A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates

Lattice-Boltzmann models (LBM) are very powerful simulation techniques for fluid dynamics, diffusion processes, mechanical waves, magneto- and electrodynamics. However, one of the main complications when working with these LBM is the necessity of an accurate implementation of the boundary conditions...

Full description

Autores:
García Sarmiento, Juliana
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76709
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76709
http://bdigital.unal.edu.co/73412/
Palabra clave:
Lattice Boltzmann models
Advection-diffusion Processes
Generalized Coordinates
Modelos de Lattice Boltzmann,
Procesos de Difusion y Adveccion
Coordenadas generalizadas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fe080d83047b7673c2544985c8ff2d1b
oai_identifier_str oai:repositorio.unal.edu.co:unal/76709
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
title A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
spellingShingle A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
Lattice Boltzmann models
Advection-diffusion Processes
Generalized Coordinates
Modelos de Lattice Boltzmann,
Procesos de Difusion y Adveccion
Coordenadas generalizadas
title_short A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
title_full A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
title_fullStr A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
title_full_unstemmed A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
title_sort A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates
dc.creator.fl_str_mv García Sarmiento, Juliana
dc.contributor.author.spa.fl_str_mv García Sarmiento, Juliana
dc.contributor.spa.fl_str_mv Muñoz Castaño, José Daniel
dc.subject.proposal.spa.fl_str_mv Lattice Boltzmann models
Advection-diffusion Processes
Generalized Coordinates
Modelos de Lattice Boltzmann,
Procesos de Difusion y Adveccion
Coordenadas generalizadas
topic Lattice Boltzmann models
Advection-diffusion Processes
Generalized Coordinates
Modelos de Lattice Boltzmann,
Procesos de Difusion y Adveccion
Coordenadas generalizadas
description Lattice-Boltzmann models (LBM) are very powerful simulation techniques for fluid dynamics, diffusion processes, mechanical waves, magneto- and electrodynamics. However, one of the main complications when working with these LBM is the necessity of an accurate implementation of the boundary conditions. Ideally, the boundaries are rectangular and parallel to the computational mesh, but most of the times, real-life problems have complex geometries and, therefore, boundaries are not easy to implement. This work develops an alternative lattice-Boltzmann model to reproduce the Advection-Diffusion Equation (ADE) on generalized coordinates in two and three dimensions. Our model introduces the geometry as a source term, which makes it much easier and more flexible to simulate curved geometries in two and three dimensions like disks, cylinders, torii, sinusoidal curved channels and any complex shape that can be described as an orthogonal coordinate transformation. The proposed LBM, which shows second-order accuracy, allows also to perform mesh refinements without losing isotropy, to avoid staircase approximations and to take advantage of geometrical symmetries, when present. Our simulation results are in excellent agreement with the theoretical predictions in all studied cases in two and three dimensions, with or without symmetries, and even reproduce with great accuracy experimental results. In fact, we have defined our model in such a way that it facilitates to deal with real physical units (like centimeters, seconds, etc) something that is not obvious when dealing with non-uniform cell sizes, making easier the comparison with experimental data. Our model can be used on a broad range of applications, like heat diffusion in complex geometries, pollutant spreading in channels or pipes, and sediment transport in rivers. Because each geometry is defined by few parameters, and those parameters can be time-dependent, our model could be also used to simulate the ADE on time-varying geometries, like pulsing blood vessels, by computing our model with a Navier-Stokes equations solver with changing boundary conditions. This work contains a valuable contribution for the study of advection-diffusion phenomena. Because this phenomenon is relevant to many scientific, industrial and environmental applications, we expect it would be of great usefulness in future research.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-03
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:27:01Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:27:01Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76709
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/73412/
url https://repositorio.unal.edu.co/handle/unal/76709
http://bdigital.unal.edu.co/73412/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física Física
Física
dc.relation.haspart.spa.fl_str_mv 5 Ciencias naturales y matemáticas / Science
53 Física / Physics
62 Ingeniería y operaciones afines / Engineering
dc.relation.references.spa.fl_str_mv García Sarmiento, Juliana (2019) A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76709/1/TesisMaestria_JulianaGarciaS_2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/76709/2/TesisMaestria_JulianaGarciaS_2019.pdf.jpg
bitstream.checksum.fl_str_mv bf7f2a6ef0b90f6209e4829026abe32e
72278201838fd3259fc2d7a7f9f51b9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089180611870720
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Castaño, José DanielGarcía Sarmiento, Juliana695196e0-7eea-4860-a228-55b53a2ed22f3002020-03-30T06:27:01Z2020-03-30T06:27:01Z2019-03https://repositorio.unal.edu.co/handle/unal/76709http://bdigital.unal.edu.co/73412/Lattice-Boltzmann models (LBM) are very powerful simulation techniques for fluid dynamics, diffusion processes, mechanical waves, magneto- and electrodynamics. However, one of the main complications when working with these LBM is the necessity of an accurate implementation of the boundary conditions. Ideally, the boundaries are rectangular and parallel to the computational mesh, but most of the times, real-life problems have complex geometries and, therefore, boundaries are not easy to implement. This work develops an alternative lattice-Boltzmann model to reproduce the Advection-Diffusion Equation (ADE) on generalized coordinates in two and three dimensions. Our model introduces the geometry as a source term, which makes it much easier and more flexible to simulate curved geometries in two and three dimensions like disks, cylinders, torii, sinusoidal curved channels and any complex shape that can be described as an orthogonal coordinate transformation. The proposed LBM, which shows second-order accuracy, allows also to perform mesh refinements without losing isotropy, to avoid staircase approximations and to take advantage of geometrical symmetries, when present. Our simulation results are in excellent agreement with the theoretical predictions in all studied cases in two and three dimensions, with or without symmetries, and even reproduce with great accuracy experimental results. In fact, we have defined our model in such a way that it facilitates to deal with real physical units (like centimeters, seconds, etc) something that is not obvious when dealing with non-uniform cell sizes, making easier the comparison with experimental data. Our model can be used on a broad range of applications, like heat diffusion in complex geometries, pollutant spreading in channels or pipes, and sediment transport in rivers. Because each geometry is defined by few parameters, and those parameters can be time-dependent, our model could be also used to simulate the ADE on time-varying geometries, like pulsing blood vessels, by computing our model with a Navier-Stokes equations solver with changing boundary conditions. This work contains a valuable contribution for the study of advection-diffusion phenomena. Because this phenomenon is relevant to many scientific, industrial and environmental applications, we expect it would be of great usefulness in future research.Resumen: Los modelos Lattice-Boltzmann (LBM) son técnicas de simulación muy potentes para dinámica de fluidos, procesos de difusión, ondas mecánicas, magneto y electrodinámica. Sin embargo, una de las principales complicaciones cuando se trabaja con estos LBM es la necesidad de una implementación precisa de las condiciones de frontera. Idealmente, las fronteras son rectangulares y paralelas a la malla computacional, pero la mayoría de las veces los problemas de la vida real tienen geometrías complejas y, por lo tanto, las fronteras no son fáciles de implementar. Este trabajo desarrolla un modelo alternativo de Lattice-Boltzmann para reproducir la ecuación de Advección-Difusión (ADE) en coordenadas generalizadas en dos y tres dimensiones. Nuestro modelo presenta la geometría como un término fuente, lo que hace que sea mucho más fácil y más flexible simular geometrías curvas en dos y tres dimensiones como discos, cilindros, toros, canales sinusoidales y cualquier forma compleja que pueda describirse como una transformación de coordenadas ortogonales. El LBM propuesto, que muestra una precisión de segundo orden, también permite realizar refinamientos de malla sin perder isotropía, evitar aproximaciones en la escalera y aprovechar las simetrías geométricas, cuando están presentes. Nuestros resultados de simulación están en excelente concordancia con las predicciones teóricas en todos los casos estudiados en dos y tres dimensiones, con o sin simetrías, e incluso se reproducen con gran precisión resultados experimentales. De hecho, hemos definido nuestro modelo de tal manera que facilita el manejo de unidades físicas reales (como centímetros, segundos, etc.), algo que no es obvio cuando se trata de tamaños de celdas no uniformes, lo que hace más fácil la comparación con datos experimentales. Nuestro modelo se puede utilizar en una amplia gama de aplicaciones como la difusión de calor en geometrías complejas, la propagación de contaminantes en canales o tuberías y el transporte de sedimentos en los ríos. Debido a que cada geometría está definida por pocos parámetros, y esos parámetros pueden depender del tiempo, nuestro modelo también se puede usar para simular la ADE en geometrías variables en el tiempo, como los vasos sanguíneos pulsantes, al acoplar nuestro modelo con otro que solucione las ecuaciones de Navier-Stokes con condiciones de frontera cambiantes. Este trabajo constituye una valiosa contribución al estudio de los fenómenos de advección-difusión. Debido a que este fenómeno es relevante para muchas aplicaciones científicas, industriales y ambientales, esperamos que sea de gran utilidad en futuras investigaciones.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física FísicaFísica5 Ciencias naturales y matemáticas / Science53 Física / Physics62 Ingeniería y operaciones afines / EngineeringGarcía Sarmiento, Juliana (2019) A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinates. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.A lattice-Boltzmann model for the Advection-Diffusion equation in generalized coordinatesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLattice Boltzmann modelsAdvection-diffusion ProcessesGeneralized CoordinatesModelos de Lattice Boltzmann,Procesos de Difusion y AdveccionCoordenadas generalizadasORIGINALTesisMaestria_JulianaGarciaS_2019.pdfapplication/pdf16866290https://repositorio.unal.edu.co/bitstream/unal/76709/1/TesisMaestria_JulianaGarciaS_2019.pdfbf7f2a6ef0b90f6209e4829026abe32eMD51THUMBNAILTesisMaestria_JulianaGarciaS_2019.pdf.jpgTesisMaestria_JulianaGarciaS_2019.pdf.jpgGenerated Thumbnailimage/jpeg4937https://repositorio.unal.edu.co/bitstream/unal/76709/2/TesisMaestria_JulianaGarciaS_2019.pdf.jpg72278201838fd3259fc2d7a7f9f51b9eMD52unal/76709oai:repositorio.unal.edu.co:unal/767092024-07-14 01:07:37.418Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co