Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae)
ilustraciones, gráficas, tablas
- Autores:
-
Aponte Buitrago, Andrés Ricardo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82042
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
Licopodio
Triterpenos
Fitoquímicos
Phytochemicals
Familia Lycopodiaceae
Phlegmariurus cruentus
Serratenos
Aislamiento bioguiado
Artemia salina
Lycopodiaceae
Serratenes
Bioguided isolation
Artemia salina
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_fd6acd58c5035a10e932a8f29c43e806 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82042 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
dc.title.translated.eng.fl_str_mv |
Chemical study and citotoxic activity of Phlegmariurus cruentus (Lycopodiaceae) |
title |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
spellingShingle |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) 540 - Química y ciencias afines::547 - Química orgánica Licopodio Triterpenos Fitoquímicos Phytochemicals Familia Lycopodiaceae Phlegmariurus cruentus Serratenos Aislamiento bioguiado Artemia salina Lycopodiaceae Serratenes Bioguided isolation Artemia salina |
title_short |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
title_full |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
title_fullStr |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
title_full_unstemmed |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
title_sort |
Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae) |
dc.creator.fl_str_mv |
Aponte Buitrago, Andrés Ricardo |
dc.contributor.advisor.none.fl_str_mv |
Mayorga Wandurraga, Humberto |
dc.contributor.author.none.fl_str_mv |
Aponte Buitrago, Andrés Ricardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Productos Naturales Vegetales Bioactivos y Quimica Ecoiogica |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica |
topic |
540 - Química y ciencias afines::547 - Química orgánica Licopodio Triterpenos Fitoquímicos Phytochemicals Familia Lycopodiaceae Phlegmariurus cruentus Serratenos Aislamiento bioguiado Artemia salina Lycopodiaceae Serratenes Bioguided isolation Artemia salina |
dc.subject.decs.spa.fl_str_mv |
Licopodio Triterpenos Fitoquímicos |
dc.subject.decs.eng.fl_str_mv |
Phytochemicals |
dc.subject.proposal.spa.fl_str_mv |
Familia Lycopodiaceae Phlegmariurus cruentus Serratenos Aislamiento bioguiado Artemia salina |
dc.subject.proposal.eng.fl_str_mv |
Lycopodiaceae Serratenes Bioguided isolation Artemia salina |
description |
ilustraciones, gráficas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-23T20:52:53Z |
dc.date.available.none.fl_str_mv |
2022-08-23T20:52:53Z |
dc.date.issued.none.fl_str_mv |
2022-08-22 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82042 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82042 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Araki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamasaki, M., Suzuki, H., Kushiro, T. (2016). Onocerine biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem, 17, 288-290. Bigelow, N., Hardin, W., Barker, J., Ryken, S., MacRae, A., & Cattolico, R. (2011). A Comprehensive GC–MS Sub-Microscale Assay for Fatty Acids and its Applications. Journal of the American Oil Chemists' Society, 88, 1329-1338. Boonya-Udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181. Breitmaier, E. (2002). Recognition of Structural Fragments by NMR. En E. Breitmaier, Structure Elucidation by NMR in Organic Chemistry: A Practical guide (págs. 11-68). West Sussex, England: John Wiley & Sons Ltd. Chiang, Y., & Kuo, Y. (2003). Two novel α-tocopheroids from the aerial roots of Ficus microcarpa. Tetrahedron Letters, 44, 5125–5128. Dewick, P. (2009). The mevalonate and methylerythritol phosphate pathways: Terpenoids and Steroids. En P. Dewick, Medicinal Natural Products: A Biosynthetic approach (Third Edition ed., págs. 187-310). Great Britain: John Wiley & Sons. Dong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373-379. Gemmrich, A. (1977). Fatty acid composition of fern spore lipids. Phytochemistry, 16, 1044-1046. Inubushi, Y., Hibino, T., Harayama, T., Hasegawa, T., & Somanathan, R. (1971). Triterpenoid constituents of Lycopodium phlegmaria L. Journal of the Chemical Society C: Organic, 3109-3114. Liang, L., Chen, Q., Xu, J., Liu, T., Song, X., Chen, H., & H, C. (2019). Serratanes from whole plant of Palhinhaea cernua. Chemistry of Natural Compounds, 55(4), 759-761. Liu, Y, Li, J., Li, D., Li, X., Li, D., Zhou, G., Xu, K., Kang, F., Zou, Z., Xu, P., & Tan, G. (2019). Anti-cholinesterase activities of constituents isolated from Lycopodiastrum casuarinoides. Fitoterapia, 139(104366), 1-7. Liu, Y., Yao, X., Li, J., Zou, Z., Xi, C., Xu, K., Kang, F., Xu, P., & Tan, G. (2021). New unsaturated fatty acids from the aerial parts of Lycopodiastrum casuarinoides. Phytochemistry Letters, 41, 55-60. Lytle, T., & Sever, J. (1973). Hydrocarbons and Fatty Acids of Lycopodium. Phytochemistry, 12, 623-629. Mongalo, N., Soyingbe, O., & Makhafola. (2019). Antimicrobial, cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pacific Journal of Tropical Biomedicine, 9(7), 307-314. Nguyen, V., To, D., Tran, M., Oh, S., Kim, J., Ali, M., Woo, M., Choi, J., & Min, B. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23, 3126-3134 Saga, Y., Araki, T., Araya, H., Saito, K., Yamazaki, M., Suzuki, H., & Kushiro, T. (2017). Identification of Serratene Synthase Gene from the Fern Lycopodium clavatum. Organic Letters, 19(3), 496-499. Seto, H., Furihata, K. G., Xiong, C., & Deji, P. (1988). Assignments of the 1H- and 13C-NMR Spectra of Four Lycopodium Triterpenoids by the Application of a New Two-dimensional Technique, Heteronuclear Multiple Bond Connectivity (HMBC). Agricultural and Biological Chemistry, 52(7), 1797-1801 Shi, H., Li, Z., & Guo, Y. (2005). A new serratene-type triterpene from Lycopodium phlegmaria. Natural Product Research, 19(8), 777-781. Tonisi, S., Okaiyeto, K., Hoppe, H., Mabinya, L., Nwodo, U., & Okoh, A. (2020). Chemical constituents, antioxidant and cytotoxicity properties of Leonotis leonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. 3 Biotech, 10(141), 1-14. Tsuda, Y., & Hatanaka, M. (1969). Triterpenoids of Lycopodium clavatum: the structure of 21-Episerratriol. Journal of the Chemical Society D: Chemical Communications, 18, 1040-1042. Tsuda, Y., Sano, T., Morimoto, A., Hatanaka, M., & Inubushi, Y. (1974). Triterpenoid Chemistry. VI. Lycopodium Triterpenoid. (5). The Structures and Stereochemistry of Serratriol, 21-episerratriol, and lycoclavanol. Chemical and Pharmaceutical Bulletin, 22(14), 2383-2395. Tulloch, A. (1965). The oxygenated Fatty Acids from the oil of the spores of Lycopodium species. Canadian Journal of Chemistry, 43, 415-420. Wei, J., Wang, W., Song, W., & Xuan, L. (2018). Serratene-type triterpenoids from Palhinhaea cernua. Fitoterapia, 127, 151-158. Yan, J., Zhou, Y., Zhang, M., Wang, J., Dai, H., & Tan, J. (2012). New serratene triterpenoids from Palhinhaea cernua and their cytotoxic activity. Planta Medica, 78(12), 1387-1391 Yuan, Z., Duan, H., Xu, Y., Wang, A., Gan, L., Li, J., Liu, M., Shang, X. (2014). α-Tocospiro C, a novel cytotoxic α-tocopheroid from Cirsium setosum. Phytochemistry Letters, 8, 116-120. Zhou, H., Li, Y., Tong, X., Liu, H., Jiang, S., & Zhu, D. (2004). Serratan-type triterpenoids from Huperzia serrata. Natural Product Research, 18(5), 453-459. Zhou, H., Tan, C., Jiang, S., & Zhu, D. (2003). Serratene-Type Triterpenoids from Huperzia serrata. Journal of Natural Products, 66, 1328-1332. Ayala-Muñoz, F. (2017) Búsqueda de posibles compuestos con actividad insecticida a partir de cianobacterias del Caribe colombiano [Tesis Magister en Ciencias-Química, Universidad Nacional de Colombia]. Repositorio Institucional Biblioteca Digital UN. https://repositorio.unal.edu.co/handle/unal/62020 Arcanjo, D., Albuquerque, A., Melo-Neto, B., Santana, L., Medeiros, M., & Citó, A. (2012). Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Brazilian Journal of Biology, 72(3), 505-509. Berridge, M., Herst, P., Tan, A. (2005) Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127-152. Doan, T., Ho, V., Le, T., Le, T., Pham, T., & Nguyen, T. (2019). Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Natural Product Research, 33(14), 1-9. Farooq, S., Mazhar, A., Ghouri, A., Ul-Haq, I., Ullah, N. (2020) One-pot multicomponent synthesis and bioevaluation of tetrahydroquinoline derivatives as potential antioxidants, α-amylase enzyme inhibitors, anti-cancerous and anti-inflammatory agents. Molecules, 25(2710), 1-28. Ghasemi, M., Turnbull, T., Sebastian, S., Kempson, I. (2021) The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(12827), 1-30. McLaughlin, J., Rogers, L., & Anderson, J. (1998). The use of biological assays to evaluate botanicals. Drug Information Journal, 32, 513-524. Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta médica, 45, 31-34. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: aplication to proliferation and cytotoxic assays. Journal of Immunological Methods 65, 55-63. Oberlies, N., Rogers, L., Martin, J., & McLaughlin, J. (1998). Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. Journal of Natural Products, 61, 781-785. Pino-Pérez, O., & Lazo, J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. Revista de Protección Vegetal, 22(1), 34-43. Murillo, M., & Murillo, J. (1999). Pteridófitos de Colombia I. Composición y distribución de las Lycopodiaceae. Revista de la Academia Colombiana de Ciencias Exactas y Naturales, 23(86), 19-38. Murillo, J., & Murillo, M. (2017). Diversidad de los helechos y licófitos de Colombia. Acta Botánica Malacitana, 42(1), 23-32. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2022 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
247 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82042/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82042/3/10238817.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82042/4/10238817.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 97f2e0ad6db0cccf4c882dd489879cd6 ab8a280b3c5836c029e1e3c681277ac3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089245206249472 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2022http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mayorga Wandurraga, Humberto7655a8a19586ef80642f9f732c49eeb0Aponte Buitrago, Andrés Ricardo3adf931145dcb5aa4ef6e849c150afd1Productos Naturales Vegetales Bioactivos y Quimica Ecoiogica2022-08-23T20:52:53Z2022-08-23T20:52:53Z2022-08-22https://repositorio.unal.edu.co/handle/unal/82042Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa investigación fitoquímica del extracto etanólico de la parte aérea de Phlegmariurus cruentus, condujo al aislamiento y purificación por técnicas cromatográficas de cuatro nuevos triterpenos del tipo serrateno, identificados como 24-acetoxiserratenediol (S5), lycophlegmariol E (S7), lycophlegmariol F (S8) y 3-acetil-serratriol (S9), así como de cinco serratenos conocidos y nombrados como phlegmanol C (S1), acetato de 3-serratenediol (S2), 21-epi-serratenediol (S3), serratenediol (S4), y 21-episerratriol (S6). Sus estructuras químicas