Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis
Cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Xam), is the main bacterial disease that affects Cassava crops. Xam virulence has been attributed to TALEs (Transcription Activator-Like Effectors), that bind to promoter elements of the host target genes to induce their expres...
- Autores:
-
Sánchez Ferro, Juan Sebastian
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77853
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77853
- Palabra clave:
- 570 - Biología
biotecnología
bacteriosis vascular de la yuca
resistencia de amplio espectro
biotechnology
cassava bacterial blight
broad-spectrum resistance
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fe5b745447e3f39d36eb0f4a43257401 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77853 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
title |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
spellingShingle |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis 570 - Biología biotecnología bacteriosis vascular de la yuca resistencia de amplio espectro biotechnology cassava bacterial blight broad-spectrum resistance |
title_short |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
title_full |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
title_fullStr |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
title_full_unstemmed |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
title_sort |
Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis |
dc.creator.fl_str_mv |
Sánchez Ferro, Juan Sebastian |
dc.contributor.advisor.spa.fl_str_mv |
Díaz Tatis, Paula Alejandra López Carrascal, Camilo Ernesto |
dc.contributor.author.spa.fl_str_mv |
Sánchez Ferro, Juan Sebastian |
dc.contributor.researchgroup.spa.fl_str_mv |
Manihot Biotec |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología |
topic |
570 - Biología biotecnología bacteriosis vascular de la yuca resistencia de amplio espectro biotechnology cassava bacterial blight broad-spectrum resistance |
dc.subject.proposal.spa.fl_str_mv |
biotecnología bacteriosis vascular de la yuca resistencia de amplio espectro |
dc.subject.proposal.eng.fl_str_mv |
biotechnology cassava bacterial blight broad-spectrum resistance |
description |
Cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Xam), is the main bacterial disease that affects Cassava crops. Xam virulence has been attributed to TALEs (Transcription Activator-Like Effectors), that bind to promoter elements of the host target genes to induce their expression. The TALome characterization of diverse Colombian strains of Xam have led to the identification of TAL14, TAL20, and TAL22 as the most recurrent TAL effectors in the pathogen populations in the country. With the purpose to develop a biotechnological tool for producing broad-spectrum resistance against Xam, this study generated a genetic construction of a trap promotor containing EBEs (Effector Binding Elements) for TALEs 14, 20 and 22. The EBE sequences were inserted in the minimal Bs3 promoter (pBs3min) using site-directed mutagenesis, to construct the TriEBE promoter EBETAL14Xam and EBETAL22Xam were cloned flanking EBETAL20Xam. The reporter gene GUSplus and 35s terminator were inserted flanking the promoters, the resulting vectors were used to transform Agrobacterium tumefaciens and perform the functional evaluation in Nicotiana tabacum. Finally, the promoters activation was evidenced because of TAL14 and TAL20 presence in co-infiltrated leaves. These results suggest that trap promoters developed in the present research can be activated by any Xam strain with TAL14 or TAL20 in its TALome, therefore representing a novel recognition cassette for most strains of the pathogen in Colombia. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-24T23:36:55Z |
dc.date.available.spa.fl_str_mv |
2020-07-24T23:36:55Z |
dc.date.issued.spa.fl_str_mv |
2020-02-07 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Sánchez-Ferro, J. (2020). Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis. Tesis de Maestría en Ciencias - Biología UNAL. Universidad Nacional de Colombia - Sede Bogotá. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77853 |
identifier_str_mv |
Sánchez-Ferro, J. (2020). Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis. Tesis de Maestría en Ciencias - Biología UNAL. Universidad Nacional de Colombia - Sede Bogotá. |
url |
https://repositorio.unal.edu.co/handle/unal/77853 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Acosta, L., & Camacho, H. (2005). Conservación de la biomasas de tuca (Manihot esculanta Crantz), en la várzea del Amazonas colombiano: Tecnología tradicional ticuna aplicada en el presente. Aguilera, M. (2012). La yuca en el Caribe colombiano: De cultivo ancestral a agroindustrial. Documentos de trabajo sobre Economía Regional. Retrieved from http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_158.pdf Allem, A. C. (2002). The Origins and Taxonomy of Cassava. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/cabi_04ch1.pdf An, S.-Q., Potnis, N., Dow, M., Vorhölter, F.-J., He, Y.-Q., Becker, A., … Tang, J.-L. (2019). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, (May), 1–32. https://doi.org/10.1093/femsre/fuz024 Antoine, F., & Wydra, K. (2015). Physical and chemical treatments for the control of Xanthomonas axonopodis pv . manihotis in cassava seeds. Journal of Experimental Biology and Agricultural Sciences, 3(1), 54–59. Arrieta-Ortiz, M. L., Rodríguez-R, L. M., Pérez-Quintero, Á. L., Poulin, L., Díaz, A. C., Rojas, N. A., … Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079704 Banito, A., Kpémoua, K., Bissang, B., & Wydra, K. (2010). Assessment of cassava root and stem rots in ecozones of togo and evaluation of the pathogen virulence. Pakistan Journal of Botany, 42(3), 2059–2068. Barak, J. D., Vancheva, T., Lefeuvre, P., Jones, J. B., Timilsina, S., Minsavage, G. V., … Koebnik, R. (2016). Whole-genome sequences of xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Frontiers in Plant Science, 7(DECEMBER2016). https://doi.org/10.3389/fpls.2016.01805 Bart, R., Cohn, M., McCallum, E. J., Shybut, M., Petriello, A., Krasileva, K., … Chen, J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(32), 13130–13130. https://doi.org/10.1073/pnas.1211014109 Bart, R., Wilson, M. C., Mutka, A. M., Hummel, A. W., Berry, J., Chauhan, R. D., … Bart, R. S. (2017). Rapid report Gene expression atlas for the food security crop cassava. https://doi.org/10.1111/nph.14443 Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. K. (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture, 127(2), 269–287. https://doi.org/10.1007/s11240-016-1057-7 Blanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., … Koebnik, R. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnology Journal, 15(3), 306–317. https://doi.org/10.1111/pbi.12613 Boch, J., Bonas, U., & Lahaye, T. (2014). TAL effectors – pathogen strategies and plant resistance engineering. New Phytologist, 204(4), 823–832. https://doi.org/10.1111/nph.13015 Boch, J., Scholze, H., Schornack, S., Landgraf, A., S, H., Kay, S., … Bonas, U. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science, 326, 1509–1512. https://doi.org/10.1126/science.1178811 Büttner, D. (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiology Reviews, 40(6), 894–937. https://doi.org/10.1093/femsre/fuw026 Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107–133. https://doi.org/10.1111/j.1574-6976.2009.00192.x Castiblanco, L. F., Gil, J., Rojas, A., Osorio, D., Gutiérrez, S., Muñoz-Bodnar, A., … Bernal, A. J. (2013). TALE1 from Xanthomonas axonopodis pv. Manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology, 14(1), 84–95. https://doi.org/10.1111/j.1364-3703.2012.00830.x Cesbron, S., Briand, M., Essakhi, S., Gironde, S., Boureau, T., Manceau, C., … Jacques, M. A. (2015). Comparative genomics of pathogenic and nonpathogenic strains ofxanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Frontiers in Plant Science, 6(DEC). https://doi.org/10.3389/fpls.2015.01126 Chacón, J., Madriñán, S., Debouck, D., Rodriguez, F., & Tohme, J. (2008). Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. Molecular Phylogenetics and Evolution, 49(1), 260–267. https://doi.org/10.1016/j.ympev.2008.07.015 Chavarriaga, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular and Developmental Biology - Plant, 52(5), 461–478. https://doi.org/10.1007/s11627-016-9776-3 Chege, M. N., Wamunyokoli, F., Kamau, J., & Nyaboga, E. N. (2017). Phenotypic and genotypic diversity of Xanthomonas axonopodis pv . manihotis causing bacterial blight disease of cassava in Kenya. Journal of Applied Biology & Biotechnology, 5(02), 38–44. https://doi.org/10.7324/JABB.2017.50206 Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., … Frommer, W. B. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532. https://doi.org/10.1038/nature09606 Cohn, M. (2015). Characterization of the Transcription Activator-Like Effectors of Xanthomonas axonopodis pv. manihotis and identification of susceptibility targets in the host cassava. University of California. Cohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., … Staskawicz, B. J. (2014). Xanthomonas axonopodis Virulence Is Promoted by a Transcription Activator-Like Effector–Mediated Induction of a SWEET Sugar Transporter in Cassava. Molecular Plant-Microbe Interactions, 27(11), 1186–1198. https://doi.org/10.1094/MPMI-06-14-0161-R Cohn, M., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2016). Comparison of gene activation by two TAL effectors from X anthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. Molecular Plant Pathology, 17(6), 875–889. https://doi.org/10.1111/mpp.12337 Constantin, E. C., Cleenwerck, I., Maes, M., Baeyen, S., Van Malderghem, C., De Vos, P., & Cottyn, B. (2016). Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65(5), 792–806. https://doi.org/10.1111/ppa.12461 Contreras, E., & Lopez, C. (2008). Expresión de dos genes candidatos a resistencia contra la bacteriosis vascular en yuca. Acta Biológica Colombiana, 13(2), 175–187. Contreras, E., & López, C. (2011). Identificación de polimorfismos en RXam2, un gen candidato de resistencia a la bacteriosis vascular de yuca. Revista Colombiana de Biotecnología, 13(2), 63–69. Cuculis, L., Abil, Z., Zhao, H., & Schroeder, C. M. (2016). TALE proteins search DNA using a rotationally decoupled mechanism. Nature Chemical Biology, 12(10), 831–837. https://doi.org/10.1038/nchembio.2152 DANE. (2011). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2012). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2013). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2014). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2015). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2016a). El cultivo de la yuca (Manihot esculenta Crantz). Boletín Mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA, 46, 1–7. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2016.pdf DANE. (2016b). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2017). Encuesta Nacional Agropecuaria. Bogotá DC. DANE. (2018). Pobreza multidimensional nacional. Bogotá DC. Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J., & Shi, Y. (2012). Structural Basis for Sequence-Specific Recognition of, 335(February), 11–14. Díaz, P. (2016). Transference of RXam2 and Bs2 genes to confer resistance against cassava bacterial blight ( CBB ). Universidad Nacional de Colombia. Díaz, P., Herrera Corzo, M., Ochoa Cabezas, J. C., Medina Cipagauta, A., Prías, M. A., Verdier, V., … López, C. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247(4), 1031–1042. https://doi.org/10.1007/s00425-018-2863-4 Dixon, A., Ngeve, J., & Nukenine, E. (2002). Genotype× environment Effects on Severity of Cassava Bacterial Blight Disease caused by Xanthomonas axonopodis pv. manihotis. European Journal of Plant Pathology, 108(8), 763–770. Doucouré, H., Pérez-Quintero, A. L., Reshetnyak, G., Tekete, C., Auguy, F., Thomas, E., … Cunnac, S. (2018). Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related malian Xanthomonas oryzae pv. oryzae strains. Frontiers in Microbiology, 9(AUG), 1–17. https://doi.org/10.3389/fmicb.2018.01657 Doyle, E. L., Booher, N. J., Standage, D. S., Voytas, D. F., Brendel, V. P., Vandyk, J. K., & Bogdanove, A. J. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Research, 40(W1), 117–122. https://doi.org/10.1093/nar/gks608 Erkes, A., Mücke, S., Reschke, M., Boch, J., & Grau, J. (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Computational Biology, 15(7), 1–28. https://doi.org/10.1371/journal.pcbi.1007206 Erkes, A., Reschke, M., Boch, J., & Grau, J. (2017). Evolution of transcription activator-like effectors in Xanthomonas oryzae. Genome Biology and Evolution, 9(6), 1599–1699. https://doi.org/10.1093/gbe/evx108 FAO. (2013). FAOSTAT Database. Food Supply - Crops Primary Equivalent. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/CC FAO. (2017). FAOSTAT Database. Crops. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/QC FAO. (2018). Food Outlook Biannual Report on Global Food Markets - November 2018. Fao. https://doi.org/ISSN 1560-8182 Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580 Gil, J., & López, C. (2019). El dominio STK de la proteína de resistencia a la bacteriosis vascular de yuca RXAM1 interactúa con una E3 Ubiquitin Ligasa. Acta Biológica Colombiana, 24(1), 139–149. https://doi.org/10.15446/abc.v24n1.70821 Gómez, F., Soto, J., Restrepo, S., Bernal, A., López-Kleine, L., & López, C. (2018). Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. European Journal of Plant Pathology, 153(4), 1083–1104. https://doi.org/10.1007/s10658-018-01628-4 Gonzalez, C., Restrepo, S., Tohme, J., & Verdier, V. (2002). Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiology Letters, 215(1), 23–31. https://doi.org/10.1016/S0378-1097(02)00913-8 Grau, J., Wolf, A., Reschke, M., Bonas, U., Posch, S., & Boch, J. (2013). Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites. PLoS Computational Biology, 9(3). https://doi.org/10.1371/journal.pcbi.1002962 Gust, A. A., & Felix, G. (2014). Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology, 21, 104–111. https://doi.org/10.1016/j.pbi.2014.07.007 Herrera, B., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345. https://doi.org/10.1007/s12571-011-0141-4 Hillocks, R. J., & Wydra, K. (2002). Bacterial, Fungal, and nematode Disease. Cassava: Biology, Production and Utilization, 261–280. Howeler, R., Lutaladio, N., & Thomas, G. (2013). Save and Grow: Cassava. A Guide to Sustainable Production Intensification. Rome: Food and Agriculture Organization of the United Nations. Hui, S., Liu, H., Zhang, M., Chen, D., Li, Q., Tian, J., … Yuan, M. (2019). The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Science, 284(March), 48–56. https://doi.org/10.1016/j.plantsci.2019.04.004 Hummel, A. W., Doyle, E. L., & Bogdanove, A. J. (2012). Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195, 883–893. Hutin, M., Pérez-Quintero, A. L., Lopez, C., & Szurek, B. (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Frontiers in Plant Science, 6(July). https://doi.org/10.3389/fpls.2015.00535 Isendahl, C. (2011). The Domestication and Early Spread of Manioc ( Manihot Esculenta Crantz): A Brief Synthesis . Latin American Antiquity, 22(4), 452–468. https://doi.org/10.7183/1045-6635.22.4.452 Jacobs, J. M., Pesce, C., Lefeuvre, P., & Koebnik, R. (2015). Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in xanthomonas. Frontiers in Plant Science, 6(June), 1–13. https://doi.org/10.3389/fpls.2015.00431 Jacques, M. A., Arlat, M., Boulanger, A., Boureau, T., Cesbron, S., Chen, N. W. G., … Verni, C. (2016). Using Ecology , Physiology , and Genomics to Understand Host Specificity in Xanthomonas: French Network on Xanthomonads (FNX). Annu. Rev. Phytopathol, 54(6), 1–25. https://doi.org/10.1146/annurev-phyto-080615-100147 Ji, Z., Ji, C., Liu, B., Zou, L., Chen, G., & Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7(May), 1–9. https://doi.org/10.1038/ncomms13435 Jones, J., & Dangl, J. (2006). The plant immune system. Nature, 444, 3–9. https://doi.org/10.1038/nature05286 Jorge, V., Fregene, M., Duque, M., Bonierbale, M., Tohme, J., & Verdier, V. (2000). Genetic mapping of resistance to bacterial blight disease in cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 101(October 2000), 865–872. https://doi.org/10.1007/s001220051554 Jorge, V., Fregene, M., Velez, C. M., Duque, M. C., Tohme, J., & Verdier, V. (2001). QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theoretical and Applied Genetics, 102(4), 564–571. https://doi.org/10.1007/s001220051683 Kpemoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. (1996). Cytochemistry of defense responses in cassava infected. Canadian Journal of Microbiology42, 1143(42), 1131–1143. https://doi.org/10.1139/m96-145 Kumari, S., & Ware, D. (2013). Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0079011 Leal, L. G., Perez, Á., Quintero, A., Bayona, Á., Ortiz, J. F., Gangadharan, A., … López-Kleine, L. (2013). Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data. Genomics, Proteomics and Bioinformatics, 11(6), 345–353. https://doi.org/10.1016/j.gpb.2013.09.010 Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., … Mahfouz, M. M. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Molecular Plant, 6(4), 1318–1330. https://doi.org/10.1093/mp/sst006 Li, T., Huang, S., Zhou, J., & Yang, B. (2013). Designer TAL Effectors Induce Disease Susceptibility and Resistance to Xanthomonas oryzae pv . Oryzae in Rice. Molecular Plant, 6(3), 781–789. https://doi.org/10.1093/mp/sst034 Livi, M. (2008). One hundred thousand or ten million Taíno? In Conquest: The Destruction of the American Indios (pp. 96–98). Polity Press. Lope, J. (1981). Antillanismos en la Nueva España. Anuario de Letras: Lingüística y Filología, (19), 75–88. https://doi.org/10.19130/iifl.adel.19.0.1981.445 López, C., & Bernal, A. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 117–126. https://doi.org/10.1007/s12042-011-9092-3 López, C., Jorge, V., Piégu, B., Mba, C., Cortes, D., Restrepo, S., … Verdier, V. (2004). A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology, 56(4), 541–554. https://doi.org/10.1007/s11103-004-0123-4 López, C., Quesada, L., Bohorquez, A., Duque, M., Vargas, J., Tohme, J., & Verdier, V. (2007). Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome, 50(12), 1078–1088. https://doi.org/g07-087 [pii]\r10.1139/g07-087 López, C., & Restrepo, S. (2006). Limitaciones de la bacteriosis varcular de Yuca: Nuevos avances. Acta Biológica Colombiana, 11, 21–45. López, C., Soto, M., Restrepo, S., Piégu, B., Cooke, R., Delseny, M., … Verdier, V. (2005). Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology, 57, 393–410. https://doi.org/10.1007/s11103-004-7819-3 López, C., Zuluaga, A. P., Cooke, R., Delseny, M., Tohme, J., & Verdier, V. (2003). Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Molecular Genetics and Genomics, 269(5), 658–671. https://doi.org/10.1007/s00438-003-0868-5 Lozano, C. (1986). Cassava Bacterial Blight: A manageable disease. Plant Dis, 70, 1089–1093. Luján, M. (2017). Spanish in the Americas. A dialogic approach to lenguage contact. In Language Contact and Change in Mesoamerica and Beyond (pp. 395–402). John Benjamins Publishing Company. Ma, Wenbo, Dong, F. F. T., Stavrinides, J., & Guttman, D. S. (2006). Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics, 2(12), 2131–2142. https://doi.org/10.1371/journal.pgen.0020209 Ma, Wenxiu, Zou, L., Zhiyuan, J. I., Xiameng, X. U., Zhengyin, X. U., Yang, Y., … Chen, G. (2018). Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Molecular Plant Pathology, 19(10), 2248–2262. https://doi.org/10.1111/mpp.12696 Maeder, M. L., Linder, S. J., Reyon, D., Angstman, J. F., Fu, Y., Sander, J. D., & Joung, J. K. (2013). Robust, synergistic regulation of human gene expression using TALE activators. Nature Methods, 10(3), 243–245. https://doi.org/10.1038/nmeth.2366 Mak, A. N. S., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335(6069), 716–719. https://doi.org/10.1126/science.1216211 McCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava ( Manihot esculenta ). Current Opinion in Plant Biology, 38, 50–58. https://doi.org/10.1016/j.pbi.2017.04.008 Medina, C., Reyes, P., Trujillo, C., Gonzalez, J., & Bejarano, D. (2017). The role of type three effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12545 Mora, R. (2017). Identificación de genes de susceptibilidad en yuca, blancos de TALEs de Xam (Tesis de Maestría). Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia. Moscou, M. J., & Bogdanove, A. J. (2009). A Simple Cipher Governs DNA Recognition by TAL Effectors. Science (New York, N.Y.), 326(December), 1501. https://doi.org/10.1126/science.1178817 Mücke, S., Reschke, M., Erkes, A., Schwietzer, C. A., Becker, S., Streubel, J., … Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae tales. Frontiers in Plant Science, 10(February), 1–19. https://doi.org/10.3389/fpls.2019.00162 Noman, A., Aqeel, M., & Lou, Y. (2019). PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081882 OECD. (2016a). Cassava (Manihot esculenta). In Safety Assessment of Transgenic Organisms in the Environment (Volume 6, pp. 155–186). Paris: OECD Publishing. https://doi.org/10.1787/9789264253421-en OECD. (2016b). Safety Assessment of Transgenic Organisms in the Environment (Vol. 6). https://doi.org/10.1787/9789264253018-en Ogunjobi, A., Fagade, O., & Dixon, A. (2006). Molecular variation in population structure of Xanthomonas axonopodis pv manihotis in the south eastern Nigeria. African Journal of Biotechnology, 5(20), 1868–1872. https://doi.org/10.4314/ajb.v5i20.55891 Ogunjobi, A., Fagade, O., & Dixon, A. (2007). Physiological studies on Xanthomonas axonopodis pv\nmanihotis (Xam) strains isolated in Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, 6, 10. Pérez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., … Gersbach, C. A. (2013). Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nature Methods, 10(3), 239–242. https://doi.org/10.1038/nmeth.2361 Pérez-Quintero, A. L., Rodriguez-R, L. M., Dereeper, A., López, C., Koebnik, R., Szurek, B., & Cunnac, S. (2013). An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068464 Pérez-Quintero, A. L., & Szurek, B. (2019). A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research. Annual Review of Phytopathology, 57(1), 459–481. https://doi.org/https://doi.org/10.1146/annurev-phyto-082718-100026 Pérez, D., Mora, R., & López, C. (2019). Conservation of the cassava diversity in the traditional cultivation systems of the Amazon. Acta Biologica Colombiana, 24(2), 202–212. https://doi.org/10.15446/abc.v24n2.75428 Pfeilmeier, S., Caly, D. L., & Malone, J. G. (2016). Bacterial pathogenesis of plants : future challenges from a microbial perspective Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology, 17(8), 1298–1313. https://doi.org/10.1111/mpp.12427 Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., Dos Santos, R. C., De Albuquerque Melo Filho, P., & De Lima, L. M. (2014). Plant promoters: An approach of structure and function. Molecular Biotechnology, 56(1), 38–49. https://doi.org/10.1007/s12033-013-9713-1 Quang, N., Quan, M. Van, Quang, L., Nguyen, D., & Xuan, T. (2019). Identification of cassava bacterial blight-causing Xanthomonas axonopodis pv. Manihotis based on rpoD and gyrB genes. Vietnam Journal of Science, Technology and Engineering, 61(1), 30–35. https://doi.org/10.31276/vjste.61(1).30-35 Rache, L., Blondin, L., Flores, C., Trujillo, C., Szurek, B., Restrepo, S., … Vernière, C. (2019). An Optimized Microsatellite Scheme for Assessing Populations of Xanthomonas phaseoli pv. Manihotis. Phytopathology, 109(5), 859–869. https://doi.org/10.1094/PHYTO-06-18-0210-R Ramírez, E. (2019). Identificación y validación de genes ejecutores en yuca blancos de TALEs de la bacteria Xanthomonas axonopodis pv. manihotis. Tesis de Doctorado en Ciencias - Biología UNAL. Universidad Nacional de Colombia. Restrepo, S., Duque, M., & Verdier, V. (2000). Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology, 49(6), 680–687. https://doi.org/10.1046/j.1365-3059.2000.00513.x Restrepo, S., Valle, T., Duque, M., & Verdier, V. (1999). Assessing Genetic Variability Among Brazilian Strains of Xanthomonas axonopodis pv. manihotis Through RFLP and AFLP Analyses. Can J Microbiol, 45, 754–763. Restrepo, S., Verdier, V., Mosquera, G., Duque, M., Gerstl, A., & Laberry, L. (1998). Genetic and pathogenic variation of Xanthomonas axonopodis pv. manihotis in Venezuela. Plant Pathology, 47, 601–608. Rinaldi, F. C., Doyle, L. A., Stoddard, B. L., & Bogdanove, A. J. (2017). The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Research, 45(11), 6960–6970. https://doi.org/10.1093/nar/gkx342 Rogers, J. M., Barrera, L. A., Reyon, D., Sander, J. D., Kellis, M., Joung, J. K., & Bulyk, M. L. (2015). Context influences on TALE-DNA binding revealed by quantitative profiling. Nature Communications, 6(May), 1–10. https://doi.org/10.1038/ncomms8440 Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2009). Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene. Science, 318(5850), 645–648. https://doi.org/10.1126/science.1144958 Romer, P., Recht, S., & Lahaye, T. (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceedings of the National Academy of Sciences, 106(48), 20526–20531. https://doi.org/10.1073/pnas.0908812106 Roux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., … Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti : placing plant Quantitative Disease Resistance on the map. Molecular Plant Pathology, 15(5), 427–432. https://doi.org/10.1111/mpp.12138 Ryan, R., Vorhölter, F., Potnis, N., & Jones, J. B. (2011). Pathogenomics of Xanthomonas : understanding bacterium – plant interactions. Nature Publishing Group, 9(5), 344–355. https://doi.org/10.1038/nrmicro2558 Sacristán, S., & García-Arenal, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369–384. https://doi.org/10.1111/j.1364-3703.2007.00460.x Saijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808 Sandoval, C. lorena, & Chavez, J. L. (2017). Uso alimenticio de especies vegetales por las comunidades indígenas de colombia: una revisión de literatura. Agroecología: Ciencia y Tecnología, 2(1), 18–24. Retrieved from http://revistas.sena.edu.co/index.php/agroeccyt/article/view/904/994 Santaella, M., Suárez, E., López, C., González, C., Mosquera, G., Restrepo, S., … Verdier, V. (2004). Identification of genes in cassava that are differentially expressed during infection with Xanthomonas axonopodis pv. manihotis. Molecular Plant Pathology, 5(6), 549–558. https://doi.org/10.1111/J.1364-3703.2004.00254.X Schandry, N., Jacobs, J. M., Szurek, B., & Perez-Quintero, A. L. (2018). A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Molecular Plant Pathology, 19(6), 1297–1301. https://doi.org/10.1111/mpp.12670 Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012, July). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. https://doi.org/10.1038/nmeth.2089 Schwartz, A. R., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2017). TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proceedings of the National Academy of Sciences, 114(5), E897–E903. https://doi.org/10.1073/pnas.1620407114 Schwartz, A. R., Potnis, N., Timilsina, S., Wilson, M., Patané, J., Martins, J., … Staskawicz, B. J. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6(JUN). https://doi.org/10.3389/fmicb.2015.00535 Shantharaj, D., Römer, P., Figueiredo, J. F. L., Minsavage, G. V., Krönauer, C., Stall, R. E., … Jones, J. B. (2016). An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. Molecular Plant Pathology, 18(7), 976–989. https://doi.org/10.1111/mpp.12454 Silva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(October 2017), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013 Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., … Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, N.Y.), 270(5243), 1804–1806. https://doi.org/10.1126/SCIENCE.270.5243.1804 Soto, J., Mora, R., Calle, F., & López, C. (2017). QTL identification for cassava bacterial blight resistance under natural infection conditions. Acta Biologica Colombiana, 22(1), 19–26. https://doi.org/10.15446/abc.v22n1.57951 Soto, J., Mora, R., Mathew, B., Léon, J., Gomez, F. A., Ballvora, A., … Bart, R. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8(July), 1–13. https://doi.org/10.3389/fpls.2017.01169 Streubel, J., Baum, H., Grau, J., Stuttman, J., & Boch, J. (2017). Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS ONE, 1–24. https://doi.org/10.1371/journal.pone.0173580 March Streubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30(7), 593–595. https://doi.org/10.1038/nbt.2304 Tappiban, P., Sraphet, S., Srisawad, N., Smith, D. R., & Triwitayakorn, K. (2018). Identification and expression of genes in response to cassava bacterial blight infection. Journal of Applied Genetics, 59(4), 391–403. https://doi.org/10.1007/s13353-018-0457-2 Taylor, R. K., Griffin, R. L., Jones, L. M., Pease, B., Tsatsia, F., Fanai, C., … Davis, R. I. (2017). First record of Xanthomonas axonopodis pv. manihotis in Solomon Islands. Australasian Plant Disease Notes, 12(1), 49. https://doi.org/10.1007/s13314-017-0275-0 Tomkins, J., Fregene, M., Main, D., Kim, H., Wing, R., & Tohme, J. (2004). Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Molecular Biology, 56(4), 555–561. https://doi.org/10.1007/s11103-004-5045-7 Toruño, T., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204 Triplett, L., Leach, J., & Gold, C. (2016). Host mechanisms for resistance to TAL effectors : Thinking outside the. Physiological and Molecular Plant Pathology, 95, 66–69. https://doi.org/10.1016/j.pmpp.2016.02.002 Trujillo, C., Arias, N., Poulin, L., Medina, C., Tapiero, A., Restrepo, S., … Bernal, A. (2014). Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers. BMC Microbiology, 14(1), 161. https://doi.org/10.1186/1471-2180-14-161 Trujillo, C., Ochoa, J., Mideros, M., & Restrepo, S. (2014). A Complex Population Structure of the Cassava Pathogen Xanthomonas axonopodis pv . manihotis in Recent Years in the Caribbean Region of Colombia, 155–167. https://doi.org/10.1007/s00248-014-0411-8 Üstün, S., & Börnke, F. (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers in Plant Science, 5(DEC), 1–6. https://doi.org/10.3389/fpls.2014.00736 Vásquez, A., Soto, J., & López, C. (2018). Descifrando las moléculas ocultas en las sombras grises de la resistencia cuantitativa a patógenos. Acta Biologica Colombiana, 23(1), 5–16. https://doi.org/10.15446/abc.v23n1.66487 Verdier, V., & Jorge, V. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(December), 573–584. https://doi.org/10.1007/s11103-004-5044-8 Verdier, V., López, C., & Bernal, A. (2011). Cassava Bacterial Blight (or Vascular Bacteriosis), Caused by Xanthomonas axonopodis pv. manihotis. La Yuca En El Tercer Milenio, (C), 200–212. Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48. https://doi.org/10.1007/s12571-010-0053-8 Wan, W. L., Zhang, L., Pruitt, R., Zaidem, M., Brugman, R., Ma, X., … Nürnberger, T. (2019). Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytologist, 221(4), 2080–2095. https://doi.org/10.1111/nph.15497 Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., … Chai, J. (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 364(6435). https://doi.org/10.1126/science.aav5868 Wang, L., Rinaldi, F. C., Singh, P., Doyle, E. L., Dubrow, Z. E., Tu, T., … Bogdanove, A. J. (2017). TAL effectors drive transcription bidirectionally in plants. MOLECULAR PLANT. https://doi.org/10.1016/j.molp.2016.12.002 White, F., Potnis, N., Jones, J., & Koebnik, R. (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology, 10(6), 749–766. https://doi.org/10.1111/J.1364-3703.2009.00590.X Wydra, K., Zinsou, V., Jorge, V., & Verdier, V. (2004). Identification of Pathotypes of Xanthomonas axonopodis pv . manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology, 94(50), 1084–1093. https://doi.org/10.1094/PHYTO.2004.94.10.1084 Xu, Z. yin, Zou, L. fang, Ma, W. xiu, Cai, L. lu, Yang, Y. yang, & Chen, G. you. (2017). Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. Journal of Integrative Agriculture, 16(12), 2736–2745. https://doi.org/10.1016/S2095-3119(17)61750-7 Yamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., … Abe, T. (2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics, 8, 1–23. https://doi.org/10.1186/1471-2164-8-67 Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649 Zárate, C. A. (2015). Diversity of TALE content in Xanthomonas axonopodis pv. manihotis strains is a valuable tool to improve target gene searching methodologies. Universidad de los Andes. Zhang, J., Yin, Z., & White, F. (2015). TAL effectors and the executor R genes. Frontiers in Plant Science, 6(August), 1–9. https://doi.org/10.3389/fpls.2015.00641 Zhang, X., Dodds, P. N., & Bernoux, M. (2017). What Do We Know About NOD-Like Receptors in Plant Immunity? Annu Rev Phytopathol, 55(9), 1–25. https://doi.org/10.1146/annurev-phyto-080516- 035250 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
135 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77853/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77853/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77853/1/1.013.630.255.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77853/4/1.013.630.255.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f3f13b02594d02ad110b3ad534cd5df 42fd4ad1e89814f5e4a476b409eb708c 9843ffb98e27a401a234e97635dac1a0 124a663dc015f9892ccf5485f913fbfa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089616070803456 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Tatis, Paula Alejandrab6170808-16e3-40c7-84b2-0bbead8846ed-1López Carrascal, Camilo Ernesto80a79b85-105f-453b-93b9-1273b7f31702-1Sánchez Ferro, Juan Sebastian0c9cf130-d405-4663-ac4c-f846d81a4fafManihot Biotec2020-07-24T23:36:55Z2020-07-24T23:36:55Z2020-02-07Sánchez-Ferro, J. (2020). Construcción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotis. Tesis de Maestría en Ciencias - Biología UNAL. Universidad Nacional de Colombia - Sede Bogotá.https://repositorio.unal.edu.co/handle/unal/77853Cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Xam), is the main bacterial disease that affects Cassava crops. Xam virulence has been attributed to TALEs (Transcription Activator-Like Effectors), that bind to promoter elements of the host target genes to induce their expression. The TALome characterization of diverse Colombian strains of Xam have led to the identification of TAL14, TAL20, and TAL22 as the most recurrent TAL effectors in the pathogen populations in the country. With the purpose to develop a biotechnological tool for producing broad-spectrum resistance against Xam, this study generated a genetic construction of a trap promotor containing EBEs (Effector Binding Elements) for TALEs 14, 20 and 22. The EBE sequences were inserted in the minimal Bs3 promoter (pBs3min) using site-directed mutagenesis, to construct the TriEBE promoter EBETAL14Xam and EBETAL22Xam were cloned flanking EBETAL20Xam. The reporter gene GUSplus and 35s terminator were inserted flanking the promoters, the resulting vectors were used to transform Agrobacterium tumefaciens and perform the functional evaluation in Nicotiana tabacum. Finally, the promoters activation was evidenced because of TAL14 and TAL20 presence in co-infiltrated leaves. These results suggest that trap promoters developed in the present research can be activated by any Xam strain with TAL14 or TAL20 in its TALome, therefore representing a novel recognition cassette for most strains of the pathogen in Colombia.La bacteriosis vascular de la yuca, causada por Xanthomonas axonopodis pv. manihotis (Xam), es la principal enfermedad bacteriana que afecta al cultivo de yuca. La virulencia de Xam ha sido atribuida principalmente a los TALEs (Transcription Activator-Like Effectors), los cuales se unen a elementos en el promotor de genes blanco del hospedero para inducir su expresión. La caracterización del TALoma en diversas cepas colombianas de Xam ha llevado a la identificación de los efectores TAL14, TAL20 y TAL22 como los más frecuentes en las poblaciones del patógeno. Con el fin de desarrollar una herramienta para producir resistencia de amplio espectro a Xam, en este trabajo se generó una construcción genética de un promotor trampa conteniendo los EBEs (Effector Binding Elements) para los TALEs 14, 20 y 22. Los EBEs fueron insertados por mutagénesis dirigida en el promotor mínimo de Bs3 (pBs3min) y para la construcción de un promotor TriEBE se clonaron EBETAL14Xam y EBETAL22Xam alrededor del EBETAL20Xam. Las secuencias del gen GUSplus y el terminador 35s fueron clonadas flanqueando los promotores. La expresión transitoria de los constructos en Nicotiana tabacum mediada por Agrobacterium tumefaciens evidenció la activación de los promotores debido a la presencia de los TALEs 14 y 20 en hojas coinfiltradas con los promotores junto los efectores. Estos resultados indican que los promotores trampa generados en este estudio tienen la capacidad de ser activados por cualquier cepa de Xam que presente TAL14 o TAL20 en su TALoma, planteándose como un cassette de reconocimiento para la mayoría de las cepas del patógeno en el país.Universidad Antonio Nariño - Sede Bogotá“Construcción de promotores sintéticos activados por efectores TAL como una herramienta biotecnológica para el mejoramiento de la resistencia a la bacteriosis vascular de la yuca”, Convenio Proyecto #4.229Magíster en Ciencias-Biología. Línea de Investigación: Fitopatología molecular.Maestría135application/pdfspa570 - Biologíabiotecnologíabacteriosis vascular de la yucaresistencia de amplio espectrobiotechnologycassava bacterial blightbroad-spectrum resistanceConstrucción de promotores trampa basados en efectores TAL de Xanthomonas axonopodis pv. manihotisDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Maestría en Ciencias - BiologíaUniversidad Nacional de Colombia - Sede BogotáAcosta, L., & Camacho, H. (2005). Conservación de la biomasas de tuca (Manihot esculanta Crantz), en la várzea del Amazonas colombiano: Tecnología tradicional ticuna aplicada en el presente.Aguilera, M. (2012). La yuca en el Caribe colombiano: De cultivo ancestral a agroindustrial. Documentos de trabajo sobre Economía Regional. Retrieved from http://www.banrep.gov.co/docum/Lectura_finanzas/pdf/dtser_158.pdfAllem, A. C. (2002). The Origins and Taxonomy of Cassava. Retrieved from http://ciat-library.ciat.cgiar.org/articulos_ciat/cabi_04ch1.pdfAn, S.-Q., Potnis, N., Dow, M., Vorhölter, F.-J., He, Y.-Q., Becker, A., … Tang, J.-L. (2019). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiology Reviews, (May), 1–32. https://doi.org/10.1093/femsre/fuz024Antoine, F., & Wydra, K. (2015). Physical and chemical treatments for the control of Xanthomonas axonopodis pv . manihotis in cassava seeds. Journal of Experimental Biology and Agricultural Sciences, 3(1), 54–59.Arrieta-Ortiz, M. L., Rodríguez-R, L. M., Pérez-Quintero, Á. L., Poulin, L., Díaz, A. C., Rojas, N. A., … Bernal, A. (2013). Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis strain CIO151. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079704Banito, A., Kpémoua, K., Bissang, B., & Wydra, K. (2010). Assessment of cassava root and stem rots in ecozones of togo and evaluation of the pathogen virulence. Pakistan Journal of Botany, 42(3), 2059–2068.Barak, J. D., Vancheva, T., Lefeuvre, P., Jones, J. B., Timilsina, S., Minsavage, G. V., … Koebnik, R. (2016). Whole-genome sequences of xanthomonas euvesicatoria strains clarify taxonomy and reveal a stepwise erosion of type 3 effectors. Frontiers in Plant Science, 7(DECEMBER2016). https://doi.org/10.3389/fpls.2016.01805Bart, R., Cohn, M., McCallum, E. J., Shybut, M., Petriello, A., Krasileva, K., … Chen, J. (2012). High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance. Proceedings of the National Academy of Sciences, 109(32), 13130–13130. https://doi.org/10.1073/pnas.1211014109Bart, R., Wilson, M. C., Mutka, A. M., Hummel, A. W., Berry, J., Chauhan, R. D., … Bart, R. S. (2017). Rapid report Gene expression atlas for the food security crop cassava. https://doi.org/10.1111/nph.14443Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. K. (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture, 127(2), 269–287. https://doi.org/10.1007/s11240-016-1057-7Blanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., … Koebnik, R. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnology Journal, 15(3), 306–317. https://doi.org/10.1111/pbi.12613Boch, J., Bonas, U., & Lahaye, T. (2014). TAL effectors – pathogen strategies and plant resistance engineering. New Phytologist, 204(4), 823–832. https://doi.org/10.1111/nph.13015Boch, J., Scholze, H., Schornack, S., Landgraf, A., S, H., Kay, S., … Bonas, U. (2009). Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Science, 326, 1509–1512. https://doi.org/10.1126/science.1178811Büttner, D. (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiology Reviews, 40(6), 894–937. https://doi.org/10.1093/femsre/fuw026Büttner, D., & Bonas, U. (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34(2), 107–133. https://doi.org/10.1111/j.1574-6976.2009.00192.xCastiblanco, L. F., Gil, J., Rojas, A., Osorio, D., Gutiérrez, S., Muñoz-Bodnar, A., … Bernal, A. J. (2013). TALE1 from Xanthomonas axonopodis pv. Manihotis acts as a transcriptional activator in plant cells and is important for pathogenicity in cassava plants. Molecular Plant Pathology, 14(1), 84–95. https://doi.org/10.1111/j.1364-3703.2012.00830.xCesbron, S., Briand, M., Essakhi, S., Gironde, S., Boureau, T., Manceau, C., … Jacques, M. A. (2015). Comparative genomics of pathogenic and nonpathogenic strains ofxanthomonas arboricola unveil molecular and evolutionary events linked to pathoadaptation. Frontiers in Plant Science, 6(DEC). https://doi.org/10.3389/fpls.2015.01126Chacón, J., Madriñán, S., Debouck, D., Rodriguez, F., & Tohme, J. (2008). Phylogenetic patterns in the genus Manihot (Euphorbiaceae) inferred from analyses of nuclear and chloroplast DNA regions. Molecular Phylogenetics and Evolution, 49(1), 260–267. https://doi.org/10.1016/j.ympev.2008.07.015Chavarriaga, P., Brand, A., Medina, A., Prías, M., Escobar, R., Martinez, J., … Tohme, J. (2016). The potential of using biotechnology to improve cassava: a review. In Vitro Cellular and Developmental Biology - Plant, 52(5), 461–478. https://doi.org/10.1007/s11627-016-9776-3Chege, M. N., Wamunyokoli, F., Kamau, J., & Nyaboga, E. N. (2017). Phenotypic and genotypic diversity of Xanthomonas axonopodis pv . manihotis causing bacterial blight disease of cassava in Kenya. Journal of Applied Biology & Biotechnology, 5(02), 38–44. https://doi.org/10.7324/JABB.2017.50206Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., … Frommer, W. B. (2010). Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468(7323), 527–532. https://doi.org/10.1038/nature09606Cohn, M. (2015). Characterization of the Transcription Activator-Like Effectors of Xanthomonas axonopodis pv. manihotis and identification of susceptibility targets in the host cassava. University of California.Cohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., … Staskawicz, B. J. (2014). Xanthomonas axonopodis Virulence Is Promoted by a Transcription Activator-Like Effector–Mediated Induction of a SWEET Sugar Transporter in Cassava. Molecular Plant-Microbe Interactions, 27(11), 1186–1198. https://doi.org/10.1094/MPMI-06-14-0161-RCohn, M., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2016). Comparison of gene activation by two TAL effectors from X anthomonas axonopodis pv. manihotis reveals candidate host susceptibility genes in cassava. Molecular Plant Pathology, 17(6), 875–889. https://doi.org/10.1111/mpp.12337Constantin, E. C., Cleenwerck, I., Maes, M., Baeyen, S., Van Malderghem, C., De Vos, P., & Cottyn, B. (2016). Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65(5), 792–806. https://doi.org/10.1111/ppa.12461Contreras, E., & Lopez, C. (2008). Expresión de dos genes candidatos a resistencia contra la bacteriosis vascular en yuca. Acta Biológica Colombiana, 13(2), 175–187.Contreras, E., & López, C. (2011). Identificación de polimorfismos en RXam2, un gen candidato de resistencia a la bacteriosis vascular de yuca. Revista Colombiana de Biotecnología, 13(2), 63–69.Cuculis, L., Abil, Z., Zhao, H., & Schroeder, C. M. (2016). TALE proteins search DNA using a rotationally decoupled mechanism. Nature Chemical Biology, 12(10), 831–837. https://doi.org/10.1038/nchembio.2152DANE. (2011). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2012). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2013). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2014). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2015). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2016a). El cultivo de la yuca (Manihot esculenta Crantz). Boletín Mensual INSUMOS Y FACTORES ASOCIADOS A LA PRODUCCIÓN AGROPECUARIA, 46, 1–7. Retrieved from https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2016.pdfDANE. (2016b). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2017). Encuesta Nacional Agropecuaria. Bogotá DC.DANE. (2018). Pobreza multidimensional nacional. Bogotá DC.Deng, D., Yan, C., Pan, X., Mahfouz, M., Wang, J., Zhu, J., & Shi, Y. (2012). Structural Basis for Sequence-Specific Recognition of, 335(February), 11–14.Díaz, P. (2016). Transference of RXam2 and Bs2 genes to confer resistance against cassava bacterial blight ( CBB ). Universidad Nacional de Colombia.Díaz, P., Herrera Corzo, M., Ochoa Cabezas, J. C., Medina Cipagauta, A., Prías, M. A., Verdier, V., … López, C. (2018). The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. Planta, 247(4), 1031–1042. https://doi.org/10.1007/s00425-018-2863-4Dixon, A., Ngeve, J., & Nukenine, E. (2002). Genotype× environment Effects on Severity of Cassava Bacterial Blight Disease caused by Xanthomonas axonopodis pv. manihotis. European Journal of Plant Pathology, 108(8), 763–770.Doucouré, H., Pérez-Quintero, A. L., Reshetnyak, G., Tekete, C., Auguy, F., Thomas, E., … Cunnac, S. (2018). Functional and genome sequence-driven characterization of tal effector gene repertoires reveals novel variants with altered specificities in closely related malian Xanthomonas oryzae pv. oryzae strains. Frontiers in Microbiology, 9(AUG), 1–17. https://doi.org/10.3389/fmicb.2018.01657Doyle, E. L., Booher, N. J., Standage, D. S., Voytas, D. F., Brendel, V. P., Vandyk, J. K., & Bogdanove, A. J. (2012). TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: Tools for TAL effector design and target prediction. Nucleic Acids Research, 40(W1), 117–122. https://doi.org/10.1093/nar/gks608Erkes, A., Mücke, S., Reschke, M., Boch, J., & Grau, J. (2019). PrediTALE: A novel model learned from quantitative data allows for new perspectives on TALE targeting. PLoS Computational Biology, 15(7), 1–28. https://doi.org/10.1371/journal.pcbi.1007206Erkes, A., Reschke, M., Boch, J., & Grau, J. (2017). Evolution of transcription activator-like effectors in Xanthomonas oryzae. Genome Biology and Evolution, 9(6), 1599–1699. https://doi.org/10.1093/gbe/evx108FAO. (2013). FAOSTAT Database. Food Supply - Crops Primary Equivalent. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/CCFAO. (2017). FAOSTAT Database. Crops. Retrieved August 26, 2019, from http://www.fao.org/faostat/en/#data/QCFAO. (2018). Food Outlook Biannual Report on Global Food Markets - November 2018. Fao. https://doi.org/ISSN 1560-8182Fregene, M., Angel, F., Gomez, R., Rodriguez, F., Chavarriaga, P., Roca, W., … Bonierbale, M. (1997). A molecular genetic map of cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 95(3), 431–441. https://doi.org/10.1007/s001220050580Gil, J., & López, C. (2019). El dominio STK de la proteína de resistencia a la bacteriosis vascular de yuca RXAM1 interactúa con una E3 Ubiquitin Ligasa. Acta Biológica Colombiana, 24(1), 139–149. https://doi.org/10.15446/abc.v24n1.70821Gómez, F., Soto, J., Restrepo, S., Bernal, A., López-Kleine, L., & López, C. (2018). Gene co-expression network for Xanthomonas-challenged cassava reveals key regulatory elements of immunity processes. European Journal of Plant Pathology, 153(4), 1083–1104. https://doi.org/10.1007/s10658-018-01628-4Gonzalez, C., Restrepo, S., Tohme, J., & Verdier, V. (2002). Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiology Letters, 215(1), 23–31. https://doi.org/10.1016/S0378-1097(02)00913-8Grau, J., Wolf, A., Reschke, M., Bonas, U., Posch, S., & Boch, J. (2013). Computational Predictions Provide Insights into the Biology of TAL Effector Target Sites. PLoS Computational Biology, 9(3). https://doi.org/10.1371/journal.pcbi.1002962Gust, A. A., & Felix, G. (2014). Receptor like proteins associate with SOBIR1-type of adaptors to form bimolecular receptor kinases. Current Opinion in Plant Biology, 21, 104–111. https://doi.org/10.1016/j.pbi.2014.07.007Herrera, B., Hyman, G., & Bellotti, A. (2011). Threats to cassava production: Known and potential geographic distribution of four key biotic constraints. Food Security, 3(3), 329–345. https://doi.org/10.1007/s12571-011-0141-4Hillocks, R. J., & Wydra, K. (2002). Bacterial, Fungal, and nematode Disease. Cassava: Biology, Production and Utilization, 261–280.Howeler, R., Lutaladio, N., & Thomas, G. (2013). Save and Grow: Cassava. A Guide to Sustainable Production Intensification. Rome: Food and Agriculture Organization of the United Nations.Hui, S., Liu, H., Zhang, M., Chen, D., Li, Q., Tian, J., … Yuan, M. (2019). The host basal transcription factor IIA subunits coordinate for facilitating infection of TALEs-carrying bacterial pathogens in rice. Plant Science, 284(March), 48–56. https://doi.org/10.1016/j.plantsci.2019.04.004Hummel, A. W., Doyle, E. L., & Bogdanove, A. J. (2012). Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195, 883–893.Hutin, M., Pérez-Quintero, A. L., Lopez, C., & Szurek, B. (2015). MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Frontiers in Plant Science, 6(July). https://doi.org/10.3389/fpls.2015.00535Isendahl, C. (2011). The Domestication and Early Spread of Manioc ( Manihot Esculenta Crantz): A Brief Synthesis . Latin American Antiquity, 22(4), 452–468. https://doi.org/10.7183/1045-6635.22.4.452Jacobs, J. M., Pesce, C., Lefeuvre, P., & Koebnik, R. (2015). Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in xanthomonas. Frontiers in Plant Science, 6(June), 1–13. https://doi.org/10.3389/fpls.2015.00431Jacques, M. A., Arlat, M., Boulanger, A., Boureau, T., Cesbron, S., Chen, N. W. G., … Verni, C. (2016). Using Ecology , Physiology , and Genomics to Understand Host Specificity in Xanthomonas: French Network on Xanthomonads (FNX). Annu. Rev. Phytopathol, 54(6), 1–25. https://doi.org/10.1146/annurev-phyto-080615-100147Ji, Z., Ji, C., Liu, B., Zou, L., Chen, G., & Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7(May), 1–9. https://doi.org/10.1038/ncomms13435Jones, J., & Dangl, J. (2006). The plant immune system. Nature, 444, 3–9. https://doi.org/10.1038/nature05286Jorge, V., Fregene, M., Duque, M., Bonierbale, M., Tohme, J., & Verdier, V. (2000). Genetic mapping of resistance to bacterial blight disease in cassava ( Manihot esculenta Crantz). TAG Theoretical and Applied Genetics, 101(October 2000), 865–872. https://doi.org/10.1007/s001220051554Jorge, V., Fregene, M., Velez, C. M., Duque, M. C., Tohme, J., & Verdier, V. (2001). QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theoretical and Applied Genetics, 102(4), 564–571. https://doi.org/10.1007/s001220051683Kpemoua, K., Boher, B., Nicole, M., Calatayud, P., & Geiger, J. (1996). Cytochemistry of defense responses in cassava infected. Canadian Journal of Microbiology42, 1143(42), 1131–1143. https://doi.org/10.1139/m96-145Kumari, S., & Ware, D. (2013). Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0079011Leal, L. G., Perez, Á., Quintero, A., Bayona, Á., Ortiz, J. F., Gangadharan, A., … López-Kleine, L. (2013). Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data. Genomics, Proteomics and Bioinformatics, 11(6), 345–353. https://doi.org/10.1016/j.gpb.2013.09.010Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., … Mahfouz, M. M. (2013). Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Molecular Plant, 6(4), 1318–1330. https://doi.org/10.1093/mp/sst006Li, T., Huang, S., Zhou, J., & Yang, B. (2013). Designer TAL Effectors Induce Disease Susceptibility and Resistance to Xanthomonas oryzae pv . Oryzae in Rice. Molecular Plant, 6(3), 781–789. https://doi.org/10.1093/mp/sst034Livi, M. (2008). One hundred thousand or ten million Taíno? In Conquest: The Destruction of the American Indios (pp. 96–98). Polity Press.Lope, J. (1981). Antillanismos en la Nueva España. Anuario de Letras: Lingüística y Filología, (19), 75–88. https://doi.org/10.19130/iifl.adel.19.0.1981.445López, C., & Bernal, A. (2012). Cassava Bacterial Blight: Using Genomics for the Elucidation and Management of an Old Problem. Tropical Plant Biology, 5(1), 117–126. https://doi.org/10.1007/s12042-011-9092-3López, C., Jorge, V., Piégu, B., Mba, C., Cortes, D., Restrepo, S., … Verdier, V. (2004). A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology, 56(4), 541–554. https://doi.org/10.1007/s11103-004-0123-4López, C., Quesada, L., Bohorquez, A., Duque, M., Vargas, J., Tohme, J., & Verdier, V. (2007). Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome, 50(12), 1078–1088. https://doi.org/g07-087 [pii]\r10.1139/g07-087López, C., & Restrepo, S. (2006). Limitaciones de la bacteriosis varcular de Yuca: Nuevos avances. Acta Biológica Colombiana, 11, 21–45.López, C., Soto, M., Restrepo, S., Piégu, B., Cooke, R., Delseny, M., … Verdier, V. (2005). Gene expression profile in response to Xanthomonas axonopodis pv. manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology, 57, 393–410. https://doi.org/10.1007/s11103-004-7819-3López, C., Zuluaga, A. P., Cooke, R., Delseny, M., Tohme, J., & Verdier, V. (2003). Isolation of resistance gene candidates (RGCs) and characterization of an RGC cluster in cassava. Molecular Genetics and Genomics, 269(5), 658–671. https://doi.org/10.1007/s00438-003-0868-5Lozano, C. (1986). Cassava Bacterial Blight: A manageable disease. Plant Dis, 70, 1089–1093.Luján, M. (2017). Spanish in the Americas. A dialogic approach to lenguage contact. In Language Contact and Change in Mesoamerica and Beyond (pp. 395–402). John Benjamins Publishing Company.Ma, Wenbo, Dong, F. F. T., Stavrinides, J., & Guttman, D. S. (2006). Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics, 2(12), 2131–2142. https://doi.org/10.1371/journal.pgen.0020209Ma, Wenxiu, Zou, L., Zhiyuan, J. I., Xiameng, X. U., Zhengyin, X. U., Yang, Y., … Chen, G. (2018). Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice. Molecular Plant Pathology, 19(10), 2248–2262. https://doi.org/10.1111/mpp.12696Maeder, M. L., Linder, S. J., Reyon, D., Angstman, J. F., Fu, Y., Sander, J. D., & Joung, J. K. (2013). Robust, synergistic regulation of human gene expression using TALE activators. Nature Methods, 10(3), 243–245. https://doi.org/10.1038/nmeth.2366Mak, A. N. S., Bradley, P., Cernadas, R. A., Bogdanove, A. J., & Stoddard, B. L. (2012). The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335(6069), 716–719. https://doi.org/10.1126/science.1216211McCallum, E. J., Anjanappa, R. B., & Gruissem, W. (2017). Tackling agriculturally relevant diseases in the staple crop cassava ( Manihot esculenta ). Current Opinion in Plant Biology, 38, 50–58. https://doi.org/10.1016/j.pbi.2017.04.008Medina, C., Reyes, P., Trujillo, C., Gonzalez, J., & Bejarano, D. (2017). The role of type three effectors from Xanthomonas axonopodis pv. manihotis in virulence and suppression of plant immunity. Molecular Plant Pathology. https://doi.org/10.1111/mpp.12545Mora, R. (2017). Identificación de genes de susceptibilidad en yuca, blancos de TALEs de Xam (Tesis de Maestría). Bogotá: Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia.Moscou, M. J., & Bogdanove, A. J. (2009). A Simple Cipher Governs DNA Recognition by TAL Effectors. Science (New York, N.Y.), 326(December), 1501. https://doi.org/10.1126/science.1178817Mücke, S., Reschke, M., Erkes, A., Schwietzer, C. A., Becker, S., Streubel, J., … Boch, J. (2019). Transcriptional reprogramming of rice cells by Xanthomonas oryzae tales. Frontiers in Plant Science, 10(February), 1–19. https://doi.org/10.3389/fpls.2019.00162Noman, A., Aqeel, M., & Lou, Y. (2019). PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. International Journal of Molecular Sciences, 20(8). https://doi.org/10.3390/ijms20081882OECD. (2016a). Cassava (Manihot esculenta). In Safety Assessment of Transgenic Organisms in the Environment (Volume 6, pp. 155–186). Paris: OECD Publishing. https://doi.org/10.1787/9789264253421-enOECD. (2016b). Safety Assessment of Transgenic Organisms in the Environment (Vol. 6). https://doi.org/10.1787/9789264253018-enOgunjobi, A., Fagade, O., & Dixon, A. (2006). Molecular variation in population structure of Xanthomonas axonopodis pv manihotis in the south eastern Nigeria. African Journal of Biotechnology, 5(20), 1868–1872. https://doi.org/10.4314/ajb.v5i20.55891Ogunjobi, A., Fagade, O., & Dixon, A. (2007). Physiological studies on Xanthomonas axonopodis pv\nmanihotis (Xam) strains isolated in Nigeria. Electronic Journal of Environmental, Agricultural and Food Chemistry, 6, 10.Pérez-Pinera, P., Ousterout, D. G., Brunger, J. M., Farin, A. M., Glass, K. A., Guilak, F., … Gersbach, C. A. (2013). Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nature Methods, 10(3), 239–242. https://doi.org/10.1038/nmeth.2361Pérez-Quintero, A. L., Rodriguez-R, L. M., Dereeper, A., López, C., Koebnik, R., Szurek, B., & Cunnac, S. (2013). An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0068464Pérez-Quintero, A. L., & Szurek, B. (2019). A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research. Annual Review of Phytopathology, 57(1), 459–481. https://doi.org/https://doi.org/10.1146/annurev-phyto-082718-100026Pérez, D., Mora, R., & López, C. (2019). Conservation of the cassava diversity in the traditional cultivation systems of the Amazon. Acta Biologica Colombiana, 24(2), 202–212. https://doi.org/10.15446/abc.v24n2.75428Pfeilmeier, S., Caly, D. L., & Malone, J. G. (2016). Bacterial pathogenesis of plants : future challenges from a microbial perspective Challenges in Bacterial Molecular Plant Pathology. Molecular Plant Pathology, 17(8), 1298–1313. https://doi.org/10.1111/mpp.12427Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., Dos Santos, R. C., De Albuquerque Melo Filho, P., & De Lima, L. M. (2014). Plant promoters: An approach of structure and function. Molecular Biotechnology, 56(1), 38–49. https://doi.org/10.1007/s12033-013-9713-1Quang, N., Quan, M. Van, Quang, L., Nguyen, D., & Xuan, T. (2019). Identification of cassava bacterial blight-causing Xanthomonas axonopodis pv. Manihotis based on rpoD and gyrB genes. Vietnam Journal of Science, Technology and Engineering, 61(1), 30–35. https://doi.org/10.31276/vjste.61(1).30-35Rache, L., Blondin, L., Flores, C., Trujillo, C., Szurek, B., Restrepo, S., … Vernière, C. (2019). An Optimized Microsatellite Scheme for Assessing Populations of Xanthomonas phaseoli pv. Manihotis. Phytopathology, 109(5), 859–869. https://doi.org/10.1094/PHYTO-06-18-0210-RRamírez, E. (2019). Identificación y validación de genes ejecutores en yuca blancos de TALEs de la bacteria Xanthomonas axonopodis pv. manihotis. Tesis de Doctorado en Ciencias - Biología UNAL. Universidad Nacional de Colombia.Restrepo, S., Duque, M., & Verdier, V. (2000). Characterization of pathotypes among isolates of Xanthomonas axonopodis pv. manihotis in Colombia. Plant Pathology, 49(6), 680–687. https://doi.org/10.1046/j.1365-3059.2000.00513.xRestrepo, S., Valle, T., Duque, M., & Verdier, V. (1999). Assessing Genetic Variability Among Brazilian Strains of Xanthomonas axonopodis pv. manihotis Through RFLP and AFLP Analyses. Can J Microbiol, 45, 754–763.Restrepo, S., Verdier, V., Mosquera, G., Duque, M., Gerstl, A., & Laberry, L. (1998). Genetic and pathogenic variation of Xanthomonas axonopodis pv. manihotis in Venezuela. Plant Pathology, 47, 601–608.Rinaldi, F. C., Doyle, L. A., Stoddard, B. L., & Bogdanove, A. J. (2017). The effect of increasing numbers of repeats on TAL effector DNA binding specificity. Nucleic Acids Research, 45(11), 6960–6970. https://doi.org/10.1093/nar/gkx342Rogers, J. M., Barrera, L. A., Reyon, D., Sander, J. D., Kellis, M., Joung, J. K., & Bulyk, M. L. (2015). Context influences on TALE-DNA binding revealed by quantitative profiling. Nature Communications, 6(May), 1–10. https://doi.org/10.1038/ncomms8440Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., & Lahaye, T. (2009). Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene. Science, 318(5850), 645–648. https://doi.org/10.1126/science.1144958Romer, P., Recht, S., & Lahaye, T. (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceedings of the National Academy of Sciences, 106(48), 20526–20531. https://doi.org/10.1073/pnas.0908812106Roux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., … Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti : placing plant Quantitative Disease Resistance on the map. Molecular Plant Pathology, 15(5), 427–432. https://doi.org/10.1111/mpp.12138Ryan, R., Vorhölter, F., Potnis, N., & Jones, J. B. (2011). Pathogenomics of Xanthomonas : understanding bacterium – plant interactions. Nature Publishing Group, 9(5), 344–355. https://doi.org/10.1038/nrmicro2558Sacristán, S., & García-Arenal, F. (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9(3), 369–384. https://doi.org/10.1111/j.1364-3703.2007.00460.xSaijo, Y., Loo, E. P. iian, & Yasuda, S. (2018). Pattern recognition receptors and signaling in plant–microbe interactions. Plant Journal, 93(4), 592–613. https://doi.org/10.1111/tpj.13808Sandoval, C. lorena, & Chavez, J. L. (2017). Uso alimenticio de especies vegetales por las comunidades indígenas de colombia: una revisión de literatura. Agroecología: Ciencia y Tecnología, 2(1), 18–24. Retrieved from http://revistas.sena.edu.co/index.php/agroeccyt/article/view/904/994Santaella, M., Suárez, E., López, C., González, C., Mosquera, G., Restrepo, S., … Verdier, V. (2004). Identification of genes in cassava that are differentially expressed during infection with Xanthomonas axonopodis pv. manihotis. Molecular Plant Pathology, 5(6), 549–558. https://doi.org/10.1111/J.1364-3703.2004.00254.XSchandry, N., Jacobs, J. M., Szurek, B., & Perez-Quintero, A. L. (2018). A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Molecular Plant Pathology, 19(6), 1297–1301. https://doi.org/10.1111/mpp.12670Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012, July). NIH Image to ImageJ: 25 years of image analysis. Nature Methods. https://doi.org/10.1038/nmeth.2089Schwartz, A. R., Morbitzer, R., Lahaye, T., & Staskawicz, B. J. (2017). TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proceedings of the National Academy of Sciences, 114(5), E897–E903. https://doi.org/10.1073/pnas.1620407114Schwartz, A. R., Potnis, N., Timilsina, S., Wilson, M., Patané, J., Martins, J., … Staskawicz, B. J. (2015). Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology, 6(JUN). https://doi.org/10.3389/fmicb.2015.00535Shantharaj, D., Römer, P., Figueiredo, J. F. L., Minsavage, G. V., Krönauer, C., Stall, R. E., … Jones, J. B. (2016). An engineered promoter driving expression of a microbial avirulence gene confers recognition of TAL effectors and reduces growth of diverse Xanthomonas strains in citrus. Molecular Plant Pathology, 18(7), 976–989. https://doi.org/10.1111/mpp.12454Silva, M. S., Arraes, F. B. M., Campos, M. de A., Grossi-de-Sa, M., Fernandez, D., Cândido, E. de S., … Grossi-de-Sa, M. F. (2018). Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science, 270(October 2017), 72–84. https://doi.org/10.1016/j.plantsci.2018.02.013Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., … Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science (New York, N.Y.), 270(5243), 1804–1806. https://doi.org/10.1126/SCIENCE.270.5243.1804Soto, J., Mora, R., Calle, F., & López, C. (2017). QTL identification for cassava bacterial blight resistance under natural infection conditions. Acta Biologica Colombiana, 22(1), 19–26. https://doi.org/10.15446/abc.v22n1.57951Soto, J., Mora, R., Mathew, B., Léon, J., Gomez, F. A., Ballvora, A., … Bart, R. (2017). Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. Frontiers in Plant Science, 8(July), 1–13. https://doi.org/10.3389/fpls.2017.01169Streubel, J., Baum, H., Grau, J., Stuttman, J., & Boch, J. (2017). Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS ONE, 1–24. https://doi.org/10.1371/journal.pone.0173580 MarchStreubel, J., Blücher, C., Landgraf, A., & Boch, J. (2012). TAL effector RVD specificities and efficiencies. Nature Biotechnology, 30(7), 593–595. https://doi.org/10.1038/nbt.2304Tappiban, P., Sraphet, S., Srisawad, N., Smith, D. R., & Triwitayakorn, K. (2018). Identification and expression of genes in response to cassava bacterial blight infection. Journal of Applied Genetics, 59(4), 391–403. https://doi.org/10.1007/s13353-018-0457-2Taylor, R. K., Griffin, R. L., Jones, L. M., Pease, B., Tsatsia, F., Fanai, C., … Davis, R. I. (2017). First record of Xanthomonas axonopodis pv. manihotis in Solomon Islands. Australasian Plant Disease Notes, 12(1), 49. https://doi.org/10.1007/s13314-017-0275-0Tomkins, J., Fregene, M., Main, D., Kim, H., Wing, R., & Tohme, J. (2004). Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava (Manihot esculenta Crantz). Plant Molecular Biology, 56(4), 555–561. https://doi.org/10.1007/s11103-004-5045-7Toruño, T., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204Triplett, L., Leach, J., & Gold, C. (2016). Host mechanisms for resistance to TAL effectors : Thinking outside the. Physiological and Molecular Plant Pathology, 95, 66–69. https://doi.org/10.1016/j.pmpp.2016.02.002Trujillo, C., Arias, N., Poulin, L., Medina, C., Tapiero, A., Restrepo, S., … Bernal, A. (2014). Population typing of the causal agent of cassava bacterial blight in the Eastern Plains of Colombia using two types of molecular markers. BMC Microbiology, 14(1), 161. https://doi.org/10.1186/1471-2180-14-161Trujillo, C., Ochoa, J., Mideros, M., & Restrepo, S. (2014). A Complex Population Structure of the Cassava Pathogen Xanthomonas axonopodis pv . manihotis in Recent Years in the Caribbean Region of Colombia, 155–167. https://doi.org/10.1007/s00248-014-0411-8Üstün, S., & Börnke, F. (2014). Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Frontiers in Plant Science, 5(DEC), 1–6. https://doi.org/10.3389/fpls.2014.00736Vásquez, A., Soto, J., & López, C. (2018). Descifrando las moléculas ocultas en las sombras grises de la resistencia cuantitativa a patógenos. Acta Biologica Colombiana, 23(1), 5–16. https://doi.org/10.15446/abc.v23n1.66487Verdier, V., & Jorge, V. (2004). Recent progress in the characterization of molecular determinants in the Xanthomonas axonopodis pv. manihotis–cassava interaction. Plant Molecular Biology, 56(December), 573–584. https://doi.org/10.1007/s11103-004-5044-8Verdier, V., López, C., & Bernal, A. (2011). Cassava Bacterial Blight (or Vascular Bacteriosis), Caused by Xanthomonas axonopodis pv. manihotis. La Yuca En El Tercer Milenio, (C), 200–212.Waddington, S. R., Li, X., Dixon, J., Hyman, G., & de Vicente, M. C. (2010). Getting the focus right: Production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27–48. https://doi.org/10.1007/s12571-010-0053-8Wan, W. L., Zhang, L., Pruitt, R., Zaidem, M., Brugman, R., Ma, X., … Nürnberger, T. (2019). Comparing Arabidopsis receptor kinase and receptor protein-mediated immune signaling reveals BIK1-dependent differences. New Phytologist, 221(4), 2080–2095. https://doi.org/10.1111/nph.15497Wang, J., Wang, J., Hu, M., Wu, S., Qi, J., Wang, G., … Chai, J. (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science, 364(6435). https://doi.org/10.1126/science.aav5868Wang, L., Rinaldi, F. C., Singh, P., Doyle, E. L., Dubrow, Z. E., Tu, T., … Bogdanove, A. J. (2017). TAL effectors drive transcription bidirectionally in plants. MOLECULAR PLANT. https://doi.org/10.1016/j.molp.2016.12.002White, F., Potnis, N., Jones, J., & Koebnik, R. (2009). The type III effectors of Xanthomonas. Molecular Plant Pathology, 10(6), 749–766. https://doi.org/10.1111/J.1364-3703.2009.00590.XWydra, K., Zinsou, V., Jorge, V., & Verdier, V. (2004). Identification of Pathotypes of Xanthomonas axonopodis pv . manihotis in Africa and Detection of Quantitative Trait Loci and Markers for Resistance to Bacterial Blight of Cassava. Phytopathology, 94(50), 1084–1093. https://doi.org/10.1094/PHYTO.2004.94.10.1084Xu, Z. yin, Zou, L. fang, Ma, W. xiu, Cai, L. lu, Yang, Y. yang, & Chen, G. you. (2017). Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. Journal of Integrative Agriculture, 16(12), 2736–2745. https://doi.org/10.1016/S2095-3119(17)61750-7Yamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., … Abe, T. (2007). Identification of plant promoter constituents by analysis of local distribution of short sequences. BMC Genomics, 8, 1–23. https://doi.org/10.1186/1471-2164-8-67Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649Zárate, C. A. (2015). Diversity of TALE content in Xanthomonas axonopodis pv. manihotis strains is a valuable tool to improve target gene searching methodologies. Universidad de los Andes.Zhang, J., Yin, Z., & White, F. (2015). TAL effectors and the executor R genes. Frontiers in Plant Science, 6(August), 1–9. https://doi.org/10.3389/fpls.2015.00641Zhang, X., Dodds, P. N., & Bernoux, M. (2017). What Do We Know About NOD-Like Receptors in Plant Immunity? Annu Rev Phytopathol, 55(9), 1–25. https://doi.org/10.1146/annurev-phyto-080516- 035250LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77853/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/77853/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53ORIGINAL1.013.630.255.2020.pdf1.013.630.255.2020.pdfapplication/pdf3667246https://repositorio.unal.edu.co/bitstream/unal/77853/1/1.013.630.255.2020.pdf9843ffb98e27a401a234e97635dac1a0MD51THUMBNAIL1.013.630.255.2020.pdf.jpg1.013.630.255.2020.pdf.jpgGenerated Thumbnailimage/jpeg3774https://repositorio.unal.edu.co/bitstream/unal/77853/4/1.013.630.255.2020.pdf.jpg124a663dc015f9892ccf5485f913fbfaMD54unal/77853oai:repositorio.unal.edu.co:unal/778532023-07-09 23:04:34.39Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |