Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more...
- Autores:
-
Barrera Monje, Cristian Raul
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/69536
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/69536
http://bdigital.unal.edu.co/71420/
- Palabra clave:
- 61 Ciencias médicas; Medicina / Medicine and health
Digital pathology
Lung cancer
Lymphocyte analysis
Patología digital
Cáncer de pulmón
Análisis de linfocitos
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fd31f543fcf3bac98d6a062de225f86b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/69536 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
title |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
spellingShingle |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population 61 Ciencias médicas; Medicina / Medicine and health Digital pathology Lung cancer Lymphocyte analysis Patología digital Cáncer de pulmón Análisis de linfocitos |
title_short |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
title_full |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
title_fullStr |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
title_full_unstemmed |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
title_sort |
Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population |
dc.creator.fl_str_mv |
Barrera Monje, Cristian Raul |
dc.contributor.author.spa.fl_str_mv |
Barrera Monje, Cristian Raul |
dc.contributor.spa.fl_str_mv |
Romero Castro, Eduardo |
dc.subject.ddc.spa.fl_str_mv |
61 Ciencias médicas; Medicina / Medicine and health |
topic |
61 Ciencias médicas; Medicina / Medicine and health Digital pathology Lung cancer Lymphocyte analysis Patología digital Cáncer de pulmón Análisis de linfocitos |
dc.subject.proposal.spa.fl_str_mv |
Digital pathology Lung cancer Lymphocyte analysis Patología digital Cáncer de pulmón Análisis de linfocitos |
description |
A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more prognostic of disease outcome compared to just metrics related to TIL density. A challenge with TIL subtyping is that it relies on quantitative immunofluoresence or immunohistochemistry, complex, expensive, and tissue-destructive techniques. In this thesis, we present a new approach to identify TIL sub-groups and quantify the interplay between these sub-populations to analyze the association of these interplay features with recurrence in early stage lung cancer. The approach comprises a Dirichlet Process Gaussian Mixture Model that clusters lymphocytes on H and E images according to the set of 186 features. The approach was evaluated on a cohort of 178 early stage non-small cell lung cancer patients, 100 were used for model training and 78 for independent validation. Recurrence information was extracted from the patient medical records, where 5 years survival is the established range for remained recurrence-free. A Linear Discriminant Analysis classifier was trained in conjunction with clustered lymphocytes to predict the likelihood of recurrence in the test set. The features yielded an AUC=0.84 compared to an approach involving just TIL density alone (AUC=0.58). In addition, a Kaplan-Meier analysis showed that those features were able to statistically distinguish early recurrence from late recurrence (p = 4 ∗ 10 −5 with cutoff alpha of 0.05). |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T10:28:01Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T10:28:01Z |
dc.date.issued.spa.fl_str_mv |
2019-01-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/69536 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/71420/ |
url |
https://repositorio.unal.edu.co/handle/unal/69536 http://bdigital.unal.edu.co/71420/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Centro de Telemedicina Centro de Telemedicina |
dc.relation.references.spa.fl_str_mv |
Barrera Monje, Cristian Raul (2019) Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/69536/1/Thesis_Book_proposal_V5.pdf https://repositorio.unal.edu.co/bitstream/unal/69536/2/Thesis_Book_proposal_V5.pdf.jpg |
bitstream.checksum.fl_str_mv |