y configuraciones relativas fueron elucidadas mediante el análisis de datos obtenidos por HRESIMS, RMN en 1D (1H, APT 13C) y en 2D (COSY, HMQC, HMBC y NOESY) y rotación óptica especifica. Además, los datos obtenidos se compararon con los valores espectroscópicos previamente publicados para serratenos conocidos. El uso del ensayo de letalidad contra Artemia salina permitió el aislamiento bioguiado de los compuestos purificados. Las fracciones C-4, enriquecida en el compuesto S1, E-14, con el compuesto mayoritario S2, E-20, fuente principal de los compuestos S3 y S4 y A-4, conformada mayoritariamente por los serratenos S5, S6, S7, S8 y S9, mostraron valores de actividad biológica promisorios contra A. salina. Así mismo, los compuestos S1, S2, S3, S5 y S6 exhibieron resultados de actividad citotóxica contra la línea celular U87-MG, mientras los compuestos S2 y S5 presentaron actividad frente a la línea celular MCF7 de cáncer de mama. Además, el análisis por GC-MS de la fracción volátil A-1, mostró en su mayoría ésteres etílicos como el palmitato de etilo (25,42%), además del α-tocospiro A y α-tocospiro B, reportados por primera vez en este trabajo para la familia Lycopodiaceae.The phytochemical research of the ethanolic extract of the aerial part of Phlegmariurus cruentus led to the isolation and purification by chromatographic techniques of four new serratene-type triterpenes identified as 24-acetoxyserratenediol (S5), lycophlegmariol E (S7), lycophlegmariol F (S8) and 3-acetyl-serratriol (S9), as well as five serratenes known as phlegmanol C (S1), 3-serratenediol acetate (S2), 21-epi-serratenediol (S3), serratenediol (S4), and 21-episerratriol (S6). Their chemical structures and relative configurations were elucidated by analyzing data obtained by HRESIMS, 1D (1H, APT 13C) and 2D (COSY, HMQC, HMBC and NOESY) NMR and specific optical rotation. Moreover, the obtained data were compared to spectroscopic values for known serratenes previously published in the literature. The use of the lethality assay against Artemia salina allowed the bioguided isolation of the purified compounds. The fractions C-4, enriched in the compound S1, E-14, with most of the compound S2, E-20, main source of the compounds S3 and S4 and A-4, made up mainly of serratenes S5, S6, S7, S8 and S9 showed promising biological activity values against A. salina. In the same way, the compounds S1, S2, S3, S5 y S6 exhibited results of cytotoxic activity against the cell line U87-MG, while the compounds S2 and S5 showed activity against the cell line MCF7 of breast cancer. Furthermore, the GC-MS analysis of volatile fraction A-1 revealed that it contained mostly ethyl esters, such as ethyl palmitate (25.42%), as well as α-tocospiro A and α-tocospiro B, which were discovered for the first time in this work for the family Lycopodiaceae.CONVOCATORIA NACIONAL PARA EL FOMENTO DE ALIANZAS INTERDISCIPLINARIAS QUE ARTICULEN INVESTIGACIÓN, CREACIÓN, EXTENSIÓN Y FORMACIÓN EN LA UNIVERSIDAD NACIONAL DE COLOMBIA 2019-2021MaestríaMagíster en Ciencias - QuímicaProductos Naturales247 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánicaLicopodioTriterpenosFitoquímicosPhytochemicalsFamilia LycopodiaceaePhlegmariurus cruentusSerratenosAislamiento bioguiadoArtemia salinaLycopodiaceaeSerratenesBioguided isolationArtemia salinaEstudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae)Chemical study and citotoxic activity of Phlegmariurus cruentus (Lycopodiaceae)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAraki, T., Saga, Y., Marugami, M., Otaka, J., Araya, H., Saito, K., Yamasaki, M., Suzuki, H., Kushiro, T. (2016). Onocerine biosynthesis requires two highly dedicated triterpene cyclases in a fern Lycopodium clavatum. ChemBioChem, 17, 288-290.Bigelow, N., Hardin, W., Barker, J., Ryken, S., MacRae, A., & Cattolico, R. (2011). A Comprehensive GC–MS Sub-Microscale Assay for Fatty Acids and its Applications. Journal of the American Oil Chemists' Society, 88, 1329-1338.Boonya-Udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181.Breitmaier, E. (2002). Recognition of Structural Fragments by NMR. En E. Breitmaier, Structure Elucidation by NMR in Organic Chemistry: A Practical guide (págs. 11-68). West Sussex, England: John Wiley & Sons Ltd.Chiang, Y., & Kuo, Y. (2003). Two novel α-tocopheroids from the aerial roots of Ficus microcarpa. Tetrahedron Letters, 44, 5125–5128.Dewick, P. (2009). The mevalonate and methylerythritol phosphate pathways: Terpenoids and Steroids. En P. Dewick, Medicinal Natural Products: A Biosynthetic approach (Third Edition ed., págs. 187-310). Great Britain: John Wiley & Sons.Dong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373-379.Gemmrich, A. (1977). Fatty acid composition of fern spore lipids. Phytochemistry, 16, 1044-1046.Inubushi, Y., Hibino, T., Harayama, T., Hasegawa, T., & Somanathan, R. (1971). Triterpenoid constituents of Lycopodium phlegmaria L. Journal of the Chemical Society C: Organic, 3109-3114.Liang, L., Chen, Q., Xu, J., Liu, T., Song, X., Chen, H., & H, C. (2019). Serratanes from whole plant of Palhinhaea cernua. Chemistry of Natural Compounds, 55(4), 759-761.Liu, Y, Li, J., Li, D., Li, X., Li, D., Zhou, G., Xu, K., Kang, F., Zou, Z., Xu, P., & Tan, G. (2019). Anti-cholinesterase activities of constituents isolated from Lycopodiastrum casuarinoides. Fitoterapia, 139(104366), 1-7.Liu, Y., Yao, X., Li, J., Zou, Z., Xi, C., Xu, K., Kang, F., Xu, P., & Tan, G. (2021). New unsaturated fatty acids from the aerial parts of Lycopodiastrum casuarinoides. Phytochemistry Letters, 41, 55-60.Lytle, T., & Sever, J. (1973). Hydrocarbons and Fatty Acids of Lycopodium. Phytochemistry, 12, 623-629.Mongalo, N., Soyingbe, O., & Makhafola. (2019). Antimicrobial, cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pacific Journal of Tropical Biomedicine, 9(7), 307-314.Nguyen, V., To, D., Tran, M., Oh, S., Kim, J., Ali, M., Woo, M., Choi, J., & Min, B. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23, 3126-3134Saga, Y., Araki, T., Araya, H., Saito, K., Yamazaki, M., Suzuki, H., & Kushiro, T. (2017). Identification of Serratene Synthase Gene from the Fern Lycopodium clavatum. Organic Letters, 19(3), 496-499.Seto, H., Furihata, K. G., Xiong, C., & Deji, P. (1988). Assignments of the 1H- and 13C-NMR Spectra of Four Lycopodium Triterpenoids by the Application of a New Two-dimensional Technique, Heteronuclear Multiple Bond Connectivity (HMBC). Agricultural and Biological Chemistry, 52(7), 1797-1801Shi, H., Li, Z., & Guo, Y. (2005). A new serratene-type triterpene from Lycopodium phlegmaria. Natural Product Research, 19(8), 777-781.Tonisi, S., Okaiyeto, K., Hoppe, H., Mabinya, L., Nwodo, U., & Okoh, A. (2020). Chemical constituents, antioxidant and cytotoxicity properties of Leonotis leonurus used in the folklore management of neurological disorders in the Eastern Cape, South Africa. 3 Biotech, 10(141), 1-14.Tsuda, Y., & Hatanaka, M. (1969). Triterpenoids of Lycopodium clavatum: the structure of 21-Episerratriol. Journal of the Chemical Society D: Chemical Communications, 18, 1040-1042.Tsuda, Y., Sano, T., Morimoto, A., Hatanaka, M., & Inubushi, Y. (1974). Triterpenoid Chemistry. VI. Lycopodium Triterpenoid. (5). The Structures and Stereochemistry of Serratriol, 21-episerratriol, and lycoclavanol. Chemical and Pharmaceutical Bulletin, 22(14), 2383-2395.Tulloch, A. (1965). The oxygenated Fatty Acids from the oil of the spores of Lycopodium