski, D., Roy, K., & Valentine, J. W. (2006). Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science, 314(5796), 102-106.Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., ... & Webb, C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26(11), 1463-1464.Kooyman, R. M., Wilf, P., Barreda, V. D., Carpenter, R. J., Jordan, G. J., Sniderman, J. K., ... & Weston, P. H. (2014). Paleo-Antarctic rainforest into the modern Old World tropics: The rich past and threatened future of the “southern wet forest survivors”. American Journal of Botany, 101(12), 2121-2135.Leprieur, F., Albouy, C., De Bortoli, J., Cowman, P. F., Bellwood, D. R., & Mouillot, D. (2012). Quantifying phylogenetic beta diversity: distinguishing between ‘true’turnover of lineages and phylogenetic diversity gradients. PloS one, 7(8), e42760.Linan, A. G., Myers, J. A., Edwards, C. E., Zanne, A. E., Smith, S. A., Arellano, G., ... & Tello, S. J. (2021). The evolutionary assembly of forest communities along environmental gradients: recent diversification or sorting of pre-adapted clades?. bioRxiv, 2020-12.Marshall, A. R., Willcock, S., Platts, P. J., Lovett, J. C., Balmford, A., Burgess, N. D., ... & Lewis, S. L. (2012). Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154, 20-33.Mori, A. S., Shiono, T., Koide, D., Kitagawa, R., Ota, A. T., & Mizumachi, E. (2013). Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22(7), 878-888Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., ... & Green, J. L. (2011). Spatial patterns of phylogenetic diversity. Ecology letters, 14(2), 141-149Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., ... & MéndezAlonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences, 115(29), 7551-7556.Phillips, O. L., Vargas, P. N., Monteagudo, A. L., Cruz, A. P., Zans, M. E. C., Sánchez, W. G., ... & Rose, S. (2003). Habitat association among Amazonian tree species: a landscape-scale approach. Journal of ecology, 91(5), 757-775.Pitman, N. C., Andino, J. E. G., Aulestia, M., Cerón, C. E., Neill, D. A., Palacios, W., ... & Terborgh, J. W. (2014). Distribution and abundance of tree species in swamp forests of Amazonian Ecuador. Ecography, 37(9), 902-915.Rapp, J. M., Silman, M. R., Clark, J. S., Girardin, C. A., Galiano, D., & Tito, R. (2012). Intra-and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes. Ecology, 93(9), 2061-2072.Ruokolainen, K., Moulatlet, G. M., Zuquim, G., Hoorn, C., & Tuomisto, H. (2019). Geologically recent rearrangements in central Amazonian river network and their importance for the riverine barrier hypothesis. Frontiers of Biogeography, 11(3).Schepaschenko, D., Chave, J., Phillips, O. L., Lewis, S. L., Davies, S. J., Réjou-Méchain, M., ... & Zo-Bi, I. C. (2019). The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific data, 6(1), 1-11.Segovia, R. A., Pennington, R. T., Baker, T. R., De Souza, F. C., Neves, D. M., Davis, C. C., ... & Dexter, K. G. (2020). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6(19), eaaz5373.Slik, J. F., Arroyo-Rodríguez, V., Aiba, S. I., Alvarez-Loayza, P., Alves, L. F., Ashton, P., ... & Valencia, R. (2015). An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences, 112(24), 7472-7477.Swenson, N. G., Enquist, B. J., Thompson, J., & Zimmerman, J. K. (2007). The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88(7), 1770- 1780.Tilman, D. (1987). The importance of the mechanisms of interspecific competition. The American Naturalist, 129(5), 769-774ter Steege, H., Pitman, N. C., Sabatier, D., Baraloto, C., Salomão, R. P., Guevara, J. E., ... & Silman, M. R. (2013). Hyperdominance in the Amazonian tree flora. Science, 342(6156).ter Steege, H., Henkel, T. W., Helal, N., Marimon, B. S., Marimon-Junior, B. H., Huth, A., ... & Pinto, L. F. M. (2019). Rarity of monodominance in hyperdiverse Amazonian forests. Scientificreports, 9(1), 1-15.Unger, M., Homeier, J., & Leuschner, C. (2012). Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia, 170(1), 263-274.Wang, S., Chen, A., Fang, J., & Pacala, S. W. (2013). Why abundant tropical tree species are phylogenetically old. Proceedings of the National Academy of Sciences, 110(40), 16039-16043.Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in ecology & evolution, 19(12), 639-644.Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., ... & Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506(7486), 89-92.Zeil, W. (1979). The Andes-a geological review).COLCIENCIAS CONVOCATORIA 785InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80352/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1022942509.2021.pdf1022942509.2021.pdfTesis Doctorado en Ecologíaapplication/pdf8794512https://repositorio.unal.edu.co/bitstream/unal/80352/4/1022942509.2021.pdf6feec8598ca9437ebb1c4b69a365b5a8MD54THUMBNAIL1022942509.2021.pdf.jpg1022942509.2021.pdf.jpgGenerated Thumbnailimage/jpeg5743https://repositorio.unal.edu.co/bitstream/unal/80352/5/1022942509.2021.pdf.jpg42196a2139f4c6e0c61adf3fb1e0ea1bMD55unal/80352oai:repositorio.unal.edu.co:unal/803522023-11-28 07:52:19.612Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==