b5f115562ba3c19e67a071636ea2d79b 6db7fa08ea8b6fd2e2a06926ac62e144 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089311487787008 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoBarrera Monje, Cristian Raul309a0ca9-ffde-429b-8a4f-2f59c422cfec3002019-07-03T10:28:01Z2019-07-03T10:28:01Z2019-01-01https://repositorio.unal.edu.co/handle/unal/69536http://bdigital.unal.edu.co/71420/A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more prognostic of disease outcome compared to just metrics related to TIL density. A challenge with TIL subtyping is that it relies on quantitative immunofluoresence or immunohistochemistry, complex, expensive, and tissue-destructive techniques. In this thesis, we present a new approach to identify TIL sub-groups and quantify the interplay between these sub-populations to analyze the association of these interplay features with recurrence in early stage lung cancer. The approach comprises a Dirichlet Process Gaussian Mixture Model that clusters lymphocytes on H and E images according to the set of 186 features. The approach was evaluated on a cohort of 178 early stage non-small cell lung cancer patients, 100 were used for model training and 78 for independent validation. Recurrence information was extracted from the patient medical records, where 5 years survival is the established range for remained recurrence-free. A Linear Discriminant Analysis classifier was trained in conjunction with clustered lymphocytes to predict the likelihood of recurrence in the test set. The features yielded an AUC=0.84 compared to an approach involving just TIL density alone (AUC=0.58). In addition, a Kaplan-Meier analysis showed that those features were able to statistically distinguish early recurrence from late recurrence (p = 4 ∗ 10 −5 with cutoff alpha of 0.05).Resumen: Varios artículos han establecido que una alta densidad de linfocitos infiltrantes de tumor (TILs, por sus siglas en inglés), está altamente correlacionada con un mejor pronóstico en diferentes tipos de cáncer. Recientemente, algunos estudios han demostrado que la interacción espacial entre los diferentes subtipos de TILs (por ejemplo, CD3, CD4, CD8) resulta más informativa respecto al desenlace de la enfermedad en comparación con las métricas relacionadas con la densidad de TILs. Un desafío con la subtipificación de TILs es que ésta requiere inmunofluorescencia cuantitativa o inmunohistoquímica, técnicas complejas, costosas y destructivas de tejido. En esta tesis, presentamos un nuevo enfoque para identificar subgrupos de TILs y cuantificar la interacción entre dichos subtipos y mostrar la asociación de estas características de interacción con la recurrencia en pacientes con cáncer de pulmón en etapa temprana. El enfoque comprende un Modelo de Mezcla de Gaussianas junto con un proceso Dirichlet que agrupa linfocitos de acuerdo a un vector de 186 características, en imágenes H and E. El abordaje se evaluó en una cohorte de 178 pacientes con cáncer de pulmón de células no pequeñas en etapa inicial, 100 muestras se utilizaron para el entrenamiento del modelo propuesto y 78 para la validación independiente. La información de recurrencia del cáncer es obtenida en la historia clínica de los pacientes, donde la tasa de supervivencia a 5 años es el rango establecido sin recurrencia. estipula según ciertos criterios de recurrencia clínicamente definidos. Se entren´o un clasificador de análisis discriminante lineal (LDA, por sus siglas en inglés), junto con los linfocitos clusterizados para predecir la probabilidad de recurrencia en el conjunto de prueba. Las características arrojaron un AUC = 0,84 en comparación con un enfoque que tiene en cuenta únicamente la densidad de los TILs (AUC = 0,58). Además, un análisis de Kaplan-Meier mostró que las características podían distinguir estadísticamente entre la recurrencia temprana y recurrencia tardía (p = 4 ∗ 10−5 con un alfa de corte de 0.05).Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Centro de TelemedicinaCentro de TelemedicinaBarrera Monje, Cristian Raul (2019) Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and healthDigital pathologyLung cancerLymphocyte analysisPatología digitalCáncer de pulmónAnálisis de linfocitosPredicting patient outcome in lung cancer by a cluster analysis of lymphocyte populationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALThesis_Book_proposal_V5.pdfapplication/pdf15030930https://repositorio.unal.edu.co/bitstream/unal/69536/1/Thesis_Book_proposal_V5.pdfb5f115562ba3c19e67a071636ea2d79bMD51THUMBNAILThesis_Book_proposal_V5.pdf.jpgThesis_Book_proposal_V5.pdf.jpgGenerated Thumbnailimage/jpeg4421https://repositorio.unal.edu.co/bitstream/unal/69536/2/Thesis_Book_proposal_V5.pdf.jpg6db7fa08ea8b6fd2e2a06926ac62e144MD52unal/69536oai:repositorio.unal.edu.co:unal/695362024-06-01 23:10:36.9Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |