Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population

A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more...

Full description

Autores:
Barrera Monje, Cristian Raul
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/69536
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/69536
http://bdigital.unal.edu.co/71420/
Palabra clave:
61 Ciencias médicas; Medicina / Medicine and health
Digital pathology
Lung cancer
Lymphocyte analysis
Patología digital
Cáncer de pulmón
Análisis de linfocitos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fd31f543fcf3bac98d6a062de225f86b
oai_identifier_str oai:repositorio.unal.edu.co:unal/69536
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
title Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
spellingShingle Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
61 Ciencias médicas; Medicina / Medicine and health
Digital pathology
Lung cancer
Lymphocyte analysis
Patología digital
Cáncer de pulmón
Análisis de linfocitos
title_short Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
title_full Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
title_fullStr Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
title_full_unstemmed Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
title_sort Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population
dc.creator.fl_str_mv Barrera Monje, Cristian Raul
dc.contributor.author.spa.fl_str_mv Barrera Monje, Cristian Raul
dc.contributor.spa.fl_str_mv Romero Castro, Eduardo
dc.subject.ddc.spa.fl_str_mv 61 Ciencias médicas; Medicina / Medicine and health
topic 61 Ciencias médicas; Medicina / Medicine and health
Digital pathology
Lung cancer
Lymphocyte analysis
Patología digital
Cáncer de pulmón
Análisis de linfocitos
dc.subject.proposal.spa.fl_str_mv Digital pathology
Lung cancer
Lymphocyte analysis
Patología digital
Cáncer de pulmón
Análisis de linfocitos
description A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more prognostic of disease outcome compared to just metrics related to TIL density. A challenge with TIL subtyping is that it relies on quantitative immunofluoresence or immunohistochemistry, complex, expensive, and tissue-destructive techniques. In this thesis, we present a new approach to identify TIL sub-groups and quantify the interplay between these sub-populations to analyze the association of these interplay features with recurrence in early stage lung cancer. The approach comprises a Dirichlet Process Gaussian Mixture Model that clusters lymphocytes on H and E images according to the set of 186 features. The approach was evaluated on a cohort of 178 early stage non-small cell lung cancer patients, 100 were used for model training and 78 for independent validation. Recurrence information was extracted from the patient medical records, where 5 years survival is the established range for remained recurrence-free. A Linear Discriminant Analysis classifier was trained in conjunction with clustered lymphocytes to predict the likelihood of recurrence in the test set. The features yielded an AUC=0.84 compared to an approach involving just TIL density alone (AUC=0.58). In addition, a Kaplan-Meier analysis showed that those features were able to statistically distinguish early recurrence from late recurrence (p = 4 ∗ 10 −5 with cutoff alpha of 0.05).
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-07-03T10:28:01Z
dc.date.available.spa.fl_str_mv 2019-07-03T10:28:01Z
dc.date.issued.spa.fl_str_mv 2019-01-01
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/69536
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/71420/
url https://repositorio.unal.edu.co/handle/unal/69536
http://bdigital.unal.edu.co/71420/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Medicina Centro de Telemedicina
Centro de Telemedicina
dc.relation.references.spa.fl_str_mv Barrera Monje, Cristian Raul (2019) Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/69536/1/Thesis_Book_proposal_V5.pdf
https://repositorio.unal.edu.co/bitstream/unal/69536/2/Thesis_Book_proposal_V5.pdf.jpg
bitstream.checksum.fl_str_mv b5f115562ba3c19e67a071636ea2d79b
6db7fa08ea8b6fd2e2a06926ac62e144
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089311487787008
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, EduardoBarrera Monje, Cristian Raul309a0ca9-ffde-429b-8a4f-2f59c422cfec3002019-07-03T10:28:01Z2019-07-03T10:28:01Z2019-01-01https://repositorio.unal.edu.co/handle/unal/69536http://bdigital.unal.edu.co/71420/A number of papers have established that a high density of tumor-infiltrating lymphocytes (TILs) is highly correlated with a better prognosis for many different cancer types. Recently, some studies have shown that the spatial interplay between different subtypes of TILs (e.g. CD3, CD4, CD8) is more prognostic of disease outcome compared to just metrics related to TIL density. A challenge with TIL subtyping is that it relies on quantitative immunofluoresence or immunohistochemistry, complex, expensive, and tissue-destructive techniques. In this thesis, we present a new approach to identify TIL sub-groups and quantify the interplay between these sub-populations to analyze the association of these interplay features with recurrence in early stage lung cancer. The approach comprises a Dirichlet Process Gaussian Mixture Model that clusters lymphocytes on H and E images according to the set of 186 features. The approach was evaluated on a cohort of 178 early stage non-small cell lung cancer patients, 100 were used for model training and 78 for independent validation. Recurrence information was extracted from the patient medical records, where 5 years survival is the established range for remained recurrence-free. A Linear Discriminant Analysis classifier was trained in conjunction with clustered lymphocytes to predict the likelihood of recurrence in the test set. The features yielded an AUC=0.84 compared to an approach involving just TIL density alone (AUC=0.58). In addition, a Kaplan-Meier analysis showed that those features were able to statistically distinguish early recurrence from late recurrence (p = 4 ∗ 10 −5 with cutoff alpha of 0.05).Resumen: Varios artículos han establecido que una alta densidad de linfocitos infiltrantes de tumor (TILs, por sus siglas en inglés), está altamente correlacionada con un mejor pronóstico en diferentes tipos de cáncer. Recientemente, algunos estudios han demostrado que la interacción espacial entre los diferentes subtipos de TILs (por ejemplo, CD3, CD4, CD8) resulta más informativa respecto al desenlace de la enfermedad en comparación con las métricas relacionadas con la densidad de TILs. Un desafío con la subtipificación de TILs es que ésta requiere inmunofluorescencia cuantitativa o inmunohistoquímica, técnicas complejas, costosas y destructivas de tejido. En esta tesis, presentamos un nuevo enfoque para identificar subgrupos de TILs y cuantificar la interacción entre dichos subtipos y mostrar la asociación de estas características de interacción con la recurrencia en pacientes con cáncer de pulmón en etapa temprana. El enfoque comprende un Modelo de Mezcla de Gaussianas junto con un proceso Dirichlet que agrupa linfocitos de acuerdo a un vector de 186 características, en imágenes H and E. El abordaje se evaluó en una cohorte de 178 pacientes con cáncer de pulmón de células no pequeñas en etapa inicial, 100 muestras se utilizaron para el entrenamiento del modelo propuesto y 78 para la validación independiente. La información de recurrencia del cáncer es obtenida en la historia clínica de los pacientes, donde la tasa de supervivencia a 5 años es el rango establecido sin recurrencia. estipula según ciertos criterios de recurrencia clínicamente definidos. Se entren´o un clasificador de análisis discriminante lineal (LDA, por sus siglas en inglés), junto con los linfocitos clusterizados para predecir la probabilidad de recurrencia en el conjunto de prueba. Las características arrojaron un AUC = 0,84 en comparación con un enfoque que tiene en cuenta únicamente la densidad de los TILs (AUC = 0,58). Además, un análisis de Kaplan-Meier mostró que las características podían distinguir estadísticamente entre la recurrencia temprana y recurrencia tardía (p = 4 ∗ 10−5 con un alfa de corte de 0.05).Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Centro de TelemedicinaCentro de TelemedicinaBarrera Monje, Cristian Raul (2019) Predicting patient outcome in lung cancer by a cluster analysis of lymphocyte population. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and healthDigital pathologyLung cancerLymphocyte analysisPatología digitalCáncer de pulmónAnálisis de linfocitosPredicting patient outcome in lung cancer by a cluster analysis of lymphocyte populationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALThesis_Book_proposal_V5.pdfapplication/pdf15030930https://repositorio.unal.edu.co/bitstream/unal/69536/1/Thesis_Book_proposal_V5.pdfb5f115562ba3c19e67a071636ea2d79bMD51THUMBNAILThesis_Book_proposal_V5.pdf.jpgThesis_Book_proposal_V5.pdf.jpgGenerated Thumbnailimage/jpeg4421https://repositorio.unal.edu.co/bitstream/unal/69536/2/Thesis_Book_proposal_V5.pdf.jpg6db7fa08ea8b6fd2e2a06926ac62e144MD52unal/69536oai:repositorio.unal.edu.co:unal/695362024-06-01 23:10:36.9Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co