Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)

ilustraciones a color, diagramas, fotografías

Autores:
Santos Rodríguez, Janneth Fabiola
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85541
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85541
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)
Dianthus caryophyllus
Fusarium oxysporum
Proteómica
Resistencia inducida
Marchitez
Reacciones de defensa de plantas
Proteomics
Induced resistance
Wilts
Plant defence reactions
Claveles - Enfermedades por hongos
Carnations - Fungus diseases
Clavel
Fusarium oxysporum f. sp. dianthi
Elicitación
Proteómica
Perfil metabólico
Resistencia inducida
Carnation
Elicitation
Priming
Proteomics
Metabolic profile
Induced resistance
Elicitación
Elicitation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fe93b63afc2a69c1bc9f05b771c6be20
oai_identifier_str oai:repositorio.unal.edu.co:unal/85541
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
dc.title.translated.eng.fl_str_mv Contribution to the study of the bichemical response of the induced resistance promoted by the use of elicitors of biotic origin in the interaction Fusarium oxyxporum f. sp. dianthi race 2 - carnation (Dianthus caryophyllus L.)
title Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
spellingShingle Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
570 - Biología::572 - Bioquímica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)
Dianthus caryophyllus
Fusarium oxysporum
Proteómica
Resistencia inducida
Marchitez
Reacciones de defensa de plantas
Proteomics
Induced resistance
Wilts
Plant defence reactions
Claveles - Enfermedades por hongos
Carnations - Fungus diseases
Clavel
Fusarium oxysporum f. sp. dianthi
Elicitación
Proteómica
Perfil metabólico
Resistencia inducida
Carnation
Elicitation
Priming
Proteomics
Metabolic profile
Induced resistance
Elicitación
Elicitation
title_short Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
title_full Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
title_fullStr Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
title_full_unstemmed Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
title_sort Contribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)
dc.creator.fl_str_mv Santos Rodríguez, Janneth Fabiola
dc.contributor.advisor.spa.fl_str_mv Ardila Barrantes, Harold Duban
Coy Barrera, Ericsson David
dc.contributor.author.spa.fl_str_mv Santos Rodríguez, Janneth Fabiola
dc.contributor.researchgroup.spa.fl_str_mv Estudio de Actividades Metabolicas Vegetales
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-8510-5279
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001506038
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Janneth-Santos
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=eR8ZJx0AAAAJ&hl=es&oi=ao
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)
topic 570 - Biología::572 - Bioquímica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)
Dianthus caryophyllus
Fusarium oxysporum
Proteómica
Resistencia inducida
Marchitez
Reacciones de defensa de plantas
Proteomics
Induced resistance
Wilts
Plant defence reactions
Claveles - Enfermedades por hongos
Carnations - Fungus diseases
Clavel
Fusarium oxysporum f. sp. dianthi
Elicitación
Proteómica
Perfil metabólico
Resistencia inducida
Carnation
Elicitation
Priming
Proteomics
Metabolic profile
Induced resistance
Elicitación
Elicitation
dc.subject.agrovoc.spa.fl_str_mv Dianthus caryophyllus
Fusarium oxysporum
Proteómica
Resistencia inducida
Marchitez
Reacciones de defensa de plantas
dc.subject.agrovoc.eng.fl_str_mv Proteomics
Induced resistance
Wilts
Plant defence reactions
dc.subject.lemb.spa.fl_str_mv Claveles - Enfermedades por hongos
dc.subject.lemb.eng.fl_str_mv Carnations - Fungus diseases
dc.subject.proposal.spa.fl_str_mv Clavel
Fusarium oxysporum f. sp. dianthi
Elicitación
Proteómica
Perfil metabólico
Resistencia inducida
dc.subject.proposal.eng.fl_str_mv Carnation
Elicitation
Priming
Proteomics
Metabolic profile
Induced resistance
dc.subject.wikidata.none.fl_str_mv Elicitación
Elicitation
description ilustraciones a color, diagramas, fotografías
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-01-30T20:24:22Z
dc.date.available.none.fl_str_mv 2024-01-30T20:24:22Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85541
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85541
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 96–103. https://doi.org/https://doi.org/10.5897/AJB2003.000-1016
Abdelrahman, M., Abdel-Motaal, F., El-Sayed, M., Jogaiah, S., Shigyo, M., Ito, S. ichi, & Tran, L. S. P. (2016). Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128–138. https://doi.org/10.1016/j.plantsci.2016.02.008
Adrian, M., Lucio, M., Roullier-Gall, C., Héloir, M. C., Trouvelot, S., Daire, X., Kanawati, B., Lemaître-Guillier, C., Poinssot, B., Gougeon, R., & Schmitt-Kopplin, P. (2017). Metabolic fingerprint of PS3-induced resistance of grapevine leaves against Plasmopara viticola revealed differences in elicitor-triggered defenses. Frontiers in Plant Science, 8(February), 1–14. https://doi.org/10.3389/fpls.2017.00101
Aebersold, R., & Mann, M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537(7620), 347–355. https://doi.org/10.1038/nature19949
Agorio, A., & Vera, P. (2007). ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19(11), 3778–3790. https://doi.org/10.1105/tpc.107.054494
Agrios, G. (2005). Parasitism and disease development. In G. Agrios (Ed.), Plant Pathology (Fifth edit, pp. 77–104). Elsevier Academic Press.
Al-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171
Aldinary, A. M., Morsy Abdelaziz, A., Farrag, A. A., & Attia, M. S. (2021). Biocontrol of tomato Fusarium wilt disease by a new Moringa endophytic Aspergillus isolates. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.03.423
Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377–390. https://doi.org/10.1093/jxb/ern277
Amaral, J., Lamelas, L., Valledor, L., Castillejo, M. Á., Alves, A., & Pinto, G. (2021). Comparative proteomics of <scp> Pinus – Fusarium </scp> circinatum interactions reveal metabolic clues to biotic stress resistance. Physiologia Plantarum. https://doi.org/10.1111/ppl.13563
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
Arbelaez, G. (1987). Enfermedades fungosas y bacteriales del clavel en Colombia. Agronomía Colombiana, 4(1–2), 3–8.
Arbeláez, G., Garcéz de Granada, E., Orozco de Amézquita, M., & Calderón, O. L. (1996). Respuesta de algunas variedades de clavel estandar a cuatro razas fisiológicas de Fusarium oxysporum f. sp. dianthi. Agronomia Colombiana’, 13(2), 117–127. https://doi.org/10.1094/pd-66-809
Ardila, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus) al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.
Ardila, H. D., Baquero, B., & Martínez, S. T. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en el clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f.sp. dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.
Ardila, H. D., Fernández, R. G., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein Extraction and Gel-Based Separation Methods to Analyze Responses to Pathogens in Carnation (Dianthus caryophyllus L). In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols (2nd ed., pp. 573–591). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39
Ardila, H. D., Martínez, S. T. S. T., & Higuera, B. L. B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0
Ashwin, N. M. R., Barnabas, L., Ramesh Sundar, A., Malathi, P., Viswanathan, R., Masi, A., Agrawal, G. K., & Rakwal, R. (2017). Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. Journal of Plant Biochemistry and Biotechnology, 26(4), 371–386. https://doi.org/10.1007/s13562-017-0402-1
Aslam, S. N., Erbs, G., Morrissey, K. L., Newman, M.-A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R. W., & Cooper, R. M. (2009). Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 10(3), 375–387. https://doi.org/10.1111/j.1364-3703.2009.00537.x
Asocolflores. (2018). Boletín estadístico diciembre 2018. Dirección de economía y logística.
Baayen, R. P. (1988). Responses related to lignification and intravascular periderm formation in carnations resistant to Fusarium wilt. Canadian Journal of Botany, 66, 784–792.
Baayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.x
Baayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271
Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: A tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563. https://doi.org/10.3390/molecules190913541
Bálintová, M., Bruňáková, K., Petijová, L., & Čellárová, E. (2019). Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiology and Biochemistry, 135(December 2018), 348–358. https://doi.org/10.1016/j.plaphy.2018.12.024
Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The “prime-ome”: Towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002
Balmer, D., De Papajewski, D. V., Planchamp, C., Glauser, G., & Mauch-Mani, B. (2013). Induced resistance in maize is based on organ-specific defence responses. Plant Journal, 74(2), 213–225. https://doi.org/10.1111/tpj.12114
Beck, M., Komis, G., Müller, J., Menzel, D., & Šamaj, J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essentialfor microtubule organization. Plant Cell, 22(3), 755–771. https://doi.org/10.1105/tpc.109.071746
Beckers, G. J. M., & Spoel, S. H. (2006). Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biology, 8(1), 1–10. https://doi.org/10.1055/s-2005-872705
Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(MAY), 1–8. https://doi.org/10.3389/fpls.2014.00228
Ben-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi race 2. Plant Disease, 81(7), 777–780. https://doi.org/10.1094/PDIS.1997.81.7.777
Ben-Yephet, Y., Reuven, M., Zviebil, A., & Shtienberg, D. (1996). Effects of initial inoculum and cultivar resistance on incidence of Fusarium wilt and population densities of Fusarium oxysporum f. sp. dianthi on carnation and in soil. In Phytopathology (Vol. 86, Issue 7, pp. 751–756). https://doi.org/10.1094/phyto-86-751
Ben-Yephet, Y., & Shtienberg, D. (1994). Effects of solar radiation and temperature on Fusarium wilt in carnation. Phytopathology, 84(12), 1416–1421
Ben Khaled, S., Postma, J., & Robatzek, S. (2015). A Moving View: Subcellular Trafficking Processes in Pattern Recognition ReceptorTriggered Plant Immunity. Annual Review of Phytopathology, 53(August), 379–402. https://doi.org/10.1146/annurev-phyto-080614-120347
Benhamou, N. (1996). Elicitor-induced plant defence pathways. Trends in Plant Science, 1(7), 233–240. https://doi.org/10.1016/1360-1385(96)86901-9
Benhamou, N., & Nicole, M. (1999). Cell biology of plant immunization against microbial infection: The potential of induced resistance in controlling plant diseases. Plant Physiology and Biochemistry, 37(10), 703–719. https://doi.org/10.1016/S0981-9428(00)86684-X
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2009). GenBank. Nucleic Acids Research, 37(SUPPL. 1), 26–31. https://doi.org/10.1093/nar/gkn723
Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022
Boba, A., Kostyn, K., Kostyn, A., Wojtasik, W., Dziadas, M., Preisner, M., Szopa, J., & Kulma, A. (2017). Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01951
Boller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
Boller, T., & He, S. Y. (2009). Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science, 324(5928), 742–744. https://doi.org/10.1126/science.1171647
Bolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions, 22(5), 487–497. https://doi.org/10.1094/mpmi-22-5-0487
Brodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M.-A., Shokat, K. M., Rietz, S., Parker, J., & Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47(4), 532–546. https://doi.org/10.1111/j.1365-313X.2006.02806.x
Bruce, T. J. A. (2014). Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science, 5(JUL), 3–6. https://doi.org/10.3389/fpls.2014.00349
Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004
Cai, Q., He, B., & Jin, H. (2019). A safe ride in extracellular vesicles – small RNA trafficking between plant hosts and pathogens. Current Opinion in Plant Biology, 52, 140–148. https://doi.org/10.1016/j.pbi.2019.09.001
Camañes, G., Scalschi, L., Vicedo, B., González-Bosch, C., & García-Agustín, P. (2015). An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas sy. Plant Journal, 84(1), 125–139. https://doi.org/10.1111/tpj.12964
Cannell, N., Emms, D. M., Hetherington, A. J., MacKay, J., Kelly, S., Dolan, L., & Sweetlove, L. J. (2020). Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 30(10), 1783-1800.e11. https://doi.org/10.1016/j.cub.2020.02.086
Castellanos-Domínguez, O., Fonseca-Rodríguez, S., & Buriticá-Ospina, S. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de flores y follajes con énfasis en clavel.
Castiblanco, F., & Ardila, H. D. (2021). Condiciones de crecimiento del hongo Fusarium oxysporum f.sp. dianthi para la preparación de un potencial inductor de resistenci al marchitamiento vascular del clavel (Dianthus caryophyllus).
Castillejo, M.-Á., Fondevilla-Aparicio, S., Fuentes-Almagro, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight ( Peyronellaea pinodes ) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365
Castillejo, M. Á., Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1016/j.phytochem.2015.01.009
Castro-Moretti, F. R., Gentzel, I. N., Mackey, D., & Alonso, A. P. (2020). Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites, 10(2), 1–23. https://doi.org/10.3390/metabo10020052
Chakraborty, N., & Acharya, K. (2016). Ex vivo analyses of formulated bio-elicitors from a phytopathogen in the improvement of innate immunity in host. Archives of Phytopathology and Plant Protection, 49(17–18), 485–505. https://doi.org/10.1080/03235408.2016.1242196
Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5, 1–14. https://doi.org/10.1038/srep15195
Chang, T. H., Lin, Y. H., Chen, K. S., Huang, J. W., Hsiao, S. C., & Chang, P. F. L. (2015). Cell wall reinforcement in watermelon shoot base related to its resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. niveum. Journal of Agricultural Science, 153(2), 296–305. https://doi.org/10.1017/S0021859614000057
Chatterjee, M., Gupta, S., Bhar, A., Chakraborti, D., Basu, D., & Das, S. (2014). Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-949
Chen, J., Ullah, C., Reichelt, M., Gershenzon, J., & Hammerbacher, A. (2019). Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiology, 180(4), 1975–1987. https://doi.org/10.1104/pp.19.00461
Chen, Y. C., Kidd, B. N., Carvalhais, L. C., & Schenk, P. M. (2014). Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signaling & Behavior, 9(12), e977710. https://doi.org/10.4161/15592324.2014.977710
Chen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4. https://doi.org/10.1038/srep05584
Chiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., Migheli, Q., Gullino, L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169
Chong, J., Pierrel, M. A., Atanassova, R., Werck-Reichhart, D., Fritig, B., & Saindrenan, P. (2001). Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiology, 125(1), 318–328. https://doi.org/10.1104/pp.125.1.318
Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., & Mauch-Mani, B. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071. https://doi.org/10.1094/MPMI-19-1062
Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for Enhanced Defense. Annual Review of Phytopathology, 53, 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132
Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6
Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537–552. https://doi.org/10.1038/nri.2016.77
Curir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672
Curir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-X
De Ascensao, A. R. F. D. C., & Dubery, I. A. (2003). Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry, 63(6), 679–686. https://doi.org/10.1016/S0031-9422(03)00286-3
De Borba, M. C., de Freitas, M. B., & Stadnik, M. J. (2019). Ulvan enhances seedling emergence and reduces Fusarium wilt severity in common bean (Phaseolus vulgaris L.). Crop Protection, 118(December 2018), 66–71. https://doi.org/10.1016/j.cropro.2018.12.014
De Kesel, J., Conrath, U., Flors, V., Luna, E., Mageroy, M. H., Mauch-Mani, B., Pastor, V., Pozo, M. J., Pieterse, C. M. J., Ton, J., & Kyndt, T. (2021). The Induced Resistance Lexicon: Do’s and Don’ts. Trends in Plant Science, January. https://doi.org/10.1016/j.tplants.2021.01.001
Deng, Z. (2018). Breeding for Disease Resistance in Florists’ Crops (pp. 87–117). https://doi.org/10.1007/978-3-319-39670-5_4
Denison, F. C., Paul, A. L., Zupanska, A. K., & Ferl, R. J. (2011). 14-3-3 Proteins in Plant Physiology. Seminars in Cell and Developmental Biology, 22(7), 720–727. https://doi.org/10.1016/j.semcdb.2011.08.006
Deuerling, E., Gamerdinger, M., & Kreft, S. G. (2019). Chaperone Interactions at the Ribosome. Cold Spring Harbor Perspectives in Biology, 11(11), a033977. https://doi.org/10.1101/cshperspect.a033977
Dewen, Q., Yijie, D., Yi, Z., Shupeng, L., & Fachao, S. (2017). Plant immunity inducer development and application. Molecular Plant-Microbe Interactions, 30(5), 355–360. https://doi.org/10.1094/MPMI-11-16-0231-CR
Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x
Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7(7), 1085–1097. https://doi.org/10.1105/tpc.7.7.1085
Dixon, Richard A., & Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology, 154(2), 453–457. https://doi.org/10.1104/pp.110.161430
Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8), 539–548. https://doi.org/10.1038/nrg2812
Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1(4), 316–323. https://doi.org/10.1016/1369-5266(88)80053-0
El Modafar, C., Tantaoui, A., & El Boustani, E. S. (2001). Differential induction of phenylalanine ammonia-lyase activity in date palm roots in response to inoculation with Fusarium oxysporum f. sp. albedinis and to elicitation with fungal wall elicitor. Journal of Plant Physiology, 158(6), 715–722. https://doi.org/10.1078/0176-1617-00258
Eng, J. K., Searle, B. C., Clauser, K. R., & Tabb, D. L. (2011). A face in the crowd: Recognizing peptides through database search. Molecular and Cellular Proteomics, 10(11), 1–9. https://doi.org/10.1074/mcp.R111.009522
Espinas, N. A., Saze, H., & Saijo, Y. (2016). Epigenetic control of defense signaling and priming in plants. Frontiers in Plant Science, 7(AUG2016), 1–7. https://doi.org/10.3389/fpls.2016.01201
Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(SEP), 1–15. https://doi.org/10.3389/fpls.2012.00222
Fan, K.-T., Wang, K.-H., Chang, W.-H., Yang, J.-C., Yeh, C.-F., Cheng, K.-T., Hung, S.-C., & Chen, Y.-R. (2019). Application of Data-Independent Acquisition Approach to Study the Proteome Change from Early to Later Phases of Tomato Pathogenesis Responses. International Journal of Molecular Sciences, 20(4), 863. https://doi.org/10.3390/ijms20040863
Ferrochio, L., Cendoya, E., Farnochi, M. C., Massad, W., & Ramirez, M. L. (2013). Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 167(2), 215–220. https://doi.org/10.1016/j.ijfoodmicro.2013.09.005
Fiehn, O. (2002). Metabolomics - The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. https://doi.org/10.1023/A:1013713905833
Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001
Gamir, J., Pastor, V., Kaever, A., Cerezo, M., & Flors, V. (2014). Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. Plant Journal, 78(2), 227–240. https://doi.org/10.1111/tpj.12465
Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D., & Pugin, A. (2006). Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions, 19(7), 711–724. https://doi.org/10.1094/MPMI-19-0711
Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
González-Fernández, R., Prats, E., & Jorrín-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/932527
Hake, K., & Romeis, T. (2019). Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. Plant Cell and Environment, 42(3), 904–917. https://doi.org/10.1111/pce.13429
Hall, R. D. (2006). Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468. https://doi.org/10.1111/j.1469-8137.2005.01632.x
Hammond-Kosack, K., & Jones, J. D. G. (2015). Responses to plant pathogens. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (2da ed., p. 984). John Wiley & Sons, Ltd.
Hartmann, T. (1996). Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata, 80, 177–188.
Heil, M. (2010). Plastic defence expression in plants. Evolutionary Ecology, 24(3), 555–569. https://doi.org/10.1007/s10682-009-9348-7
Heuberger, A. L., Robison, F. M., Lyons, S. M. A., Broeckling, C. D., & Prenni, J. E. (2014). Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Frontiers in Plant Science, 5(JUN), 1–11. https://doi.org/10.3389/fpls.2014.00291
Higuera, B.L., & Ebrahim-Nesbat, F. (1999). Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Horticulturae, 482, 101–108. https://doi.org/10.17660/ActaHortic.1999.482.14
Higuera, Blanca Ligia. (2001). Contribución al estudio del papel de los compuestos fenólicos en los mecanismos de la interacción clavel Dianthus caryophyllus L. -Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.
Higuera, Blanca Ligia, & De Gómez, V. M. (1996). Contribution of HPLC to the Study of the Defense Mechanisms Acting in Carnation (Dianthus caryophyllus L.) Roots on Infection with Fusarium oxysporum f. sp. Dianthi. HRC Journal of High Resolution Chromatography, 19(12), 706–708. https://doi.org/10.1002/jhrc.1240191213
Hilker, M., & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Plant Cell and Environment, 42(3), 753–761. https://doi.org/10.1111/pce.13526
Holeski, L. M., Jander, G., & Agrawal, A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology and Evolution, 27(11), 618–626. https://doi.org/10.1016/j.tree.2012.07.011
Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., & Zolman, B. K. (2012). Plant Peroxisomes: Biogenesis and Function. The Plant Cell, 24(6), 2279–2303. https://doi.org/10.1105/tpc.112.096586
Ingole, K. D., Dahale, S. K., & Bhattacharjee, S. (2021). Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. Journal of Proteomics, 232. https://doi.org/10.1016/j.jprot.2020.104054
ITC. (2021). Trade Map International Trade Centre. https://marketanalysis.intracen.org
Jacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405–414. https://doi.org/10.1111/pbi.12659
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286
Jorrin-Novo, J. V. (2014). Plant Proteomics Methods and Protocols. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_1
Karmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3
Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845
Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/162750
Lattanzio, V., Kroon, P. A., Quideau, S., & Treutter, D. (2008). Plant Phenolics– Secondary Metabolites with Diverse Functions. In F. Daayf & V. Lattanzio (Eds.), Recent Advances in Polyphenol Research (Vol. 1, pp. 1–35). Wiley-Blackwell. https://doi.org/10.1002/9781444302400.ch1
Lattanzio, V., Lattanzio, V. M. T., Cardinali, A., & Amendola, V. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: Advances in Research (1st ed., Vol. 661, Issue 2, pp. 23–67). Research Signpost.
Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(MAY2016). https://doi.org/10.3389/fpls.2016.00735
Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004
Leslie, J. F., & Summerell, B. A. (2006). Techniques and Methods. Techniques for Recovering Fusarium. In J. F. Leslie & B. A. Summerell (Eds.), The Fusarium Laboratory Manual (1st ed., pp. 15–20). Blackwell Publishing.
Li, J., Chu, Z. H., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C., & Jones, J. D. G. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15973–15978. https://doi.org/10.1073/pnas.0905532106
Lin, Z. J. D., Liebrand, T. W. H., Yadeta, K. A., & Coaker, G. (2015). PBL13 is a serine/threonine protein kinase that negatively regulates arabidopsis immune responses. Plant Physiology, 169(4), 2950–2962. https://doi.org/10.1104/pp.15.01391
Lorenc-Kukuła, K., Korobczak, A., Aksamit-Stachurska, A., Kostyń, K., Łukaszewicz, M., & Szopa, J. (2004). Glucosyltransferase: The gene arrangement and enzyme function. Cellular and Molecular Biology Letters, 9(4 B), 935–946.
Lorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005
Luzzatto, T., Golan, A., Yishay, M., Bilkis, I., Ben-Ari, J., & Yedidia, I. (2007). Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. Journal of Agricultural and Food Chemistry, 55(25), 10315–10322. https://doi.org/10.1021/jf072037
Malinowski, R., Novák, O., Borhan, M. H., Spíchal, L., Strnad, M., & Rolfe, S. A. (2016). The role of cytokinins in clubroot disease. European Journal of Plant Pathology, 145(3), 543–557. https://doi.org/10.1007/s10658-015-0845-y
Mandal, S., Kar, I., Mukherjee, A. K., & Acharya, P. (2013). Elicitor-induced defense responses in solanum lycopersicum against Ralstonia solanacearum. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/561056
Mandal, S., & Mitra, A. (2007). Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 71(4–6), 201–209. https://doi.org/10.1016/j.pmpp.2008.02.003
Marcec, M. J., Gilroy, S., Poovaiah, B. W., & Tanaka, K. (2019). Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science, 283(December 2018), 343–354. https://doi.org/10.1016/j.plantsci.2019.03.004
Martínez-González, A. P., Ardila, H. D., Martínez-Peralta, S. T., Melgarejo-Muñoz, L. M., Castillejo-Sánchez, M. A., & Jorrín-Novo, J. V. (2018). What proteomic analysis of the apoplast tells us about plant–pathogen interactions. Plant Pathology, 67(8), 1647–1668. https://doi.org/10.1111/ppa.12893
Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M., & Conrath, U. (2016). Recognizing Plant Defense Priming. Trends in Plant Science, 21(10), 818–822. https://doi.org/10.1016/j.tplants.2016.07.009
Martinez Gonzalez, A. P., Martínez Peralta, S. T., & Ardila Barrantes, H. D. (2017). Condiciones para el análisis electrofóretico de proteínas apoplásticas de tallos y raíces de clavel (Dianthus caryophyllus L) para estudios proteómicos. Revista Colombiana de Química, 46(2), 5. https://doi.org/10.15446/rev.colomb.quim.v46n2.62958
Martínez, P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.
Mata-Pérez, C., & Spoel, S. H. (2019). Thioredoxin-mediated redox signalling in plant immunity. Plant Science, 279(December 2017), 27–33. https://doi.org/10.1016/j.plantsci.2018.05.001
Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7(8), 352–356. https://doi.org/10.1016/S1360-1385(02)02297-5
Mittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11–19. https://doi.org/10.1016/j.tplants.2016.08.002
Monroy Mena, S. (2019). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.
Namdeo, A., Patil, S., & Fulzele, D. P. (2002). Influence of fungal elicitors on production of ajmalicine by cell cultures of catharanthus roseus. Biotechnology Progress, 18(1), 159–162. https://doi.org/10.1021/bp0101280
Nelson, P. E. (1981). Life Cycle and Epidemiology of Fusarium oxysporum. In M. Mace, A. Bell, & C. Beckman (Eds.), Fungal Wilt Diseases of Plants (1st ed, Issue 1071). Academic Press, INC. https://doi.org/10.1016/B978-0-12-464450-2.50008-5
Nesvizhskii, A. I. (2010). A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics, 73(11), 2092–2123. https://doi.org/10.1016/j.jprot.2010.08.009
Niemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054
Oliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152–158. https://doi.org/10.1016/j.phytol.2015.12.011
Park, E., Nedo, A., Caplan, J. L., & Dinesh-Kumar, S. P. (2018). Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytologist, 217(3), 1012–1028. https://doi.org/10.1111/nph.14959
Pastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–12. https://doi.org/10.3389/fpls.2014.00295
Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314
Paxton, J. D. (1981). Phytoalexins — A Working Redefinition. Journal of Phytopathology, 101(2), 106–109. https://doi.org/10.1111/j.1439-0434.1981.tb03327.x
Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2020). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 0(0), 1–18. https://doi.org/10.1080/03235408.2020.1868734
Ponchet, M., Favre-Bonvin, J., Hauteville, M., & Ricci, P. (1988). Dianthramides (N-benzoyl and N-paracoumarylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry, 27(3), 725–730. https://doi.org/10.1016/0031-9422(88)84083-4
Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12(1), 29–36. https://doi.org/10.1016/j.tplants.2006.11.006
Pusztahelyi, T. (2018). Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 9(3), 189–201. https://doi.org/10.1080/21501203.2018.1473299
Rabilloud, T. (2014). How to Use 2D Gel Electrophoresis in Plant Proteomics. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 43–50). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_4
Ramagli, L., & Rodriguez, L. (1985). Quantitation of microgram amounts of protein in two- dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6, 559–563.
Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/j.pbi.2017.04.011
Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., & Scheel, D. (2011). Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal, 68(1), 100–113. https://doi.org/10.1111/j.1365-313X.2011.04671.x
Rayapuram, N., Jarad, M., Alhoraibi, H. M., Bigeard, J., Abulfaraj, A. A., Völz, R., Mariappan, K. G., Almeida-Trapp, M., Schlöffel, M., Lastrucci, E., Bonhomme, L., Gust, A. A., Mithöfer, A., Arold, S. T., Pflieger, D., & Hirt, H. (2021). Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proceedings of the National Academy of Sciences, 118(3), e2004670118. https://doi.org/10.1073/pnas.2004670118
Rivero, C., Traubenik, S., Zanetti, M. E., & Blanco, F. A. (2019). Small GTPases in plant biotic interactions. Small GTPases, 10(5), 350–360. https://doi.org/10.1080/21541248.2017.1333557
Romeis, T., & Herde, M. (2014). From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 20, 1–10. https://doi.org/10.1016/j.pbi.2014.03.002
Romero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192(September). https://doi.org/10.1016/j.phytochem.2021.112933
Romero Rincón, A. E. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f.sp. dianthi [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78330
Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340–358. https://doi.org/10.1016/0042-6822(61)90319-1
Sánchez-Estrada, A., Tiznado-Hernández, M. E., Ojeda-Contreras, A. J., Valenzuela-Quintanar, A. I., & Troncoso-Rojas, R. (2009). Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. Journal of Phytopathology, 157(1), 24–32. https://doi.org/10.1111/j.1439-0434.2008.01440.x
Sarrocco, S., Falaschi, N., Vergara, M., Nicoletti, F., & Vannacci, G. (2007). Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. Journal of Plant Pathology, 89(1), 47–54. https://doi.org/10.4454/jpp.v89i1.723
SAS Institute Inc. (2018). JMP (14.0.0).
Sathiyabama, M., & Charles, R. E. (2015). Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydrate Polymers, 133, 400–407. https://doi.org/10.1016/j.carbpol.2015.07.066
Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105
Scranton, M. A., Yee, A., Park, S. Y., & Walling, L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. Journal of Biological Chemistry, 287(22), 18408–18417. https://doi.org/10.1074/jbc.M111.309500
Shcherbakova, L. A., Odintsova, T. I., Stakheev, A. A., Fravel, D. R., & Zavriev, S. K. (2016). Identification of a novel small cysteine-rich protein in the fraction from the biocontrol fusarium oxysporum strain CS-20 that mitigates fusarium wilt symptoms and triggers defense responses in tomato. Frontiers in Plant Science, 6(JAN2016), 1–15. https://doi.org/10.3389/fpls.2015.01207
Somssich, I., & Hahlbrock, K. (1998). Pathogen defence in plants - a paradigm of biological complexity. Trends in Plant Science, 3(3), 86–90.
Soto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomia Colombiana, 30(2), 172–178.
Speed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251–1263. https://doi.org/10.1111/nph.13560
Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141
Sterck, L., Rombauts, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2007). How many genes are there in plants (... and why are they there)? Current Opinion in Plant Biology, 10(2), 199–203. https://doi.org/10.1016/j.pbi.2007.01.004
Summerell, B. A., Salleh, B., & Leslie, J. F. (2003). A utilitarian approach to Fusarium Identification. Plant Disease, 87(2), 117–128.
Takahama, U., & Hirota, S. (2000). Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant and Cell Physiology, 41(9), 1021–1029. https://doi.org/10.1093/pcp/pcd025
Talapatra, S. K., & Talapatra, B. (2015). Diterpenoids (C20). In Chemistry of Plant Natural Products (pp. 469–510). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_8
Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G., & Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 15(2), 317–330. https://doi.org/10.1105/tpc.007591
The Uniprot Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky104
Troncoso-Rojas, R., Sánchez-Estrada, A., Carvallo, T., González-León, A., Ojeda-Contreras, J., Aguilar-Valenzuela, A., & Tiznado-Hernández, M. E. (2013). A fungal elicitor enhances the resistance of tomato fruit to Fusarium oxysporum infection by activating the phenylpropanoid metabolic pathway. Phytoparasitica, 41(2), 133–142. https://doi.org/10.1007/s12600-012-0271-z
Ul Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W. X., Zhang, H. X., Wei, A. M., & Gong, Z. H. (2019). Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 1–31. https://doi.org/10.3390/ijms20215321
Underwood, W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science, 3(MAY), 1–6. https://doi.org/10.3389/fpls.2012.00085
Underwood, W. (2016). Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Seminars in Cell and Developmental Biology, 56, 163–173. https://doi.org/10.1016/j.semcdb.2016.05.016
Vallad, G., & Goodman, R. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.
Valledor, L., & Jorrín, J. (2011). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 74(1), 1–18. https://doi.org/10.1016/j.jprot.2010.07.007
Valledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols Methods and Protocols (2nd ed., pp. 347–358). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_25
Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.
Vanegas, L. (2019). Leidy Johana Vanegas Cano. Universidad Nacional de Colombia.
Vaudel, M., Sickmann, A., & Martens, L. (2012). Current methods for global proteome identification. Expert Review of Proteomics, 9(5), 519–532. https://doi.org/10.1586/epr.12.51
Viladomat, F., & Bastida, J. (2015). General Overview of Plant Secondary Metabolism. In B. Bahadur, M. Rajam, L. Sahijram, & K. Krishnamurthy (Eds.), Plant Biology and Biotechnology (Vol. 1, pp. 539–568). Springer India. https://doi.org/10.1007/978-81-322-2286-6_21
Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227–232. https://doi.org/10.1038/nrg3185
Walters, D. R., & Boyle, C. (2005). Induced resistance and allocation costs: What is the impact of pathogen challenge? Physiological and Molecular Plant Pathology, 66(1–2), 40–44. https://doi.org/10.1016/j.pmpp.2005.04.002
Walters, Dale R., & Paterson, L. (2012). Parents lend a helping hand to their offspring in plant defence. Biology Letters, 8(5), 871–873. https://doi.org/10.1098/rsbl.2012.0416
Walters, Dale R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026
Walters, Dale R. (2011a). What Defenses Do Plants Use ? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 15–76). Wiley-Blackwell.
Walters, Dale R. (2011b). Why do plants need defenses? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 1–11). Wiley-Blackwell. https://doi.org/10.1016/S1097-2765(03)00072-8
Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141. https://doi.org/10.1016/j.pbi.2017.05.003
Wang, Y., Gao, M., Li, Q., Wang, L., Wang, J., Jeon, J. S., Qu, N., Zhang, Y., & He, Z. (2008). OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Molecular Plant-Microbe Interactions, 21(3), 294–303. https://doi.org/10.1094/MPMI-21-3-0294
Wi, S. J., Kim, W. T., & Park, K. Y. (2006). Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 25(10), 1111–1121. https://doi.org/10.1007/s00299-006-0160-3
Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(NOV), 1–13. https://doi.org/10.3389/fpls.2014.00655
Wink, M. (2010). Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites. In Biochemistry of Plant Secondary Metabolism (1st ed., Vol. 40, Issue August, pp. 1–19). Wiley-Blackwell. https://doi.org/10.1002/9781444320503.ch1
Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In Handbook of florist’s crops diseases (pp. 317–378). https://doi.org/10.1007/978-3-319-39670-5_14
Yagi, M. (2018). Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breeding Science, 68(1), 62–70. https://doi.org/10.1270/jsbbs.17080
Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053
Yamaguchi, Y., & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. https://doi.org/10.1016/j.pbi.2011.05.001
Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plan, Cell & Environment, 36, 2085–2103.
Zhang, M., Xu, J., Liu, G., Yao, X., Ren, R., & Yang, X. (2018). Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Plant and Soil, 422(1–2), 169–181. https://doi.org/10.1007/s11104-017-3294-x
Zhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., Yu, X. C., Gao, Y., Huang, P., & An, C. (2012). Two novel RING-type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiology, 160(2), 808–822. https://doi.org/10.1104/pp.112.203422
Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003
Zhao, N., Wang, G., Norris, A., Chen, X., & Chen, F. (2013). Studying Plant Secondary Metabolism in the Age of Genomics. Critical Reviews in Plant Sciences, 32(6), 369–382. https://doi.org/10.1080/07352689.2013.789648
Zhou, C., Zhang, L., Duan, J., Miki, B., & Wu, K. (2005). Histone Deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 17(4), 1196–1204. https://doi.org/10.1105/tpc.104.0285
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv [xxii], 258 páginas + 1 anexo
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85541/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85541/2/37513154.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/85541/3/Suplemento%2037513154.2022.xlsx
https://repositorio.unal.edu.co/bitstream/unal/85541/4/37513154.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ff840aa9a5202b8b0a4970f83ab86e46
3887ed8afd3073a0dda4f8c6b4284663
17ca7be20d07425e74a7cb8a67b8214e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089556534755328
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila Barrantes, Harold Duban3c0b4dc91cdf02792559faddcd37e2b3Coy Barrera, Ericsson David508c29a7d75f8c7bc49946bb300cabf3Santos Rodríguez, Janneth Fabiola0504b870de043a159be8f48be4548d31Estudio de Actividades Metabolicas Vegetaleshttps://orcid.org/0000-0002-8510-5279https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001506038https://www.researchgate.net/profile/Janneth-Santoshttps://scholar.google.com/citations?user=eR8ZJx0AAAAJ&hl=es&oi=ao2024-01-30T20:24:22Z2024-01-30T20:24:22Z2022https://repositorio.unal.edu.co/handle/unal/85541Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasEn la presente investigación se estudiaron los cambios bioquímicos que se generan en raíces de plantas de clavel (Dianthus caryophyllus L.), durante la aplicación de un elicitor de origen biótico (eFod, acrónimo del elicitor proveniente de Fusarium oxysporum f. sp. dianthi) con potencial para la inducción de resistencia al marchitamiento vascular causado por el hongo Fusarium oxysporum f. sp. dianthi. Para ello, se emplearon herramientas analíticas que permitieron determinar cambios en los perfiles proteómicos y metabólicos, de manera independiente en tres escenarios: 1. por efecto de la aplicación del elicitor de origen biótico; 2. durante la infección con el patógeno; y 3. durante la elicitación y posterior reto con el patógeno. Se determinó que, la aplicación del elicitor objeto de estudio, tiene un efecto positivo en la reducción del progreso de la enfermedad y su aplicación afecta fenómenos relacionados con la resistencia en plantas, como son cambios en la producción/acumulación de compuestos derivados de la ruta shikimato/fenilpropanoide, junto a una regulación de proteínas asociadas a diversos procesos asociados a la detección de PAMPs y MAMPs. Así mismo, se determinó que, durante el reto con el patógeno, la aplicación previa del inductor permitió potencializar la respuesta bioquímica inducida, principalmente en una variedad susceptible, mediante el aumento de metabolitos y proteínas relacionadas con la resistencia multigénica reportada en clavel. La presente investigación aporta al conocimiento del potencial uso de inductores de resistencia inducida para el control del marchitamiento vascular del clavel. (Texto tomado de la fuente)In this research, we aimed to study the biochemical changes generated in the roots of carnation (Dianthus caryophyllus L.) due to the application of an elicitor of biotic origin, which has the potential for inducing resistance against vascular wilting caused by the fungus Fusarium oxysporum. f. sp. dianthi. In order to reach this goal, we used analytical tools that allowed to determine the changes in the proteomic and metabolic profiles of carnation roots. Three scenarios were evaluated: 1) effect of the application of the elicitor of biotic origin; 2) effect of the infection with the pathogen; and 3) effect of elicitation and subsequent challenge with the pathogen. We found evidence that the application of this elicitor has a positive effect on reducing the progress of the disease and that its application affects phenomena related to plant resistance, such as changes in the accumulation/production of compounds derived from the shikimate/phenylpropanoid route. Also, we observed both, a regulation of proteins associated with various processes related to the detection of PAMPs and MAMPs. Likewise, it was determined that during the challenge with the pathogen, the previous application of the inducer allowed to potentiate the induced biochemical response, through the increase of metabolites and proteins related multigenic resistance reported of the carnation. The present study contributes to the knowledge of the potential use of inducers of induced resistance for the control of vascular wilt of carnation.MincienciasDoctoradoDoctora en Ciencias-BiologíaBioquímica de la interacción hospedero-patógeno[xxii], 258 páginas + 1 anexoapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales::635 - Cultivos de huerta (Horticultura)Dianthus caryophyllusFusarium oxysporumProteómicaResistencia inducidaMarchitezReacciones de defensa de plantasProteomicsInduced resistanceWiltsPlant defence reactionsClaveles - Enfermedades por hongosCarnations - Fungus diseasesClavelFusarium oxysporum f. sp. dianthiElicitaciónProteómicaPerfil metabólicoResistencia inducidaCarnationElicitationPrimingProteomicsMetabolic profileInduced resistanceElicitaciónElicitationContribución al estudio de la respuesta bioquímica de resistencia inducida mediante el uso de elicitores de origen biótico en la interacción Fusarium oxysporum f. sp. dianthi raza 2 - clavel (Dianthus caryophyllus L.)Contribution to the study of the bichemical response of the induced resistance promoted by the use of elicitors of biotic origin in the interaction Fusarium oxyxporum f. sp. dianthi race 2 - carnation (Dianthus caryophyllus L.)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbd-elsalam, K. A., Aly, I. N., Abdel-satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 96–103. https://doi.org/https://doi.org/10.5897/AJB2003.000-1016Abdelrahman, M., Abdel-Motaal, F., El-Sayed, M., Jogaiah, S., Shigyo, M., Ito, S. ichi, & Tran, L. S. P. (2016). Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science, 246, 128–138. https://doi.org/10.1016/j.plantsci.2016.02.008Adrian, M., Lucio, M., Roullier-Gall, C., Héloir, M. C., Trouvelot, S., Daire, X., Kanawati, B., Lemaître-Guillier, C., Poinssot, B., Gougeon, R., & Schmitt-Kopplin, P. (2017). Metabolic fingerprint of PS3-induced resistance of grapevine leaves against Plasmopara viticola revealed differences in elicitor-triggered defenses. Frontiers in Plant Science, 8(February), 1–14. https://doi.org/10.3389/fpls.2017.00101Aebersold, R., & Mann, M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature, 537(7620), 347–355. https://doi.org/10.1038/nature19949Agorio, A., & Vera, P. (2007). ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19(11), 3778–3790. https://doi.org/10.1105/tpc.107.054494Agrios, G. (2005). Parasitism and disease development. In G. Agrios (Ed.), Plant Pathology (Fifth edit, pp. 77–104). Elsevier Academic Press.Al-Snafi, P. D. A. E. (2017). Chemical contents and medical importance of Dianthus caryophyllus- A review. IOSR Journal of Pharmacy (IOSRPHR), 07(03), 61–71. https://doi.org/10.9790/3013-0703016171Aldinary, A. M., Morsy Abdelaziz, A., Farrag, A. A., & Attia, M. S. (2021). Biocontrol of tomato Fusarium wilt disease by a new Moringa endophytic Aspergillus isolates. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.03.423Almagro, L., Gómez Ros, L. V., Belchi-Navarro, S., Bru, R., Ros Barceló, A., & Pedreño, M. A. (2009). Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 60(2), 377–390. https://doi.org/10.1093/jxb/ern277Amaral, J., Lamelas, L., Valledor, L., Castillejo, M. Á., Alves, A., & Pinto, G. (2021). Comparative proteomics of <scp> Pinus – Fusarium </scp> circinatum interactions reveal metabolic clues to biotic stress resistance. Physiologia Plantarum. https://doi.org/10.1111/ppl.13563Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701Arbelaez, G. (1987). Enfermedades fungosas y bacteriales del clavel en Colombia. Agronomía Colombiana, 4(1–2), 3–8.Arbeláez, G., Garcéz de Granada, E., Orozco de Amézquita, M., & Calderón, O. L. (1996). Respuesta de algunas variedades de clavel estandar a cuatro razas fisiológicas de Fusarium oxysporum f. sp. dianthi. Agronomia Colombiana’, 13(2), 117–127. https://doi.org/10.1094/pd-66-809Ardila, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus) al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.Ardila, H. D., Baquero, B., & Martínez, S. T. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en el clavel (Dianthus caryophyllus L) por elicitores del hongo Fusarium oxysporum f.sp. dianthi raza 2. Revista Colombiana de Química, 36(2), 151–167.Ardila, H. D., Fernández, R. G., Higuera, B. L., Redondo, I., & Martínez, S. T. (2014). Protein Extraction and Gel-Based Separation Methods to Analyze Responses to Pathogens in Carnation (Dianthus caryophyllus L). In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols (2nd ed., pp. 573–591). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_39Ardila, H. D., Martínez, S. T. S. T., & Higuera, B. L. B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0Ashwin, N. M. R., Barnabas, L., Ramesh Sundar, A., Malathi, P., Viswanathan, R., Masi, A., Agrawal, G. K., & Rakwal, R. (2017). Advances in proteomic technologies and their scope of application in understanding plant–pathogen interactions. Journal of Plant Biochemistry and Biotechnology, 26(4), 371–386. https://doi.org/10.1007/s13562-017-0402-1Aslam, S. N., Erbs, G., Morrissey, K. L., Newman, M.-A., Chinchilla, D., Boller, T., Molinaro, A., Jackson, R. W., & Cooper, R. M. (2009). Microbe-associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 10(3), 375–387. https://doi.org/10.1111/j.1364-3703.2009.00537.xAsocolflores. (2018). Boletín estadístico diciembre 2018. Dirección de economía y logística.Baayen, R. P. (1988). Responses related to lignification and intravascular periderm formation in carnations resistant to Fusarium wilt. Canadian Journal of Botany, 66, 784–792.Baayen, R. P., & Niemann, G. J. (1989). Correlations between Accumulation of Dianthramides, Dianthalexin and Unknown Compounds, and Partial Resistance to Fusarium oxysporum f. sp. dianthi in Eleven Carnation Cultivars. Journal of Phytopathology, 126(4), 281–292. https://doi.org/10.1111/j.1439-0434.1989.tb04491.xBaayen, R. P., Sparnaaij, L. D., Jansen, J., & Niemann, G. J. (1991). Inheritance of resistance in carnation against Fusarium oxysporum f.sp. dianthi races 1 and 2, in relation to resistance components. Netherlands Journal of Plant Pathology, 97(2), 73–86. https://doi.org/10.1007/BF01974271Baenas, N., García-Viguera, C., & Moreno, D. A. (2014). Elicitation: A tool for enriching the bioactive composition of foods. Molecules, 19(9), 13541–13563. https://doi.org/10.3390/molecules190913541Bálintová, M., Bruňáková, K., Petijová, L., & Čellárová, E. (2019). Targeted metabolomic profiling reveals interspecific variation in the genus Hypericum in response to biotic elicitors. Plant Physiology and Biochemistry, 135(December 2018), 348–358. https://doi.org/10.1016/j.plaphy.2018.12.024Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The “prime-ome”: Towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002Balmer, D., De Papajewski, D. V., Planchamp, C., Glauser, G., & Mauch-Mani, B. (2013). Induced resistance in maize is based on organ-specific defence responses. Plant Journal, 74(2), 213–225. https://doi.org/10.1111/tpj.12114Beck, M., Komis, G., Müller, J., Menzel, D., & Šamaj, J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essentialfor microtubule organization. Plant Cell, 22(3), 755–771. https://doi.org/10.1105/tpc.109.071746Beckers, G. J. M., & Spoel, S. H. (2006). Fine-tuning plant defence signalling: Salicylate versus jasmonate. Plant Biology, 8(1), 1–10. https://doi.org/10.1055/s-2005-872705Bellincampi, D., Cervone, F., & Lionetti, V. (2014). Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Frontiers in Plant Science, 5(MAY), 1–8. https://doi.org/10.3389/fpls.2014.00228Ben-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete resistance by carnation cultivars to Fusarium wilt induced by Fusarium oxysporum f. sp. dianthi race 2. Plant Disease, 81(7), 777–780. https://doi.org/10.1094/PDIS.1997.81.7.777Ben-Yephet, Y., Reuven, M., Zviebil, A., & Shtienberg, D. (1996). Effects of initial inoculum and cultivar resistance on incidence of Fusarium wilt and population densities of Fusarium oxysporum f. sp. dianthi on carnation and in soil. In Phytopathology (Vol. 86, Issue 7, pp. 751–756). https://doi.org/10.1094/phyto-86-751Ben-Yephet, Y., & Shtienberg, D. (1994). Effects of solar radiation and temperature on Fusarium wilt in carnation. Phytopathology, 84(12), 1416–1421Ben Khaled, S., Postma, J., & Robatzek, S. (2015). A Moving View: Subcellular Trafficking Processes in Pattern Recognition ReceptorTriggered Plant Immunity. Annual Review of Phytopathology, 53(August), 379–402. https://doi.org/10.1146/annurev-phyto-080614-120347Benhamou, N. (1996). Elicitor-induced plant defence pathways. Trends in Plant Science, 1(7), 233–240. https://doi.org/10.1016/1360-1385(96)86901-9Benhamou, N., & Nicole, M. (1999). Cell biology of plant immunization against microbial infection: The potential of induced resistance in controlling plant diseases. Plant Physiology and Biochemistry, 37(10), 703–719. https://doi.org/10.1016/S0981-9428(00)86684-XBenson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2009). GenBank. Nucleic Acids Research, 37(SUPPL. 1), 26–31. https://doi.org/10.1093/nar/gkn723Bigeard, J., Colcombet, J., & Hirt, H. (2015). Signaling mechanisms in pattern-triggered immunity (PTI). Molecular Plant, 8(4), 521–539. https://doi.org/10.1016/j.molp.2014.12.022Boba, A., Kostyn, K., Kostyn, A., Wojtasik, W., Dziadas, M., Preisner, M., Szopa, J., & Kulma, A. (2017). Methyl salicylate level increase in flax after Fusarium oxysporum infection is associated with phenylpropanoid pathway activation. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01951Boller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346Boller, T., & He, S. Y. (2009). Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens. Science, 324(5928), 742–744. https://doi.org/10.1126/science.1171647Bolton, M. D. (2009). Primary Metabolism and Plant Defense—Fuel for the Fire. Molecular Plant-Microbe Interactions, 22(5), 487–497. https://doi.org/10.1094/mpmi-22-5-0487Brodersen, P., Petersen, M., Bjørn Nielsen, H., Zhu, S., Newman, M.-A., Shokat, K. M., Rietz, S., Parker, J., & Mundy, J. (2006). Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. The Plant Journal, 47(4), 532–546. https://doi.org/10.1111/j.1365-313X.2006.02806.xBruce, T. J. A. (2014). Variation in plant responsiveness to defense elicitors caused by genotype and environment. Frontiers in Plant Science, 5(JUL), 3–6. https://doi.org/10.3389/fpls.2014.00349Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004Cai, Q., He, B., & Jin, H. (2019). A safe ride in extracellular vesicles – small RNA trafficking between plant hosts and pathogens. Current Opinion in Plant Biology, 52, 140–148. https://doi.org/10.1016/j.pbi.2019.09.001Camañes, G., Scalschi, L., Vicedo, B., González-Bosch, C., & García-Agustín, P. (2015). An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas sy. Plant Journal, 84(1), 125–139. https://doi.org/10.1111/tpj.12964Cannell, N., Emms, D. M., Hetherington, A. J., MacKay, J., Kelly, S., Dolan, L., & Sweetlove, L. J. (2020). Multiple Metabolic Innovations and Losses Are Associated with Major Transitions in Land Plant Evolution. Current Biology, 30(10), 1783-1800.e11. https://doi.org/10.1016/j.cub.2020.02.086Castellanos-Domínguez, O., Fonseca-Rodríguez, S., & Buriticá-Ospina, S. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de flores y follajes con énfasis en clavel.Castiblanco, F., & Ardila, H. D. (2021). Condiciones de crecimiento del hongo Fusarium oxysporum f.sp. dianthi para la preparación de un potencial inductor de resistenci al marchitamiento vascular del clavel (Dianthus caryophyllus).Castillejo, M.-Á., Fondevilla-Aparicio, S., Fuentes-Almagro, C., & Rubiales, D. (2020). Quantitative Analysis of Target Peptides Related to Resistance Against Ascochyta Blight ( Peyronellaea pinodes ) in Pea. Journal of Proteome Research, 19(3), 1000–1012. https://doi.org/10.1021/acs.jproteome.9b00365Castillejo, M. Á., Bani, M., & Rubiales, D. (2015). Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 115(1), 44–58. https://doi.org/10.1016/j.phytochem.2015.01.009Castro-Moretti, F. R., Gentzel, I. N., Mackey, D., & Alonso, A. P. (2020). Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites, 10(2), 1–23. https://doi.org/10.3390/metabo10020052Chakraborty, N., & Acharya, K. (2016). Ex vivo analyses of formulated bio-elicitors from a phytopathogen in the improvement of innate immunity in host. Archives of Phytopathology and Plant Protection, 49(17–18), 485–505. https://doi.org/10.1080/03235408.2016.1242196Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5, 1–14. https://doi.org/10.1038/srep15195Chang, T. H., Lin, Y. H., Chen, K. S., Huang, J. W., Hsiao, S. C., & Chang, P. F. L. (2015). Cell wall reinforcement in watermelon shoot base related to its resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. niveum. Journal of Agricultural Science, 153(2), 296–305. https://doi.org/10.1017/S0021859614000057Chatterjee, M., Gupta, S., Bhar, A., Chakraborti, D., Basu, D., & Das, S. (2014). Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-949Chen, J., Ullah, C., Reichelt, M., Gershenzon, J., & Hammerbacher, A. (2019). Sclerotinia sclerotiorum circumvents flavonoid defenses by catabolizing flavonol glycosides and aglycones. Plant Physiology, 180(4), 1975–1987. https://doi.org/10.1104/pp.19.00461Chen, Y. C., Kidd, B. N., Carvalhais, L. C., & Schenk, P. M. (2014). Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signaling & Behavior, 9(12), e977710. https://doi.org/10.4161/15592324.2014.977710Chen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4. https://doi.org/10.1038/srep05584Chiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., Migheli, Q., Gullino, L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169Chong, J., Pierrel, M. A., Atanassova, R., Werck-Reichhart, D., Fritig, B., & Saindrenan, P. (2001). Free and conjugated benzoic acid in tobacco plants and cell cultures. Induced accumulation upon elicitation of defense responses and role as salicylic acid precursors. Plant Physiology, 125(1), 318–328. https://doi.org/10.1104/pp.125.1.318Conrath, U., Beckers, G. J. M., Flors, V., García-Agustín, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., & Mauch-Mani, B. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071. https://doi.org/10.1094/MPMI-19-1062Conrath, U., Beckers, G. J. M., Langenbach, C. J. G., & Jaskiewicz, M. R. (2015). Priming for Enhanced Defense. Annual Review of Phytopathology, 53, 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6Couto, D., & Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nature Reviews Immunology, 16(9), 537–552. https://doi.org/10.1038/nri.2016.77Curir, P., Dolci, M., Dolci, P., Lanzotti, V., & De Cooman, L. (2003). Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochemical Analysis, 14(1), 8–12. https://doi.org/10.1002/pca.672Curir, P., Dolci, M., Lanzotti, V., & Taglialatela-Scafati, O. (2001). Kaempferide triglycoside: A possible factor of resistance of carnation (Dianthus caryophyllus) to Fusarium oxysporum f. sp. dianthi. Phytochemistry, 56(7), 717–721. https://doi.org/10.1016/S0031-9422(00)00488-XDe Ascensao, A. R. F. D. C., & Dubery, I. A. (2003). Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry, 63(6), 679–686. https://doi.org/10.1016/S0031-9422(03)00286-3De Borba, M. C., de Freitas, M. B., & Stadnik, M. J. (2019). Ulvan enhances seedling emergence and reduces Fusarium wilt severity in common bean (Phaseolus vulgaris L.). Crop Protection, 118(December 2018), 66–71. https://doi.org/10.1016/j.cropro.2018.12.014De Kesel, J., Conrath, U., Flors, V., Luna, E., Mageroy, M. H., Mauch-Mani, B., Pastor, V., Pozo, M. J., Pieterse, C. M. J., Ton, J., & Kyndt, T. (2021). The Induced Resistance Lexicon: Do’s and Don’ts. Trends in Plant Science, January. https://doi.org/10.1016/j.tplants.2021.01.001Deng, Z. (2018). Breeding for Disease Resistance in Florists’ Crops (pp. 87–117). https://doi.org/10.1007/978-3-319-39670-5_4Denison, F. C., Paul, A. L., Zupanska, A. K., & Ferl, R. J. (2011). 14-3-3 Proteins in Plant Physiology. Seminars in Cell and Developmental Biology, 22(7), 720–727. https://doi.org/10.1016/j.semcdb.2011.08.006Deuerling, E., Gamerdinger, M., & Kreft, S. G. (2019). Chaperone Interactions at the Ribosome. Cold Spring Harbor Perspectives in Biology, 11(11), a033977. https://doi.org/10.1101/cshperspect.a033977Dewen, Q., Yijie, D., Yi, Z., Shupeng, L., & Fachao, S. (2017). Plant immunity inducer development and application. Molecular Plant-Microbe Interactions, 30(5), 355–360. https://doi.org/10.1094/MPMI-11-16-0231-CRDi Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xDixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. Plant Cell, 7(7), 1085–1097. https://doi.org/10.1105/tpc.7.7.1085Dixon, Richard A., & Pasinetti, G. M. (2010). Flavonoids and isoflavonoids: From plant biology to agriculture and neuroscience. Plant Physiology, 154(2), 453–457. https://doi.org/10.1104/pp.110.161430Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: Towards an integrated view of plant-pathogen interactions. Nature Reviews Genetics, 11(8), 539–548. https://doi.org/10.1038/nrg2812Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1(4), 316–323. https://doi.org/10.1016/1369-5266(88)80053-0El Modafar, C., Tantaoui, A., & El Boustani, E. S. (2001). Differential induction of phenylalanine ammonia-lyase activity in date palm roots in response to inoculation with Fusarium oxysporum f. sp. albedinis and to elicitation with fungal wall elicitor. Journal of Plant Physiology, 158(6), 715–722. https://doi.org/10.1078/0176-1617-00258Eng, J. K., Searle, B. C., Clauser, K. R., & Tabb, D. L. (2011). A face in the crowd: Recognizing peptides through database search. Molecular and Cellular Proteomics, 10(11), 1–9. https://doi.org/10.1074/mcp.R111.009522Espinas, N. A., Saze, H., & Saijo, Y. (2016). Epigenetic control of defense signaling and priming in plants. Frontiers in Plant Science, 7(AUG2016), 1–7. https://doi.org/10.3389/fpls.2016.01201Falcone Ferreyra, M. L., Rius, S. P., & Casati, P. (2012). Flavonoids: Biosynthesis, biological functions, and biotechnological applications. Frontiers in Plant Science, 3(SEP), 1–15. https://doi.org/10.3389/fpls.2012.00222Fan, K.-T., Wang, K.-H., Chang, W.-H., Yang, J.-C., Yeh, C.-F., Cheng, K.-T., Hung, S.-C., & Chen, Y.-R. (2019). Application of Data-Independent Acquisition Approach to Study the Proteome Change from Early to Later Phases of Tomato Pathogenesis Responses. International Journal of Molecular Sciences, 20(4), 863. https://doi.org/10.3390/ijms20040863Ferrochio, L., Cendoya, E., Farnochi, M. C., Massad, W., & Ramirez, M. L. (2013). Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. International Journal of Food Microbiology, 167(2), 215–220. https://doi.org/10.1016/j.ijfoodmicro.2013.09.005Fiehn, O. (2002). Metabolomics - The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. https://doi.org/10.1023/A:1013713905833Galeotti, F., Barile, E., Curir, P., Dolci, M., & Lanzotti, V. (2008). Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochemistry Letters, 1(1), 44–48. https://doi.org/10.1016/j.phytol.2007.10.001Gamir, J., Pastor, V., Kaever, A., Cerezo, M., & Flors, V. (2014). Targeting novel chemical and constitutive primed metabolites against Plectosphaerella cucumerina. Plant Journal, 78(2), 227–240. https://doi.org/10.1111/tpj.12465Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D., & Pugin, A. (2006). Early signaling events induced by elicitors of plant defenses. Molecular Plant-Microbe Interactions, 19(7), 711–724. https://doi.org/10.1094/MPMI-19-0711Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923González-Fernández, R., Prats, E., & Jorrín-Novo, J. V. (2010). Proteomics of plant pathogenic fungi. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/932527Hake, K., & Romeis, T. (2019). Protein kinase-mediated signalling in priming: Immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. Plant Cell and Environment, 42(3), 904–917. https://doi.org/10.1111/pce.13429Hall, R. D. (2006). Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytologist, 169(3), 453–468. https://doi.org/10.1111/j.1469-8137.2005.01632.xHammond-Kosack, K., & Jones, J. D. G. (2015). Responses to plant pathogens. In B. B. Buchanan, W. Gruissem, & R. Jones (Eds.), Biochemistry & Molecular Biology of Plants (2da ed., p. 984). John Wiley & Sons, Ltd.Hartmann, T. (1996). Diversity and variability of plant secondary metabolism: a mechanistic view. Entomologia Experimentalis et Applicata, 80, 177–188.Heil, M. (2010). Plastic defence expression in plants. Evolutionary Ecology, 24(3), 555–569. https://doi.org/10.1007/s10682-009-9348-7Heuberger, A. L., Robison, F. M., Lyons, S. M. A., Broeckling, C. D., & Prenni, J. E. (2014). Evaluating plant immunity using mass spectrometry-based metabolomics workflows. Frontiers in Plant Science, 5(JUN), 1–11. https://doi.org/10.3389/fpls.2014.00291Higuera, B.L., & Ebrahim-Nesbat, F. (1999). Study of vascular root responses as defense mechanisms in carnation resistant or susceptible to Fusarium oxysporum f. sp. dianthi by transmission electron microscopy. Acta Horticulturae, 482, 101–108. https://doi.org/10.17660/ActaHortic.1999.482.14Higuera, Blanca Ligia. (2001). Contribución al estudio del papel de los compuestos fenólicos en los mecanismos de la interacción clavel Dianthus caryophyllus L. -Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.Higuera, Blanca Ligia, & De Gómez, V. M. (1996). Contribution of HPLC to the Study of the Defense Mechanisms Acting in Carnation (Dianthus caryophyllus L.) Roots on Infection with Fusarium oxysporum f. sp. Dianthi. HRC Journal of High Resolution Chromatography, 19(12), 706–708. https://doi.org/10.1002/jhrc.1240191213Hilker, M., & Schmülling, T. (2019). Stress priming, memory, and signalling in plants. Plant Cell and Environment, 42(3), 753–761. https://doi.org/10.1111/pce.13526Holeski, L. M., Jander, G., & Agrawal, A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends in Ecology and Evolution, 27(11), 618–626. https://doi.org/10.1016/j.tree.2012.07.011Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R. T., Reumann, S., & Zolman, B. K. (2012). Plant Peroxisomes: Biogenesis and Function. The Plant Cell, 24(6), 2279–2303. https://doi.org/10.1105/tpc.112.096586Ingole, K. D., Dahale, S. K., & Bhattacharjee, S. (2021). Proteomic analysis of SUMO1-SUMOylome changes during defense elicitation in Arabidopsis. Journal of Proteomics, 232. https://doi.org/10.1016/j.jprot.2020.104054ITC. (2021). Trade Map International Trade Centre. https://marketanalysis.intracen.orgJacob, P., Hirt, H., & Bendahmane, A. (2017). The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnology Journal, 15(4), 405–414. https://doi.org/10.1111/pbi.12659Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286Jorrin-Novo, J. V. (2014). Plant Proteomics Methods and Protocols. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_1Karmakar, S., Datta, K., Molla, K. A., Gayen, D., Das, K., Sarkar, S. N., & Datta, S. K. (2019). Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-019-46885-3Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10(July), 1–19. https://doi.org/10.3389/fpls.2019.00845Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/162750Lattanzio, V., Kroon, P. A., Quideau, S., & Treutter, D. (2008). Plant Phenolics– Secondary Metabolites with Diverse Functions. In F. Daayf & V. Lattanzio (Eds.), Recent Advances in Polyphenol Research (Vol. 1, pp. 1–35). Wiley-Blackwell. https://doi.org/10.1002/9781444302400.ch1Lattanzio, V., Lattanzio, V. M. T., Cardinali, A., & Amendola, V. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: Advances in Research (1st ed., Vol. 661, Issue 2, pp. 23–67). Research Signpost.Le Roy, J., Huss, B., Creach, A., Hawkins, S., & Neutelings, G. (2016). Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science, 7(MAY2016). https://doi.org/10.3389/fpls.2016.00735Lecomte, C., Alabouvette, C., Edel-Hermann, V., Robert, F., & Steinberg, C. (2016). Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biological Control, 101, 17–30. https://doi.org/10.1016/j.biocontrol.2016.06.004Leslie, J. F., & Summerell, B. A. (2006). Techniques and Methods. Techniques for Recovering Fusarium. In J. F. Leslie & B. A. Summerell (Eds.), The Fusarium Laboratory Manual (1st ed., pp. 15–20). Blackwell Publishing.Li, J., Chu, Z. H., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C., & Jones, J. D. G. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15973–15978. https://doi.org/10.1073/pnas.0905532106Lin, Z. J. D., Liebrand, T. W. H., Yadeta, K. A., & Coaker, G. (2015). PBL13 is a serine/threonine protein kinase that negatively regulates arabidopsis immune responses. Plant Physiology, 169(4), 2950–2962. https://doi.org/10.1104/pp.15.01391Lorenc-Kukuła, K., Korobczak, A., Aksamit-Stachurska, A., Kostyń, K., Łukaszewicz, M., & Szopa, J. (2004). Glucosyltransferase: The gene arrangement and enzyme function. Cellular and Molecular Biology Letters, 9(4 B), 935–946.Lorenc-Kukuła, K., Wróbel-Kwiatkowska, M., Starzycki, M., & Szopa, J. (2007). Engineering flax with increased flavonoid content and thus Fusarium resistance. Physiological and Molecular Plant Pathology, 70(1–3), 38–48. https://doi.org/10.1016/j.pmpp.2007.05.005Luzzatto, T., Golan, A., Yishay, M., Bilkis, I., Ben-Ari, J., & Yedidia, I. (2007). Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. Journal of Agricultural and Food Chemistry, 55(25), 10315–10322. https://doi.org/10.1021/jf072037Malinowski, R., Novák, O., Borhan, M. H., Spíchal, L., Strnad, M., & Rolfe, S. A. (2016). The role of cytokinins in clubroot disease. European Journal of Plant Pathology, 145(3), 543–557. https://doi.org/10.1007/s10658-015-0845-yMandal, S., Kar, I., Mukherjee, A. K., & Acharya, P. (2013). Elicitor-induced defense responses in solanum lycopersicum against Ralstonia solanacearum. The Scientific World Journal, 2013. https://doi.org/10.1155/2013/561056Mandal, S., & Mitra, A. (2007). Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology, 71(4–6), 201–209. https://doi.org/10.1016/j.pmpp.2008.02.003Marcec, M. J., Gilroy, S., Poovaiah, B. W., & Tanaka, K. (2019). Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Science, 283(December 2018), 343–354. https://doi.org/10.1016/j.plantsci.2019.03.004Martínez-González, A. P., Ardila, H. D., Martínez-Peralta, S. T., Melgarejo-Muñoz, L. M., Castillejo-Sánchez, M. A., & Jorrín-Novo, J. V. (2018). What proteomic analysis of the apoplast tells us about plant–pathogen interactions. Plant Pathology, 67(8), 1647–1668. https://doi.org/10.1111/ppa.12893Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M., & Conrath, U. (2016). Recognizing Plant Defense Priming. Trends in Plant Science, 21(10), 818–822. https://doi.org/10.1016/j.tplants.2016.07.009Martinez Gonzalez, A. P., Martínez Peralta, S. T., & Ardila Barrantes, H. D. (2017). Condiciones para el análisis electrofóretico de proteínas apoplásticas de tallos y raíces de clavel (Dianthus caryophyllus L) para estudios proteómicos. Revista Colombiana de Química, 46(2), 5. https://doi.org/10.15446/rev.colomb.quim.v46n2.62958Martínez, P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi. Universidad Nacional de Colombia.Mata-Pérez, C., & Spoel, S. H. (2019). Thioredoxin-mediated redox signalling in plant immunity. Plant Science, 279(December 2017), 27–33. https://doi.org/10.1016/j.plantsci.2018.05.001Mauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7(8), 352–356. https://doi.org/10.1016/S1360-1385(02)02297-5Mittler, R. (2017). ROS Are Good. Trends in Plant Science, 22(1), 11–19. https://doi.org/10.1016/j.tplants.2016.08.002Monroy Mena, S. (2019). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia.Namdeo, A., Patil, S., & Fulzele, D. P. (2002). Influence of fungal elicitors on production of ajmalicine by cell cultures of catharanthus roseus. Biotechnology Progress, 18(1), 159–162. https://doi.org/10.1021/bp0101280Nelson, P. E. (1981). Life Cycle and Epidemiology of Fusarium oxysporum. In M. Mace, A. Bell, & C. Beckman (Eds.), Fungal Wilt Diseases of Plants (1st ed, Issue 1071). Academic Press, INC. https://doi.org/10.1016/B978-0-12-464450-2.50008-5Nesvizhskii, A. I. (2010). A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. Journal of Proteomics, 73(11), 2092–2123. https://doi.org/10.1016/j.jprot.2010.08.009Niemann, G. J., & Baayen, R. P. (1988). Involvement of phenol metabolism in resistance of Dianthus caryophyllus to Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(6), 289–301. https://doi.org/10.1007/BF01998054Oliveira, M. D. M., Varanda, C. M. R., & Félix, M. R. F. (2016). Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters, 15, 152–158. https://doi.org/10.1016/j.phytol.2015.12.011Park, E., Nedo, A., Caplan, J. L., & Dinesh-Kumar, S. P. (2018). Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytologist, 217(3), 1012–1028. https://doi.org/10.1111/nph.14959Pastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–12. https://doi.org/10.3389/fpls.2014.00295Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269. https://doi.org/10.1038/nrm3314Paxton, J. D. (1981). Phytoalexins — A Working Redefinition. Journal of Phytopathology, 101(2), 106–109. https://doi.org/10.1111/j.1439-0434.1981.tb03327.xPérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2020). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Archives of Phytopathology and Plant Protection, 0(0), 1–18. https://doi.org/10.1080/03235408.2020.1868734Ponchet, M., Favre-Bonvin, J., Hauteville, M., & Ricci, P. (1988). Dianthramides (N-benzoyl and N-paracoumarylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry, 27(3), 725–730. https://doi.org/10.1016/0031-9422(88)84083-4Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12(1), 29–36. https://doi.org/10.1016/j.tplants.2006.11.006Pusztahelyi, T. (2018). Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 9(3), 189–201. https://doi.org/10.1080/21501203.2018.1473299Rabilloud, T. (2014). How to Use 2D Gel Electrophoresis in Plant Proteomics. In J. V Jorrin-Novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics Methods and Protocols (2nd ed., pp. 43–50). Humana Press. https://doi.org/10.1007/978-1-62703-631-3_4Ramagli, L., & Rodriguez, L. (1985). Quantitation of microgram amounts of protein in two- dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis, 6, 559–563.Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/j.pbi.2017.04.011Ranf, S., Eschen-Lippold, L., Pecher, P., Lee, J., & Scheel, D. (2011). Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant Journal, 68(1), 100–113. https://doi.org/10.1111/j.1365-313X.2011.04671.xRayapuram, N., Jarad, M., Alhoraibi, H. M., Bigeard, J., Abulfaraj, A. A., Völz, R., Mariappan, K. G., Almeida-Trapp, M., Schlöffel, M., Lastrucci, E., Bonhomme, L., Gust, A. A., Mithöfer, A., Arold, S. T., Pflieger, D., & Hirt, H. (2021). Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity. Proceedings of the National Academy of Sciences, 118(3), e2004670118. https://doi.org/10.1073/pnas.2004670118Rivero, C., Traubenik, S., Zanetti, M. E., & Blanco, F. A. (2019). Small GTPases in plant biotic interactions. Small GTPases, 10(5), 350–360. https://doi.org/10.1080/21541248.2017.1333557Romeis, T., & Herde, M. (2014). From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 20, 1–10. https://doi.org/10.1016/j.pbi.2014.03.002Romero-Rincón, A., Martínez, S. T., Higuera, B. L., Coy-Barrera, E., & Ardila, H. D. (2021). Flavonoid biosynthesis in Dianthus caryophyllus L. is early regulated during interaction with Fusarium oxysporum f. sp. dianthi. Phytochemistry, 192(September). https://doi.org/10.1016/j.phytochem.2021.112933Romero Rincón, A. E. (2020). Efecto de la aplicación de elicitores de origen biótico en la biosíntesis de flavonoides en clavel (Dianthus caryophyllus L) durante la interacción con Fusarium oxysporum f.sp. dianthi [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/78330Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340–358. https://doi.org/10.1016/0042-6822(61)90319-1Sánchez-Estrada, A., Tiznado-Hernández, M. E., Ojeda-Contreras, A. J., Valenzuela-Quintanar, A. I., & Troncoso-Rojas, R. (2009). Induction of enzymes and phenolic compounds related to the natural defence response of netted melon fruit by a bio-elicitor. Journal of Phytopathology, 157(1), 24–32. https://doi.org/10.1111/j.1439-0434.2008.01440.xSarrocco, S., Falaschi, N., Vergara, M., Nicoletti, F., & Vannacci, G. (2007). Use of Fusarium oxysporum F. sp. dianthi transformed with marker genes to follow colonization of carnation roots. Journal of Plant Pathology, 89(1), 47–54. https://doi.org/10.4454/jpp.v89i1.723SAS Institute Inc. (2018). JMP (14.0.0).Sathiyabama, M., & Charles, R. E. (2015). Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f.sp. lycopersici. Carbohydrate Polymers, 133, 400–407. https://doi.org/10.1016/j.carbpol.2015.07.066Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., & Hollender, J. (2014). Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environmental Science & Technology, 48(4), 2097–2098. https://doi.org/10.1021/es5002105Scranton, M. A., Yee, A., Park, S. Y., & Walling, L. L. (2012). Plant leucine aminopeptidases moonlight as molecular chaperones to alleviate stress-induced damage. Journal of Biological Chemistry, 287(22), 18408–18417. https://doi.org/10.1074/jbc.M111.309500Shcherbakova, L. A., Odintsova, T. I., Stakheev, A. A., Fravel, D. R., & Zavriev, S. K. (2016). Identification of a novel small cysteine-rich protein in the fraction from the biocontrol fusarium oxysporum strain CS-20 that mitigates fusarium wilt symptoms and triggers defense responses in tomato. Frontiers in Plant Science, 6(JAN2016), 1–15. https://doi.org/10.3389/fpls.2015.01207Somssich, I., & Hahlbrock, K. (1998). Pathogen defence in plants - a paradigm of biological complexity. Trends in Plant Science, 3(3), 86–90.Soto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f.sp. dianthi. Agronomia Colombiana, 30(2), 172–178.Speed, M. P., Fenton, A., Jones, M. G., Ruxton, G. D., & Brockhurst, M. A. (2015). Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 208(4), 1251–1263. https://doi.org/10.1111/nph.13560Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141Sterck, L., Rombauts, S., Vandepoele, K., Rouzé, P., & Van de Peer, Y. (2007). How many genes are there in plants (... and why are they there)? Current Opinion in Plant Biology, 10(2), 199–203. https://doi.org/10.1016/j.pbi.2007.01.004Summerell, B. A., Salleh, B., & Leslie, J. F. (2003). A utilitarian approach to Fusarium Identification. Plant Disease, 87(2), 117–128.Takahama, U., & Hirota, S. (2000). Deglucosidation of quercetin glucosides to the aglycone and formation of antifungal agents by peroxidase-dependent oxidation of quercetin on browning of onion scales. Plant and Cell Physiology, 41(9), 1021–1029. https://doi.org/10.1093/pcp/pcd025Talapatra, S. K., & Talapatra, B. (2015). Diterpenoids (C20). In Chemistry of Plant Natural Products (pp. 469–510). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_8Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G., & Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell, 15(2), 317–330. https://doi.org/10.1105/tpc.007591The Uniprot Consortium. (2019). UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky104Troncoso-Rojas, R., Sánchez-Estrada, A., Carvallo, T., González-León, A., Ojeda-Contreras, J., Aguilar-Valenzuela, A., & Tiznado-Hernández, M. E. (2013). A fungal elicitor enhances the resistance of tomato fruit to Fusarium oxysporum infection by activating the phenylpropanoid metabolic pathway. Phytoparasitica, 41(2), 133–142. https://doi.org/10.1007/s12600-012-0271-zUl Haq, S., Khan, A., Ali, M., Khattak, A. M., Gai, W. X., Zhang, H. X., Wei, A. M., & Gong, Z. H. (2019). Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences, 20(21), 1–31. https://doi.org/10.3390/ijms20215321Underwood, W. (2012). The plant cell wall: A dynamic barrier against pathogen invasion. Frontiers in Plant Science, 3(MAY), 1–6. https://doi.org/10.3389/fpls.2012.00085Underwood, W. (2016). Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Seminars in Cell and Developmental Biology, 56, 163–173. https://doi.org/10.1016/j.semcdb.2016.05.016Vallad, G., & Goodman, R. (2004). Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, 1920–1934.Valledor, L., & Jorrín, J. (2011). Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 74(1), 1–18. https://doi.org/10.1016/j.jprot.2010.07.007Valledor, L., & Weckwerth, W. (2014). An Improved Detergent-Compatible Gel-Fractionation LC-LTQ-Orbitrap-MS Workflow for Plant and Microbial Proteomics. In J. V Jorrin-novo, S. Komatsu, W. Weckwerth, & S. Wienkoop (Eds.), Plant Proteomics, Methods and Protocols Methods and Protocols (2nd ed., pp. 347–358). Springer Protocols. https://doi.org/10.1007/978-1-62703-631-3_25Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162. https://doi.org/10.1146/annurev.phyto.44.070505.143425Van Peer, R., Niemann, G. J., & Schippers, B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology, 81, 728–734.Vanegas, L. (2019). Leidy Johana Vanegas Cano. Universidad Nacional de Colombia.Vaudel, M., Sickmann, A., & Martens, L. (2012). Current methods for global proteome identification. Expert Review of Proteomics, 9(5), 519–532. https://doi.org/10.1586/epr.12.51Viladomat, F., & Bastida, J. (2015). General Overview of Plant Secondary Metabolism. In B. Bahadur, M. Rajam, L. Sahijram, & K. Krishnamurthy (Eds.), Plant Biology and Biotechnology (Vol. 1, pp. 539–568). Springer India. https://doi.org/10.1007/978-81-322-2286-6_21Vogel, C., & Marcotte, E. M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 13(4), 227–232. https://doi.org/10.1038/nrg3185Walters, D. R., & Boyle, C. (2005). Induced resistance and allocation costs: What is the impact of pathogen challenge? Physiological and Molecular Plant Pathology, 66(1–2), 40–44. https://doi.org/10.1016/j.pmpp.2005.04.002Walters, Dale R., & Paterson, L. (2012). Parents lend a helping hand to their offspring in plant defence. Biology Letters, 8(5), 871–873. https://doi.org/10.1098/rsbl.2012.0416Walters, Dale R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026Walters, Dale R. (2011a). What Defenses Do Plants Use ? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 15–76). Wiley-Blackwell.Walters, Dale R. (2011b). Why do plants need defenses? In Dale R Walters (Ed.), Plant Defense: Warding off Attack by Pathogens, Herbivores, and Parasitic Plants (1st ed., pp. 1–11). Wiley-Blackwell. https://doi.org/10.1016/S1097-2765(03)00072-8Wang, M., Thomas, N., & Jin, H. (2017). Cross-kingdom RNA trafficking and environmental RNAi for powerful innovative pre- and post-harvest plant protection. Current Opinion in Plant Biology, 38, 133–141. https://doi.org/10.1016/j.pbi.2017.05.003Wang, Y., Gao, M., Li, Q., Wang, L., Wang, J., Jeon, J. S., Qu, N., Zhang, Y., & He, Z. (2008). OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance. Molecular Plant-Microbe Interactions, 21(3), 294–303. https://doi.org/10.1094/MPMI-21-3-0294Wi, S. J., Kim, W. T., & Park, K. Y. (2006). Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 25(10), 1111–1121. https://doi.org/10.1007/s00299-006-0160-3Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(NOV), 1–13. https://doi.org/10.3389/fpls.2014.00655Wink, M. (2010). Introduction: Biochemistry, Physiology and Ecological Functions of Secondary Metabolites. In Biochemistry of Plant Secondary Metabolism (1st ed., Vol. 40, Issue August, pp. 1–19). Wiley-Blackwell. https://doi.org/10.1002/9781444320503.ch1Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In Handbook of florist’s crops diseases (pp. 317–378). https://doi.org/10.1007/978-3-319-39670-5_14Yagi, M. (2018). Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breeding Science, 68(1), 62–70. https://doi.org/10.1270/jsbbs.17080Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053Yamaguchi, Y., & Huffaker, A. (2011). Endogenous peptide elicitors in higher plants. https://doi.org/10.1016/j.pbi.2011.05.001Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plan, Cell & Environment, 36, 2085–2103.Zhang, M., Xu, J., Liu, G., Yao, X., Ren, R., & Yang, X. (2018). Proteomic analysis of responsive root proteins of Fusarium oxysporum-infected watermelon seedlings. Plant and Soil, 422(1–2), 169–181. https://doi.org/10.1007/s11104-017-3294-xZhang, X., Wu, Q., Ren, J., Qian, W., He, S., Huang, K., Yu, X. C., Gao, Y., Huang, P., & An, C. (2012). Two novel RING-type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. Plant Physiology, 160(2), 808–822. https://doi.org/10.1104/pp.112.203422Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003Zhao, N., Wang, G., Norris, A., Chen, X., & Chen, F. (2013). Studying Plant Secondary Metabolism in the Age of Genomics. Critical Reviews in Plant Sciences, 32(6), 369–382. https://doi.org/10.1080/07352689.2013.789648Zhou, C., Zhang, L., Duan, J., Miki, B., & Wu, K. (2005). Histone Deacetylase19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell, 17(4), 1196–1204. https://doi.org/10.1105/tpc.104.0285MincienciasEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85541/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL37513154.2022.pdf37513154.2022.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf16074769https://repositorio.unal.edu.co/bitstream/unal/85541/2/37513154.2022.pdfff840aa9a5202b8b0a4970f83ab86e46MD52Suplemento 37513154.2022.xlsxSuplemento 37513154.2022.xlsxAnexo Tesis de Doctorado en Ciencias - Biologíaapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet350224https://repositorio.unal.edu.co/bitstream/unal/85541/3/Suplemento%2037513154.2022.xlsx3887ed8afd3073a0dda4f8c6b4284663MD53THUMBNAIL37513154.2022.pdf.jpg37513154.2022.pdf.jpgGenerated Thumbnailimage/jpeg6664https://repositorio.unal.edu.co/bitstream/unal/85541/4/37513154.2022.pdf.jpg17ca7be20d07425e74a7cb8a67b8214eMD54unal/85541oai:repositorio.unal.edu.co:unal/855412024-08-22 23:10:06.096Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=