species. Canadian Journal of Chemistry, 43, 415-420.Wei, J., Wang, W., Song, W., & Xuan, L. (2018). Serratene-type triterpenoids from Palhinhaea cernua. Fitoterapia, 127, 151-158.Yan, J., Zhou, Y., Zhang, M., Wang, J., Dai, H., & Tan, J. (2012). New serratene triterpenoids from Palhinhaea cernua and their cytotoxic activity. Planta Medica, 78(12), 1387-1391Yuan, Z., Duan, H., Xu, Y., Wang, A., Gan, L., Li, J., Liu, M., Shang, X. (2014). α-Tocospiro C, a novel cytotoxic α-tocopheroid from Cirsium setosum. Phytochemistry Letters, 8, 116-120.Zhou, H., Li, Y., Tong, X., Liu, H., Jiang, S., & Zhu, D. (2004). Serratan-type triterpenoids from Huperzia serrata. Natural Product Research, 18(5), 453-459.Zhou, H., Tan, C., Jiang, S., & Zhu, D. (2003). Serratene-Type Triterpenoids from Huperzia serrata. Journal of Natural Products, 66, 1328-1332.Ayala-Muñoz, F. (2017) Búsqueda de posibles compuestos con actividad insecticida a partir de cianobacterias del Caribe colombiano [Tesis Magister en Ciencias-Química, Universidad Nacional de Colombia]. Repositorio Institucional Biblioteca Digital UN. https://repositorio.unal.edu.co/handle/unal/62020Arcanjo, D., Albuquerque, A., Melo-Neto, B., Santana, L., Medeiros, M., & Citó, A. (2012). Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Brazilian Journal of Biology, 72(3), 505-509.Berridge, M., Herst, P., Tan, A. (2005) Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127-152.Doan, T., Ho, V., Le, T., Le, T., Pham, T., & Nguyen, T. (2019). Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Natural Product Research, 33(14), 1-9.Farooq, S., Mazhar, A., Ghouri, A., Ul-Haq, I., Ullah, N. (2020) One-pot multicomponent synthesis and bioevaluation of tetrahydroquinoline derivatives as potential antioxidants, α-amylase enzyme inhibitors, anti-cancerous and anti-inflammatory agents. Molecules, 25(2710), 1-28.Ghasemi, M., Turnbull, T., Sebastian, S., Kempson, I. (2021) The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(12827), 1-30.McLaughlin, J., Rogers, L., & Anderson, J. (1998). The use of biological assays to evaluate botanicals. Drug Information Journal, 32, 513-524.Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta médica, 45, 31-34.Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: aplication to proliferation and cytotoxic assays. Journal of Immunological Methods 65, 55-63.Oberlies, N., Rogers, L., Martin, J., & McLaughlin, J. (1998). Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. Journal of Natural Products, 61, 781-785.Pino-Pérez, O., & Lazo, J. (2010). Ensayo de Artemia: Útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. Revista de Protección Vegetal, 22(1), 34-43.Murillo, M., & Murillo, J. (1999). Pteridófitos de Colombia I. Composición y distribución de las Lycopodiaceae. Revista de la Academia Colombiana de Ciencias Exactas y Naturales, 23(86), 19-38.Murillo, J., & Murillo, M. (2017). Diversidad de los helechos y licófitos de Colombia. Acta Botánica Malacitana, 42(1), 23-32.Estudio sobre la composición química y actividad biológica de algunas plantas de la familia Lycopodiaceae de Colombia.Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82042/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL10238817.2022.pdf10238817.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf17349140https://repositorio.unal.edu.co/bitstream/unal/82042/3/10238817.2022.pdf97f2e0ad6db0cccf4c882dd489879cd6MD53THUMBNAIL10238817.2022.pdf.jpg10238817.2022.pdf.jpgGenerated Thumbnailimage/jpeg4480https://repositorio.unal.edu.co/bitstream/unal/82042/4/10238817.2022.pdf.jpgab8a280b3c5836c029e1e3c681277ac3MD54unal/82042oai:repositorio.unal.edu.co:unal/820422024-08-09 23:20:47.636Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |