Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano

La creciente industrialización y descarga de contaminantes han alterado significativamente el equilibrio de los ecosistemas marino-costeros, particularmente en términos de contaminación por metales. Cuando sus contenidos superan las concentraciones de efecto umbral, inducen efectos adversos en los e...

Full description

Autores:
Vélez-Mendoza, Anubis
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86443
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86443
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas
550 - Ciencias de la tierra
570 - Biología
Elementos potencialmente tóxicos
Seston
Sedimentos
Ostras
Potencially toxic elements
Seston
Sediments
Oysters
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fd01d76f64513cf13c586985ec3e5c1d
oai_identifier_str oai:repositorio.unal.edu.co:unal/86443
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
dc.title.translated.eng.fl_str_mv Contamination by heavy metals (Hg, Cd, Pb and Cu) in the oyster Crassostrea rhizophorae for two marine-coastal ecosystems of the Colombian Caribbean
title Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
spellingShingle Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
500 - Ciencias naturales y matemáticas
550 - Ciencias de la tierra
570 - Biología
Elementos potencialmente tóxicos
Seston
Sedimentos
Ostras
Potencially toxic elements
Seston
Sediments
Oysters
title_short Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
title_full Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
title_fullStr Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
title_full_unstemmed Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
title_sort Contaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombiano
dc.creator.fl_str_mv Vélez-Mendoza, Anubis
dc.contributor.advisor.none.fl_str_mv Néstor Hernando, Campos Campos (Thesis advisor)
Rico Mora, Jeimmy Paola
dc.contributor.author.none.fl_str_mv Vélez-Mendoza, Anubis
dc.contributor.researchgroup.spa.fl_str_mv Fauna Marina Colombiana: Biodiversidad y Usos
dc.contributor.orcid.spa.fl_str_mv Vélez Mendoza, Anubis [0000000338788107]
dc.contributor.cvlac.spa.fl_str_mv Vélez Mendoza, Anubis Jorge Luis [0000094366]
dc.contributor.scopus.spa.fl_str_mv Vélez Mendoza, Anubis [57203971403]
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas
550 - Ciencias de la tierra
570 - Biología
topic 500 - Ciencias naturales y matemáticas
550 - Ciencias de la tierra
570 - Biología
Elementos potencialmente tóxicos
Seston
Sedimentos
Ostras
Potencially toxic elements
Seston
Sediments
Oysters
dc.subject.proposal.spa.fl_str_mv Elementos potencialmente tóxicos
Seston
Sedimentos
Ostras
dc.subject.proposal.eng.fl_str_mv Potencially toxic elements
Seston
Sediments
Oysters
description La creciente industrialización y descarga de contaminantes han alterado significativamente el equilibrio de los ecosistemas marino-costeros, particularmente en términos de contaminación por metales. Cuando sus contenidos superan las concentraciones de efecto umbral, inducen efectos adversos en los ecosistemas y sus habitantes. En la costa Caribe colombiana, es necesario intensificar la vigilancia en la Ciénaga Grande de Santa Marta (CGSM) y la bahía de Cispatá (BhC), dos ecosistemas de gran importancia ecológica y socioeconómica de la región, en donde es crucial mejorar en la comprensión del impacto de la contaminación por estos elementos potencialmente tóxicos. En este contexto, la ostra Crassostrea rhizophorae resultó ser un bivalvo idóneo para el estudio, por su capacidad de bioacumular estos contaminantes sin sufrir efectos perjudiciales. Se determinó la contaminación por metales (Hg, Cd y Cu) en las ostras, como el factor de bioconcentración respecto el seston y sedimentos, considerando la talla del organismo, variables fisicoquímicas y épocas climáticas. En cada una de las seis estaciones de muestreo (tres en CGSM y tres en la BhC), se midieron variables fisicoquímicas, se recolectaron muestras compuestas de ostras en tallas juveniles (22 mm-32 mm) y tallas adultas (35 mm-56.5 mm), una muestra compuesta de seston (de tres réplicas) y tres de sedimento (se determinó la materia orgánica, el potencial redox y el contenido de metales). La determinación de los metales se realizó mediante la técnica de espectrofotometría de absorción atómica, utilizando el método EPA 7473 por hidruros para Hg, el método AOAC 999.11 (2002) por horno de grafito (GF-AAS) para Cd y Pb, y por flama (FA-AAS) para Cu. En Pb, tanto en sedimentos como en seston, se presentó el contenido más alto de este elemento potencialmente tóxico en época seca en comparación con la época lluviosa, no obstante, en época seca las estaciones CGS-3 en CGSM y CIS-2 en BhC presentaron una concentración baja ≤0.0003 µg/g Pb p.s., que, junto con la acumulación baja de este metal en bivalvos, se excluyó su análisis en la ostra. El análisis de PERMANOVA reveló diferencias significativas en las concentraciones de Hg, Cd y Cu en las ostras por épocas climáticas, ecosistemas y estaciones, con la mayor bioconcentración relacionada con el seston. En la BhC se determinó la mayor contaminación por Hg y Cu, con una presencia más elevada de Hg durante la época lluviosa correlacionada con la temperatura, y una mayor presencia de Cu durante la época seca con influencia significativa de la salinidad. En CGSM, para el Cd se determinó la mayor contaminación durante la época lluviosa, asociada con la temperatura. En cuanto a las tallas, la bioconcentración de Hg y Cd fue mayor en tallas juveniles, las cuales presentan una mayor tasa de absorción de metales. Sin embargo, este patrón también estuvo influenciado por las condiciones locales, evidenciando una mayor bioconcentración de Hg en tallas adultas en CGSM y de Cd en BhC, ambos durante la época lluviosa. Para Cu, la bioconcentración fue similar en ambas tallas, sugiriendo una mayor influencia de las condiciones locales en cada ecosistema. Aunque las concentraciones de Hg y Cd no representan un riesgo en el consumo de las ostras, se deben mantener medidas de control y gestión. Contrariamente, la situación con el Cu es crítica en la BhC, presentando uno de los mayores riesgos de contaminación por el metal en el mundo durante la última década. Este estudio proporciona una base valiosa para la toma de decisiones y acciones de gestión ambiental, enfocándose en reducir los riesgos asociados con la contaminación por estos metales en estas áreas críticas (Texto tomado de la fuente)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-12T20:45:14Z
dc.date.available.none.fl_str_mv 2024-07-12T20:45:14Z
dc.date.issued.none.fl_str_mv 2024-07-03
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86443
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86443
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdel-Wahab, M., Yassien, M. H., Thabet, A. A., Said, R. E. M., Mahdy, A., Amer, O. S. O., Saber, S. A. (2022). Seasonal variations of some heavy metal concentrations in seawater, sediment, and the surf clam, Mactra olorina (Philippi, 1846) in the Great Bitter Lake, Suez Canal, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(1), 83-98. https://doi.org/10.21608/ejabf.2022.215047
Aboal, J. R., Pacín, C., García-Seoane, R., Varela, Z., González, A. G., Fernández, J. A. (2023). Global decrease in heavy metal concentrations in brown algae in the last 90 years. Journal of Hazardous Materials, 445, 130511. https://doi.org/10.1016/j.jhazmat.2022.130511
Aguirre, S. E., Piraneque, N. V., Linero-Cueto, J. (2021). Concentración de metales pesados y calidad físico-química del agua de la Ciénaga Grande de Santa Marta. Revista U.D.C.A Actualidad y Divulgación Científica, 24(1), e1313. https://doi.org/10.31910/rudca.v24.n1.2021.1313
Aguirre-Rubí, J. R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M. J., Marigómez, I. (2017). Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environmental Science and Pollution Research, 25(14), 13396-13415. https://doi.org/10.1007/s11356-017-9159-2
Aldridge, K. T., Ganf, G. G. (2003). Modification of sediment redox potential by three contrasting macrophytes: Implications for phosphorus adsorption/desorption. Marine and Freshwater Research, 54(1), 87-94. https://doi.org/10.1071/MF02087
Al-Fartusie, F. S., Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science, 5(3), 127-136. https://www.ijacskros.com/5%20Volume%203%20Issue/10.22607IJACS.2017.503003.pdf
Alfonso, J. A., Handt, H., Mora, A., Vásquez, Y., Azocar, J., Marcano, E. (2013). Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuelan coast. Marine Pollution Bulletin, 73(1), 394-398. https://doi.org/10.1016/j.marpolbul.2013.05.010
Ali, H., Khan, E. (2018). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353-1376. https://doi.org/10.1080/10807039.2018.1469398
Alonso, D., Pineda, P., Olivero, J., González, H., Campos, N. (2000). Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environmental Pollution, 109(1), 157-163. https://doi.org/10.1016/s0269-7491(99)00225-0
Alvarez, S., Kolok, A. S., Jimenez, L. F., Granados, C., Palacio, J. A. (2012). Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia. Bulletin of Environmental Contamination and Toxicology, 89(4), 836-840. https://doi.org/10.1007/s00128-012-0782-9
Amoatey, P., Baawain, M. S. (2019). Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 1272-1287. https://doi.org/10.1002/wer.1221
Anderson, M. J., Gorley, R. N., Clarke, K. R. (2008). Guide to Software and Statistical Methods. PRIMER-E.
Aristizábal-Alzate, C. E., González-Manosalva, J. L., Vargas, A. F. (2021). Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: Una alternativa para la obtención de metales preciosos y metales para la industria. TecnoLógicas, 24(51), e1740. https://doi.org/10.22430/22565337.1740
Avelar, W. E. P., Mantelatto, F. L. M., Tomazelli, A. C., Silva, D. M. L., Shuhama, T., Lopes, J. L. C. (2000). The marine mussel Perna perna (Mollusca, Bivalvia, Mytilidae) as an indicator of contamination by heavy metals in the Ubatuba Bay, São Paulo, Brazil. Water, Air, and Soil Pollution, 118, 65-72. https://doi.org/10.1023/A:1005109801683
Ayling, G. M. (1974). Uptake of cadmium, zinc, copper, lead and chromium in the pacific oyster. Crassostrea gigas. Grown in the tamar river. Tasmania. Water Research, 8(10), 729-738. https://doi.org/10.1016/0043-1354(74)90017-7
Azizi, G., Layachi, M., Akodad, M., Yáñez-Ruiz, D. R., Martín-García, A. I., Baghour, M., Mesfioui, A., Skalli, A., Moumen, A. (2018a). Seasonal variations of heavy metals content in mussels (Mytilus galloprovincialis) from Cala Iris offshore (Northern Morocco). Marine Pollution Bulletin, 137, 688-694. https://doi.org/10.1016/j.marpolbul.2018.06.052
Azizi, G., Akodad, M., Baghour, M., Layachi, M., Moumen, A. (2018b). The use of Mytilus spp. Mussels as bioindicators of heavy metal pollution in the coastal environment. A review. Journal of Materials and Environmental Sciences, 9(4), 1170-1181. http://jmaterenvironsci.com/Document/vol9/vol9_N4/129-JMES-3495-Azizi.pdf
Balls, P. W. (1985). Copper, lead and cadmium in coastal waters of the western North Sea. Marine Chemistry, 15(4), 363-378. https://doi.org/10.1016/0304-4203(85)90047-7
Baraj, B., Niencheski, L. F., Corradi, C. (2003). Trace metal contend trend of mussel Perna perna (Linnaeus, 1758) from the Atlantic coast of southern Brazil. Water, Air, and Soil Pollution, 145, 205-214. https://doi.org/10.1023/A:1023614822121
Bayne, B. L. (1976). Aspects of reproduction in bivalve molluscs. Estuarine Processes. Elsevier, 1, 432-448. https://doi.org/10.1016/B978-0-12-751801-5.50043-5
Bazzi, A. O. (2014). Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science, 5(3), 20-29. https://doi.org/10.5897/JOMS2014.0110
Bigas, M., Durfort, M., Poquet, M. (2001). Cytological effects of experimental exposure to Hg on the gill epithelium of the European flat oyster Ostrea edulis: Ultrastructural and quantitative changes related to bioaccumulation. Tissue and Cell, 33(2), 178-188. https://doi.org/10.1054/tice.2000.0169
Bodin, N., Burgeot, T., Stanisière, J. Y., Bocquené, G., Menard, D., Minier, C., Boutet, I., Amat, A., Cherel, Y., Budzinski, H. (2004). Seasonal variations of a battery of biomarkers and physiological indices for the mussel Mytilus galloprovincialis transplanted into the northwest Mediterranean Sea. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 138(4), 411-427. https://doi.org/10.1016/j.cca.2004.04.009
Bolaños-Alvarez, Y., Ruiz-Fernández, A. C., Sanchez-Cabeza, J.-A., Díaz Asencio, M., Espinosa, L. F., Parra, J. P., Garay, J., Delanoy, R., Solares, N., Montenegro, K., Pena, A., López, F., Castillo-Navarro, A. C., Gómez Bastidas, M., Quejido-Cabezas, A., Metian, M., Pérez-Bernal, L. H., Alonso-Hernández, C. M., 2024. Regional assessment of the historical trends of mercury in sediment cores from Wider Caribbean coastal environments. Science of The Total Environment, 170609. https://doi.org/10.1016/j.scitotenv.2024.170609
Bourg, A. C. M., Loch, J. P. G. (1995). Mobilization of Heavy Metals as Affected by pH and Redox Conditions. In: Salomons, W., Stigliani, W. M. (Eds), Biogeodynamics of Pollutants in Soils and Sediments. Springer-Verlag, Berlin, Heidelberg, 87-102. https://doi.org/10.1007/978-3-642-79418-6_4
Boyden, C. R., Romeril, M. G. (1974). A trace metal problem in pond oyster culture. Marine Pollution Bulletin, 29(5), 74-78. https://doi.org/10.1016/0025-326X(74)90163-5
Bryan, G. W., Hummerstone, W. J., Burt, G. R. (1985). A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Marine Biological Association of the United Kingdom, 4. https://plymsea.ac.uk/id/eprint/271
Buchman, M. F. (2008). NOAA Screening Quick Reference Tables NOAA ORR Report 08-1, Seatle WA, Office of Response and Restoriation Division. National Oceanic and Atmospheric Administration, 34p. https://repository.library.noaa.gov/view/noaa/9327
Burgos-Nuñez, S., Marrugo N, J., Navarro F, A., Urango C, I. (2014). Mercury in Pelecanus occidentalis of the Cispata bay, Colombia. Revista MVZ Córdoba, 19(2), 4168-4174. https://doi.org/10.21897/rmvz.110
Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispatá Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1-2), 379-386. https://doi.org/10.1016/j.marpolbul.2017.05.016
Butler, P. A., Andren, L., Bonde, G. J., Jernelov, A., Reisch, D. J., Ruivo, M. (1971). Monitoring organisms. En: Food and Agricultural Organization Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Rome, 1970. Supplement 1. Methods of detection, measurement and monitoring of pollutants in the marine environment. Fishing News, London, 101-112.
Cadavid-Velásquez, E. D. J., Pérez-Vásquez, N. D. S., Marrugo-Negrete, J. (2019). Contaminación por metales pesados en la bahía Cispatá en Córdoba-Colombia y su bioconcentración en macromicetos. Gestión y Ambiente, 22(1), 43-53. https://doi.org/10.15446/ga.v22n1.76380
Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach. Science of The Total Environment, 247(2-3), 295-311. https://doi.org/10.1016/S0048-9697(99)00499-4
Campos, N. H. (1987). Determinación de metales pesados en Isognomon bicolor en la Bahía de Santa Marta, Colombia. Instituto de Investigaciones Marinas Punta de Betin, 17, 155-162. https://doi.org/10.25268/bimc.invemar.1987.17.0.461
Campos, N. H. (1988). Selected Bivalves for Monitoring of Heavy Metal Contamination in the Colombian Caribbean. En: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. Metals in Coastal Environments of Latin America. Springer Berlin Heidelberg, 270-275. https://doi.org/10.1007/978-3-642-71483-2_23
Campos, N. H. (1990). La contaminación por metales en Ciénaga Grande de Santa Marta, Caribe colombiano. Caldasia, 16(77), 231-244. https://revistas.unal.edu.co/index.php/cal/article/view/35544
Campos, N. H., Dueñas-Ramírez, P. R., Genes, N. (2015). Malformación en cangrejos de la superfamilia Xanthoidea (Crustacea: Brachyura) en la bahía de Cispatá (Córdoba, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(150), 91-99. https://doi.org/10.18257/raccefyn.172
Campos, N. H., Gallo, M. C. (1997). Contenido de Cd, Cu y Zn en Rhizophora mangle y Avicennia germinans de la Cienaga Grande de Santa Marta y Bahía de Chengue, costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(79), 73-90. https://raccefyn.co/index.php/raccefyn/issue/view/123
Cantle, J. E. (1982). Atomic Absorption Spectrometry. Elsevier Scientific Publishing Company. https://shop.elsevier.com/books/atomic-absorption-spectrometry/cantle/978-0-444-42015-2
Carvalho, C. E. V., Cavalacante, M. P. O., Gomes, P. O., Faria, V. V., Rezende, C. E. (2001). Distribuição de Metais Pesados em Mexilhões (Perna perna, L.) da Ilha de Santana, Macaé, SE, Brasil. Ecotoxicology and Environmental Restoration, 4(1), 1-4.
Catharino, M. G. M., Vasconcellos, M. B. A., De Sousa, E. C. P. M., Moreira, E. G., Pereira, C. D. S. (2008). Biomonitoring of Hg, Cd, Pb and other elements in coastal regions of São Paulo State, Brazil, using the transplanted mussel Perna perna (Linnaeus, 1758). Journal of Radioanalytical and Nuclear Chemistry, 278(3), 547-551. https://doi.org/10.1007/s10967-008-1003-1
Chafik, A., Cheggour, M., Cossa, D., Sifeddine, S. B. M. (2001). Quality of Moroccan Atlantic coastal waters: Water monitoring and mussel watching. Aquatic Living Resources, 14, 239-249. https://doi.org/10.1016/S0990-7440(01)01123-8
Cheung, K.-S., Seto, W.-K., Fung, J., Mak, L.-Y., Lai, C.-L., Yuen, M.-F. (2017). Epidemiology and natural history of Wilson’s disease in the Chinese: A territory-based study in Hong Kong between 2000 and 2016. World Journal of Gastroenterology, 23(43), 7716-7726. https://doi.org/10.3748/wjg.v23.i43.7716
Cogua, P., Campos-Campos, N. H., Duque, G. (2012). Concentración de mercurio total y metilmercurio en sedimento y seston de la bahía de Cartagena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 41(2), 267-285. http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/88/85
Compeau, G., Bartha, R. (1984). Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Applied and Environmental Microbiology, 48(6), 1203-1207. https://doi.org/10.1128/aem.48.6.1203-1207.1984
Coimbra, A. G. (2003). Distribuição de metais pesados em moluscos e sedimentos nos manguezais de coroa grande e da enseada das garças, baía de Sepetiba, RJ [Tesis de Maestría, Universidade Federal Fluminense]. https://app.uff.br/riuff/handle/1/5820
Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L. A., Velásquez-López, P. C., Roeser, M. (2011). Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of The Total Environment, 410-411, 154-160. https://doi.org/10.1016/j.scitotenv.2011.09.006
Cossa, D. (1989). A review of the use of Mytilus ssp. As quantitative indicators of cadmium and mercury contamination in coastal waters. Oceanologica Acta, 12(4), 417-432. https://archimer.ifremer.fr/doc/00106/21736/19309.pdf
Costa, M., Paiva, E., Moreira, I. (2000). Total mercury in Perna perna mussels from Guanabara Bay-10 years later. The Science of the Total Environment, 261(1-3), 69-73. https://doi.org/10.1016/S0048-9697(00)00596-9
Curtius, A. J., Seibert, E. L., Fiedler, H. D., Ferreira, J. F., Vieira, P. H. F. (2003). Avaliando a contaminação por elementos traço em atividades de maricultura: Resultados parciais de um estudo de caso realizado na ilha de Santa Catarina, Brasil. Química Nova, 26(1), 44-52. https://doi.org/10.1590/S0100-40422003000100010
da Silva Ferreira, M. D. S., Mársico, E. T., Conte Junior, C. A., Marques Júnior, A. N., Mano, S. B., Clemente, S. C. D. S. (2013). Contaminação por metais traço em mexilhões Perna perna da costa brasileira. Ciência Rural, 43(6), 1012-1020. https://doi.org/10.1590/S0103-84782013005000062
de Gregori, I., Delgado, D., Pinochet, H., Gras, N., Muñoz, L., Bruhn, C., Navarrete, G. (1994). Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle solida (Almeja) from the Chilean coast. The Science of the Total Environment, 148(1), 1-10. https://doi.org/10.1016/0048-9697(94)90367-0
de Gregori, I., Pinochet, H., Gras, N., Muñoz, L. (1996). Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile. Environmental Pollution, 92(3), 359-368. https://doi.org/10.1016/0269-7491(95)00077-1
Depledge, M. H., Rainbow, P. S. (1990). Models of regulation and accumulation of trace metals in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 97(1), 1-7. https://doi.org/10.1016/0742-8413(90)90163-4
Desideri, D., Meli, M. A., Roselli, C., Feduzi, L. (2009). A biomonitoring study: 210Po and heavy metals in mussels. Journal of Radioanalytical and Nuclear Chemistry, 279(2), 591-600. https://doi.org/10.1007/s10967-008-7334-0
Dharmadasa, P., Kim, N., Thunders, M. (2017). Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food and Chemical Toxicology, 109(1), 714-720. https://doi.org/10.1016/j.fct.2017.09.002
Díaz, O., Encina, F., Chuecas, L., Becerra, J., Cabello, J., Figueroa, A., Muñoz, F. (2001). Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioconcentración de mercurio total y metilmercurio en Tagelus dombeii. Revista de biología marina y oceanografía, 36(1), 15-29. https://doi.org/10.4067/S0718-19572001000100003
Dietz, R., Fort, J., Sonne, C., Albert, C., Bustnes, J. O., Christensen, T. K., Ciesielski, T. M., Danielsen, J., Dastnai, S., Eens, M., Erikstad, K. E., Galatius, A., Garbus, S.-E., Gilg, O., Hanssen, S. A., Helander, B., Helberg, M., Jaspers, V. L. B., Jenssen, B. M., Jhonson, J. E., Kauhala, K., Kolveinsson, Y., Kyhn, L. A., Labansen, A. L., Larsen, M. M., Lindstom, U., Sveegaard, S., Sondergaard, J., Sun, J., Teilmann, J., Therkildsen, O. R., Thorarinsson, T. L., Tjornlov, R. S., Wilson, S., Eulaers, I. (2021). A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves. Environment International, 146, 106178. https://doi.org/10.1016/j.envint.2020.106178
Ding, H., Zhao, Y., Sheng, X., Kang, X., Ning, J., Zhong, X., Shang, D. (2022). Heavy metal bioaccumulation in five bivalves from coastal areas of yellow sea and Bohai Sea, China: Evaluation of contamination and human health risk. Research Square. https://doi.org/10.21203/rs.3.rs-1512790/v1
Duarte, C. A., Giarratano, E., Amin, O. A., Comoglio, L. I. (2011). Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Marine Pollution Bulletin, 62(8), 1895-1904. https://doi.org/10.1016/j.marpolbul.2011.05.031
Edward, F. B., Yap, C. K., Ismail, A., Tan, S. G. (2008). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196(1-4), 297-309. https://doi.org/10.1007/s11270-008-9777-x
El-Moselhy, K. M., Yassien, M. H. (2005). Accumulation patterns of heavy metals in venus clams, Paphia undulata (born, 1780) and Gafrarium pectinatum (linnaeus, 1758), from Lake Timsah, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 31(1), 13-27.
EPA. Environmental Protection Agency. (2007). Method 7473 Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Environmental Protection Agency, 1-17. https://www.epa.gov/esam/epa-method-7473-sw-846-mercury-solids-and-solutions-thermal-decomposition-amalgamation-and
Espinosa, L. F., Parra, J. P., Villamil, C. (2011). Determinación del contenido de metales pesados en las fracciones geoquímicas del sedimento superficial asociado a los manglares de la Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 40(1), 7-23. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/98
Espinosa, L. F., Ramírez, G., Campos, N. H. (1995). Análisis de residuos de organoclorados en sedimentos de zonas de manglar en la Ciénaga Grande de Santa Marta y la bahía de Chengue, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 24, 79-94. https://doi.org/10.25268/bimc.invemar.1995.24.0.378
Eto, K. (1997). Review Article: Pathology of Minamata Disease. Toxicologic Pathology, 25(6), 614-623. https://journals.sagepub.com/doi/epdf/10.1177/019262339702500612
FAO/WHO. (2022). GSFA Online. Information on the group(s) of food additives (The Food and Agriculture Organization of the United Nations, and World Health Organization). CODEX alimentarius. https://www.fao.org/gsfaonline/groups/details.html?id=83
Feria, J. J., Marrugo, J. L., González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America. Revista Facultad de Ingeniería Universidad de Antioquía, 55, 35-44. https://doi.org/10.17533/udea.redin.14679
Fernandez, A., Singh, A., Jaffé, R. (2007). A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Marine Pollution Bulletin, 54(11), 1681-1691. https://doi.org/10.1016/j.marpolbul.2007.08.007
Fernández-Martínez, R., Rucandio, I., Gómez-Pinilla, I., Borlaf, F., García, F., Larrea, M. T. (2015). Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry. Journal of Food Composition and Analysis, 38, 7-12. https://doi.org/10.1016/j.jfca.2014.10.003
Fischer, H. (1989). Cadmium in seawater recorded by mussels: Regional decline established. Marine Ecology Progress Series, 55, 159-169. https://doi.org/10.3354/meps055159
Förstner, U., Wittmann, G. T. W. (1981). Metal pollution in the aquatic environment. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69385-4
Francioni, E., Wagener, A. D. L. R., Calixto, R. D. C., Bastos, G. C. (2004). Evaluation of Perna perna (Linné, 1758) as a tool to monitoring trace metals contamination in estuarine and coastal waters of Río de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 15(1), 103-110. https://doi.org/10.1590/S0103-50532004000100016
Frías-Espericueta, M. G., Ortiz-Arellano, M. A., Osuna-López, J. I., Ronson-Paulin, J. A. (1999). Heavy metals in.the rock oyster Crassostrea iridescens (Filibranchia: Ostreidae) from Mazatlan, Sinaloa, Mexico. Revista de Biología Tropical, 47(4), 843-849. https://doi.org/10.15517/rbt.v47i4.19261
Gagnaire, B., Thomas-Guyon, H., Renault, T. (2004). In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish & Shellfish Immunology, 16(4), 501-512. https://doi.org/10.1016/j.fsi.2003.08.007
Gambrell, R. P. (1994). Trace and Toxic Metals in Wetlands-A Review. Journal of Environmental Quality, 23, 883-891. https://doi.org/10.2134/jeq1994.00472425002300050005x
Garcés-Ordóñez, O., Rodríguez Rodríguez, J. A., Espinosa Díaz, L. E., Escobar Toledo, F. E., DelValle Borrero, D. (2021). Respuesta a corto plazo de parámetros fisicoquímicos del agua a la rehabilitación hidrológica de caños en manglares de Cispata, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 50(2), 151-160. https://doi.org/10.25268/bimc.invemar.2021.50.2.1106
Giarratano, E., Duarte, C. A., Amin, O. A. (2010). Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicology and Environmental Safety, 73(3), 270-279. https://doi.org/10.1016/j.ecoenv.2009.10.009
Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1-12), 46-52. https://doi.org/10.1016/S0025-326X(01)00323-X
Griscom, S. B., Fisher, N. S. (2004). Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview. Estuaries, 27(5), 826-838. https://doi.org/10.1007/BF02912044
Gutiérrez-Galindo, E. A. G., Pérez-Rodríguez, J. C. P., Muñoz-Barbosa, A. M. (2014). Cadmio, cobre, zinc en el mejillón Mytilus californianus (Conrad 1837) de la costa oeste de Baja California. Revista Internacional de Contaminación Ambiental, 30(3), 285-295. https://www.redalyc.org/articulo.oa?id=37031522005
Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1-24. https://doi.org/10.3109/10408449509089885
Harada, M., Kawaguchi, T., Kumemura, H., Terada, K., Ninomiya, H., Taniguchi, E., Hanada, S., Baba, S., Maeyama, M., Koga, H., Ueno, T., Furuta, K., Suganuma, T., Sugiyama, T., Sata, M. (2005). The Wilson Disease Protein ATP7B Resides in the Late Endosomes with Rab7 and the Niemann-Pick C1 Protein. The American Journal of Pathology, 166(2), 499-510. https://doi.org/10.1016/S0002-9440(10)62272-9
Hungspreugs, M., Utoomprurkporn, W., Dharmvanij, S., Sompongchaiyakul, P. (1989). The present status of the aquatic environment of Thailand. Marine Pollution Bulletin, 20(7), 327-332. https://doi.org/10.1016/0025-326X(89)90155-0
Hussein, A., Khaled, A. (2014). Determination of metals in tuna species and bivalves from Alexandria, Egypt. The Egyptian Journal of Aquatic Research, 40(1), 9-17. https://doi.org/10.1016/j.ejar.2014.02.003
Ikuta, K. (1986). Metal concentrations in byssuses and soft bodies of bivalves. Bulletin of the Faculty of Agriculture, Yamagata University, 33, 255-264.
NVEMAR (2022). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Instituto de Investigaciones Marinas y Costeras. Informe Técnico Final 2022, Volumen 21. Santa Marta 168p. https://www.invemar.org.co/inf-cgsm
Ismail, A. (2006). The use of intertidal molluscs in the monitoring of heavy metals and organotin compounds in the west coast of Peninsular Malaysia. Coastal Marine Science, 30(1), 401-406. https://doi.org/10.15083/00040804
Jaffé, R., Leal, I., Alvarado, J., Gardinali, P. R., Sericano, J. L. (1998). Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 36(11), 925-929. https://doi.org/10.1016/S0025-326X(98)00090-3
Khalid, R. A., Gambrell, R. P., Patrick, W. H. (1981). Chemical Availability of Cadmium in Mississippi River Sediment. Journal of Environmental Quality, 10(4), 523-528. https://doi.org/10.2134/jeq1981.00472425001000040021x
Kasuya, M., Teranishi, H., Aoshima, K., Katoh, T., Horiguchi, H., Nishijo, M. (1992). Water pollution by cadmium and the onset of Itai-itai disease. Water Science and Tecnology, 25(11), 149-156. https://doi.org/10.2166/wst.1992.0286
Kenny, A. J., Sotheran, I. (2013). Characterising the Physical Properties of Seabed Habitats. En: A. Eleftheriou (Ed.), Methods for the Study of Marine Benthos. John Wiley and Sons, Ltd, 47-95. https://doi.org/10.1002/9781118542392.ch2
Kılıç, Ö., Belivermiş, M. (2013). Spatial and seasonal distribution of trace metal concentrations in mussel (Mytilus galloprovincialis) and sediment of Bosphorus and Golden Horn. Bulletin of Environmental Contamination and Toxicology, 91(4), 402-408. https://doi.org/10.1007/s00128-013-1077-5
Kim, G.-H., Yang, J. Y., Park, J.-Y., Lee, J. J., Kim, J. H., Yoo, H.-W. (2008). Estimation of Wilson’s Disease Incidence and Carrier Frequency in the Korean Population by Screening ATP7B Major Mutations in Newborn Filter Papers Using the SYBR Green Intercalator Method Based on the Amplification Refractory Mutation System. Genetic Testing, 12(3), 395-399. https://doi.org/10.1089/gte.2008.0016
Kljaković-Gašpić, Z., Herceg-Romanić, S., Kožul, D., Veža, J. (2010). Biomonitoring of organochlorine compounds and trace metals along the Eastern Adriatic coast (Croatia) using Mytilus galloprovincialis. Marine Pollution Bulletin, 60(10), 1879-1889. https://doi.org/10.1016/j.marpolbul.2010.07.019
Kumar Gupta, S. K., Singh, J. (2011). Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. Institute of Integrative Omics and Applied Biotecnology, 2(1), 49-57. http://www.iioab.org/Vol2n1.htm
Lagos Bayona, A. L., Daza, P. V., Sanabria Ochoa, A. I. (2007). La ostra del Caribe Crassostrea rhizophorae: una alternativa de maricultura. Ministerio de Agricultura y Desarrollo Rural: INCODER, Instituto Colombiano de Desarrollo Rural. http://hdl.handle.net/20.500.12324/34353
Langston, W. J., Bryan, G. W. (1984). The relationships between metal speciation in the environment and bioaccumulation in aquatic organisms. En: Kramer, C. J. M., Duinker, J. C. (Eds.), Complexation of trace metals in natural waters. Springer Netherlands,1, 375-392 https://doi.org/10.1007/978-94-009-6167-8
Lee, J. A., Marsden, I. D., Glover, C. N. (2010). The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquatic Toxicology, 99(1), 65-72. https://doi.org/10.1016/j.aquatox.2010.04.006
Lettieri, G., Mollo, V., Ambrosino, A., Caccavale, F., Troisi, J., Febbraio, F., Piscopo, M. (2019). Molecular effects of copper on the reproductive system of Mytilus galloprovincialis. Molecular Reproduction and Development, 86(10), 1357-1368. https://doi.org/10.1002/mrd.23114
Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244, 125516. https://doi.org/10.1016/j.chemosphere.2019.125516
Liao, J., Cui, X., Feng, H., Yan, S. (2021). Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water, 14(1), 51-67. https://doi.org/10.3390/w14010051
Liu, Q., Xu, X., Zeng, J., Shi, X., Liao, Y., Du, P., Tang, Y., Huang, W., Chen, Q., Shou, L. (2019). Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin, 141, 215-226. https://doi.org/10.1016/j.marpolbul.2019.02.058
López-Sánchez, C. M. (2017). Estructura poblacional de la ostra del mangle Crassostrea rhizophorae (Guilding, 1828) en el sistema estuarino de Bahía Cispatá, Colombia [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63446
López-Sánchez, C. M., Mancera-Pineda, J. E. (2019). Parámetros estructurales de dos poblaciones de Crassostrea rhizophorae (Ostreidae) en Bahía Cispatá, Caribe Colombiano. Acta Biológica Colombiana, 24(2), 361-371. https://doi.org/10.15446/abc.v24n2.68941
MacFarlane, G. R., Koller, C. E., Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69(9), 1454-1464. https://doi.org/10.1016/j.chemosphere.2007.04.059
Madero, A., Marrugo-Negrete, J. (2011). Detección de metales pesados en bovinos, en los valles de los ríos Sinú y San Jorge, departamento de Córdoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401. https://doi.org/10.21897/rmvz.298
Madrigal Castro, E., Alfaro Montoya, J., Quesada Quesada, R., Pacheco Urpí, O., Zamora Madriz, E. (1985). Estructura de la población y distribución de talla del ostión de manglar (Crassostrea rhizophorae, Guilding, 1828), en el Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 33(1), 61-62. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24502
Mancera-Rodríguez, N. J., Álvarez-León, R. (2006). Estado de conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulciacuícolas de Colombia. Acta Biológica Colombiana, 11(1), 3-23. https://revistas.unal.edu.co/index.php/actabiol/article/view/27140
Manjarrez-Paba, G. M., Angulo, I. C., Padilla, L. U. (2008). Bioconcentración de cadmio en ostras de la bahía de Cartagena. Revista Ingenierías Universidad de Medellín, 7(13), 11-20. https://revistas.udem.edu.co/index.php/ingenierias/article/view/192
Marigómez, I., Soto, M., Cajaraville, M. P., Angulo, E., Giamberini, L. (2002). Cellular and subcellular distribution of metals in molluscs. Microscopy Research and Technique, 56(5), 358-392. https://doi.org/10.1002/jemt.10040
Marrugo-Negrete, J. L., Paternina-Uribe, R. (2011). Evaluación de la contaminación por metales pesados en la Ciénaga la Soledad y bahía de Cispatá, cuencua del Bajo Sinú, Departamento de Córdoba [Informe final]. Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Química, 121p. https://docplayer.es/12366607-Evaluacion-de-la-contaminacion-por-metales-pesados-en-la-cienaga-la-soledad-y-bahia-de-cispata-cuenca-del-bajo-sinu-departamento-de-cordoba.html
Marrugo-Negrete, J., Pinedo-Hernández, J., Marrugo-Madrid, S., Navarro-Frómeta, E., Díez, S. (2020). Sea cucumber as Bioindicator of Trace Metal Pollution in Coastal Sediments. Biological Trace Element Research, 199(5), 2022-2030. https://doi.org/10.1007/s12011-020-02308-3
Martinčić, D., Nürnberg, H. W., Branica, M. (1986). Bioaccumulation of heavy metals by bivalves from Limski Kanal (North Adriatic Sea). II. Copper distribution between oysters, Ostrea edulis, and ambient water. Marine Chemistry, 18(2-4), 299-319. https://doi.org/10.1016/0304-4203(86)90014-9
Masson, R. P., Reinfelder, J. R., Morel, F. M. M. (1995). Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution, 80(1-4), 915-921. https://doi.org/10.1007/BF01189744
McBride, M. B. (1994). Environmental Chemistry of Soils. Oxford University Press, Inc., New York. 406p.
Mehri, A., Marjan, R. F. (2013). Review article trace elements in human nutrition: a review. International Journal of Medical Investigation, 2(3), 115-128. https://intjmi.com/article-1-141-en.html
Mejía-Torres, L. A. M. (2008). Variación espacio temporal de la larva de la ostra de mangle Crassostrea rhizophorae (Guilding, 1828), de abril a agosto de 2006, en la Bahía de Cispatá, Caribe colombiano [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1198
Melwani, A. R., Gregorio, D., Jin, Y., Stephenson, M., Ichikawa, G., Siegel, E., Crane, D., Lauenstein, G., Davis, J. A. (2014). Mussel watch update: Long-term trends in selected contaminants from coastal California, 1977–2010. Marine Pollution Bulletin, 81(2), 291-302. https://doi.org/10.1016/j.marpolbul.2013.04.025
Mills, W. B. (1995). Water Quality Assessment: A screening procedure for toxic and conventional pollutants in surface and ground water – part 1 (Revised 1985). US EPA. https://rais.ornl.gov/documents/WQASP.PDF
Minoia, C., Caroli, S. (1992). Applications of Zeeman Graphite Furnace Atomic Absorption Spectrometry in the chemical laboratory and toxicology. Pergmon press. https://shop.elsevier.com/books/applications-of-zeeman-graphite-furnace-atomic-absorption-spectrometry-in-the-chemical-laboratory-and-in-toxicology/minoia/978-0-08-041019-7
Monsefrad, F., Namin, J. I., Heidary, S. (2012). Concentration of heavy and toxic metals Cu, Zn, Cd, Pb and Hg in liver and muscles of Rutilus frisii kutum during spawning season with respect to growth parameters. Iranian Journal of Fisheries Sciences, 1(4), 825-839. http://dorl.net/dor/20.1001.1.15622916.2012.11.4.10.2
Moore, H. J. (1971). The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Marine Biology, 11(1), 23-27. https://doi.org/10.1007/BF00348017
Mountouris, A., Voutsas, E., Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44(10), 1136-1141. https://doi.org/10.1016/S0025-326X(02)00168-6
Mubiana, V. K., Qadah, D., Meys, J., Blust, R. (2005). Temporal and spatial trends in heavy metal concentrations in the marine mussel Mytilus edulis from the Western Scheldt estuary (The Netherlands). Hydrobiologia, 540(1-3), 169-180. https://doi.org/10.1007/s10750-004-7134-7
Muñoz-Maya, O. G., Vélez-Hernández, J. E., Santos, O. M., Marín, J. I., Restrepo-Gutiérrez, J. C. (2021). Enfermedad de Wilson: Experiencia de un centro de referencia en Colombia. Revista colombiana de Gastroenterología, 36(1), 51-57. https://doi.org/10.22516/25007440.593
Navarro-Aviño, J. P., Aguilar Alonso, I., López-Moya, J. R. (2007). Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2), 10-25. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/125
NOAA. (1995). Lnternational Mussel Watch Project- Initial Implementation Phase Final Report. National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/1507
Nor, Y. M. (1987). Ecotoxicity of copper to aquatic biota a review. Environmental Research, 43, 274-282. https://doi.org/10.1016/S0013-9351(87)80078-6
Pacheco Urpí, P., Cabrera Peña, J., Zamora Madriz, E. (1983). Crecimiento y madurez sexual de Crassostrea rhizophorae (Guilding, 1828) cultivada en sistema suspendido en Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 31(2), 277-281. https://revistas.ucr.ac.cr/index.php/rbt/article/view/25006
Panesso Guevara, M. (2017). Influencia de las variables ambientales en la estructura de las comunidades bentónicas y su relación con el flujo de mercurio en la bahía de Buenaventura [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/59430
Parra, J. P., Espinosa, L. F. (2007). Acumulación de Pb, Cd y Zn en sedimentos asociados a Rhizophora mangle, en el río Sevilla, Ciénaga Grande de Santa Marta, Colombia. Academía Colombiana de Ciencias Exactas, Físicas y Naturales, 31(120), 347-354. https://doi.org/10.18257/raccefyn.31(120).2007.2344
Parra, J. P., Espinosa, L. F. (2008). Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a Rhizophora mangle en el río Sevilla-Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 37(1), 95-110. https://doi.org/10.25268/bimc.invemar.2008.37.1.184
Patiño, C., Flórez, A. (1993). Ecología Marina del Golfo de Morrosquillo. Universidad Nacional de Colombia y Fondo FEN. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4881
Perošević, A., Joksimović, D., Đurović, D., Milašević, I., Radomirović, M., Stanković, S. (2018). Human exposure to trace elements via consumption of mussels Mytilus galloprovincialis from Boka Kotorska Bay, Montenegro. Journal of Trace Elements in Medicine and Biology, 50, 554-559. https://doi.org/10.1016/j.jtemb.2018.03.018
Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments-A review. Environmental Pollution (1970), 13(4), 281-317. https://doi.org/10.1016/0013-9327(77)90047-7
Pineda-Osorio, M. C. P. (2013). Composición de la malacofauna asociada a sustratos duros en dos ecosistemas (zonas portuarias y zonas estuarinas) del Caribe colombiano, primer semestre de 2010 [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1311
Pinto, R., Acosta, V., Segnini, M. I., Brito, L., Martínez, G. (2015). Temporal variations of heavy metals levels in Perna viridis, on the Chacopata-Bocaripo lagoon axis, Sucre State, Venezuela. Marine Pollution Bulletin, 91(2), 418-423. https://doi.org/10.1016/j.marpolbul.2014.09.059
Pinzón-Bedoya, C. H. (2020). Metales pesados en sedimentos y peces de la Ciénaga Grande de Santa Marta, como indicadores de riesgo para la salud humana y el ambiente [Tesis de Maestría]. Universidad del Atlántico. https://hdl.handle.net/20.500.12834/603
Pourang, N., Bahrami, A., Nasrolahzadeh Saravi, H. (2019). Shells of Bufonaria echinata as biomonitoring materials of heavy metals (Cd, Ni and Pb) pollution in the Persian Gulf: With emphasis on the annual growth sections. Iranian Journal of Fisheries Sciences, 18(2), 256-271. https://doi.org/10.22092/ijfs.2018.115734
Pujos, M., Pagliardini, J.-L., Steer, R., Vernette, G., Weber, O. (1986). Influencia de la contracorriente norte colombiana para la circulación de las aguas en la plataforma continental. Boletín Científico del CIOH, 6, 3-15. https://doi.org/10.26640/22159045.18
Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31(4-12), 183-192. https://doi.org/10.1016/0025-326X(95)00116-5
Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120(3), 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5
Rainbow, P., Wolowicz, M., Fialkowski, W., Smith, B. D., Sokolowski, A. (2000). Biomonitoring of trace metals in the Gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Research, 34(6), 1823-1829. https://doi.org/10.1016/S0043-1354(99)00345-0
Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., Li, X. (2017). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626-638. https://doi.org/10.1016/j.chemosphere.2017.10.078
Rangel-Ch, J., Arellano, H. (2010). Clima. En: J. Rangel-Ch (Ed.), Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad, ecología y manejo ambiental. Instituto de Ciencias Naturales. Universidad Nacional de Colombia-CVS, 1-14. https://repositorio.unal.edu.co/handle/unal/81890
Riaño, R., de la Osa, J. (1999). Guía para el manejo, cría y conservación de la ostra Crassostrea rhizophorae (Guilding). Convenio Instituto de Investigación Marinas y Costeras José Benito Vives de Andréis. https://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/U_204.pdf
Richter, C. A., Martyniuk, C. J., Annis, M. L., Brumbaugh, W. G., Chasar, L. C., Denslow, N. D., Tillitt, D. E. (2014). Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). General and Comparative Endocrinology, 203, 215-224. https://doi.org/10.1016/j.ygcen.2014.03.029
Rivera, L. F. (1978). Experiencias en el cultivo de la ostra Crassostrea rhizophorae, Guilding (1828), en la Ciénaga Grande do Santa Marta y estudio preliminar de Ia dinámica de su población [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería.
Romero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., Vélez-Terreros, P. Y., Navarrete, H. (2019). Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry. Universitas Scientiarum, 24(3), 497-521. https://doi.org/10.11144/Javeriana.SC24-3.eots
Romero-Murillo, P., Campos-Campos, N. H., Orrego, R. (2023). Metal concentrations in Isognomon alatus by stages and climatic seasons in San Andrés Island, Colombian Caribbean. Acta Biológica Colombiana, 28(3), 415-427. https://doi.org/10.15446/abc.v28n3.97227
Rueda, M., Defeo, O. (2003). Linking fishery management and conservation in a tropical estuarine lagoon: Biological and physical effects of an artisanal fishing gear. Estuarine, Coastal and Shelf Science, 56(5-6), 935-942. https://doi.org/10.1016/S0272-7714(02)00298-6
Ruelas-Inzunza, J., Soto, L. A., Páez-Osuna, F. (2003). Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California. Deep Sea Research Part I: Oceanographic Research Papers, 50(6), 757-761. https://doi.org/10.1016/S0967-0637(03)00054-2
Ruesink, J. L., Lenihan, H. S., Trimble, A. C., Heiman, K. W., Micheli, F., Byers, J. E., Kay, M. C. (2005). Introduction of Non-Native Oysters: Ecosystem Effects and Restoration Implications. Annual Review of Ecology, Evolution, and Systematics, 36(1), 643-689. https://doi.org/10.1146/annurev.ecolsys.36.102003.152638
Sadiq, M. (1992). Toxic metal chemistry in marine environments. Boca Raton. https://doi.org/10.1201/9781003210214
Salomons, W., Kerdijk, H., van Pagee, H., Klomp, R., Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuarine and coastal zones. In: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. (Eds), Metals in coastal environments of Latin America. Springer-Verlag, Berlin, Heidelberg, 157-198. https://link.springer.com/chapter/10.1007/978-3-642-71483-2_17
Sánchez-Páez, H., Ulloa-Delgado, G. A., Tavera-Escobar, H. A. (2004). Manejo integral de los manglares por comunidades locales del Caribe de Colombia. MinAmbiente, CONIF, OIMT.
Satoh, M., Koyama, H., Kaji, T., Kito, H., Tohyama, C. (2002). Perspectives on cadmium toxicity research. Tohoku Journal of Experimental Medicine, 196, 23-32. https://doi.org/10.1620/tjem.196.23
Sbriz, L., Aquino, M. R., Alberto De Rodriguez, N. M., Fowler, S. W., Sericano, J. L. (1998). Levels of chlorinated hydrocarbons and trace metals in bivalves and nearshore sediments from the Dominican Republic. Marine Pollution Bulletin, 36(12), 971-979. https://doi.org/10.1016/S0025-326X(98)00097-6
Shulkin, V. M., Presley, B. J., Kavun, V. Ia. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29(4), 493-502. https://doi.org/10.1016/S0160-4120(03)00004-7
Silva, C. A. R., Rainbow, P. S., Smith, B. D. (2003). Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: Comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia, 501, 199-206. https://doi.org/10.1023/A:1026242417427
Silva, C. A. R., Smith, B. D., Rainbow, P. S. (2006). Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Marine Environmental Research, 61(4), 439-455. https://doi.org/10.1016/j.marenvres.2006.02.001
Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5-6), 405-412. https://doi.org/10.1007/s00253-003-1244-4
Skoog, D. A., Holler, F. J., Crouch, S. R. (2017). Principles of Instumental Analysis. Section two: Atomic Spectroscopy. Thomson Learning Academic Resource Center, 131-334. ISBN-13: 978-495-012101-6.
Squadrone, S., Brizio, P., Stella, C., Prearo, M., Pastorino, P., Serracca, L., Ercolini, C., Abete, M. C. (2016). Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environmental Pollution, 215, 77-83. https://doi.org/10.1016/j.envpol.2016.04.096
Sunlu, U. (2006). Trace Metal Levels in Mussels (Mytilus Galloprovincialis L. 1758) from Turkish Aegean Sea Coast. Environmental Monitoring and Assessment, 114(1-3), 273-286. https://doi.org/10.1007/s10661-006-4780-4
Suryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Nurdiani, R., Putra, R. B. D. S. (2018). Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iredalei and Crassostrea glomerata. F1000Research, 7, 1239. https://doi.org/10.12688/f1000research.14861.1
Suryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Putra, R. B. D. S. (2021). Density and intensity of metallothionein of Crassostrea sp. As biomarkers of heavy metal contamination in the Northern coast of East Java, Indonesia. The Egyptian Journal of Aquatic Research, 47(2), 109-116. https://doi.org/10.1016/j.ejar.2021.04.006
Szefer, P., Kim, B.-S., Kim, C.-K., Kim, E.-H., Lee, C.-B. (2004). Distribution and coassociations of trace elements in soft tissue and byssus of Mytilus galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of the Korean Peninsula. Environmental Pollution, 129(2), 209-228. https://doi.org/10.1016/j.envpol.2003.10.012
Takeuchi, T., Morikawa, N., Matsumoto, H., Shiraishi, Y. (1962). A pathological study of Minamata disease in Japan. Acta Neuropathologica, 2(1), 40-57. https://doi.org/10.1007/BF00685743
Tirado Amador, L. R., González Martínez, F. D., Martínez Hernández, L. J., Wilches Vergara, L. A., Celedón Suárez, J. N. (2015). Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional de Odontología, 11(21), 83-98. https://doi.org/10.16925/od.v11i21.895
Troncoso Olivo, W., Campos C., N. H., Marín Z., B. (2004). Variaciones en las concentraciones de cadmio, cobre y zinc en la planta Ipomea setifera en el canal del Clarín (Ciénaga Grande de Santa Marta). En: Contribuciones en ciencias del mar en Colombia: Investigación y desarrollo de territorios promisorios. Universidad Nacional de Colombia UNIBIBLIOS, 139-153. https://centrodocumentacion.invemar.org.co/cgi-bin/koha/opac-detail.pl?biblionumber=4871
Tudor, D. T., Williams, A. T., Randerson, P., Ergin, A., Earll, R. E. (2002). The use of multivariate statistical techniques to establish beach debris pollution sources. Journal of Coastal Research, 36, 716-725. https://doi.org/10.2112/1551-5036-36.sp1.716
Tudor, D. T., Williams, A. T. (2004). The use of multivariate statistical tecniques to establish beach debris pollution sources. Journal of Coastal Conservation, 10(1), 119-127. https://doi.org/10.1652/1400-0350(2004)010[0119:DOAMST]2.0.CO;2
UNESCO. (2001). Ciénaga Grande de Santa Marta Biosphere Reserve, Colombia. En: Final Report International. Part 8. New Biosphere Reserves: Results of the MAB Bureau. Co-ordinating Council of the Programe on Man and the Biosphere. Sixteenth Session UNESCO Headquaters. 21p.
Uriu-Adams, J. Y., Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26(4-5), 268-298. https://doi.org/10.1016/j.mam.2005.07.015
Usme, S. (1984). Evaluación de los niveles de contaminación por cobre y cadmio en sedimentos procedentes de la Ciénaga Grande de Santa Marta [Tesis de pregrado]. Universidad Nacional de Colombia.
Uwah, I. E., Dan, S. F., Etiuma, R. A., Umoh, U. E. (2013). Evaluation of Status of Heavy Metals Pollution of Sediments in Qua-Iboe River Estuary and Associated Creeks, South-Eastern Nigeria. Environment and Pollution, 2(4), 110-122. https://doi.org/10.5539/ep.v2n4p110
Valdelamar-Villegas, J., Olivero-Verbel, J. (2018). Bioecological aspects and heavy metal contamination of the mollusk Donax denticulatus in the Colombian Caribbean coastline. Bulletin of Environmental Contamination and Toxicology, 100, 234-239. https://doi.org/10.1007/s00128-017-2203-6
Vardanyan, L. G., Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32(2), 208-218. https://doi.org/10.1016/j.envint.2005.08.013
Velasco, L. A., Vega, D., Acosta, E., Barros, J. (2010). Reproducción artificial de la ostra del mangle Crassostrea rhizophorae Guilding, 1828 en el Caribe colombiano. Revista Intropica, 5, 47-56. https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/150
Vélez-Mendoza, A., Rico Mora, J.P., Campos-C., N.H., Almario-García, M.L., Sanjuan-Muñoz, A. (sometido). Heavy metals in bivalves: a global view. Reviews of Environmental Contamination and Toxicology.
Victoria-Daza, P. L., Arias, M., Rodríguez, H. (1994). Evaluación preliminar del cultivo de ostra Crassostrea rhizophorae en el estuario de la Bahía de Cispatá, Ciénaga de Mestizo y Pepino (San Antero, Córdoba). In: Memorias primera reunión grupo de trabajo sobre cultivo de bivalvos en Colombia. INPA-CVS. Córdoba. 38-49p.
Viarengo, A., Nott, J. A. (1993). Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 104(3), 355-372. https://doi.org/10.1016/0742-8413(93)90001-2
Villamil, C. A. V. (2010). Evaluación de manglar con diferente cobertura en cuanto a los procesos de retención, absorción y acumulación de metales pesados (Cr, Cd, Pb, Zn y Cu) [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/6731
Volety, A. K. (2008). Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology, 17(7), 579-590. https://doi.org/10.1007/s10646-008-0242-9
Wang, L., Wang, X., Chen, H., Wang, Z., Jia, X. (2021). Oyster As, Cd, Cu, Hg, Pb and Zn Levels in the Northern South China Sea: Long-term Spatiotemporal Distributions, Interacting Effects, and Risk Assessment to Human Health. Research Square. https://doi.org/10.21203/rs.3.rs-478762/v1
Wang, W.-X. (2013). Prediction of metal toxicity in aquatic organisms. Chinese Science Bulletin, 58(2), 194-202. https://doi.org/10.1007/s11434-012-5403-9
Wang, X.-N., Gu, Y.-G., Wang, Z.-H., Ke, C.-L., Mo, M.-S. (2018). Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Marine Pollution Bulletin, 133, 312-319. https://doi.org/10.1016/j.marpolbul.2018.05.059
Wang, Z., Lin, Q., Wang, X., Li, L-D. (2011). Characteristics of heavy metal content in oysters along the coast of South China and their risk assessment. Journal of Fisheries of China, 35(2), 291-297. https://www.china-fishery.com/jfcen/article/issue/2011_35_2
Wedler, E. (1980). Experimental spat collecting and growing of the oyster, Crassostrea rhizophorae Guilding, in the Ciénaga Grande de Santa Marta, Colombia. Aquaculture, 21(3), 251-259. https://doi.org/10.1016/0044-8486(80)90135-0
Wedler, E. (1983). El cultivo de la ostra del Caribe: Crassostrea rhizophorae. Ingeniería Pesquera, 3(2). Serie de Manuales y Técnicas.
White, S. L., Rainbow, P. S. (1985). On the metabolic requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research, 16(3), 215-229. https://doi.org/10.1016/0141-1136(85)90139-4
Yap, C. K., Chew, W. (2011). A higher bioavailability and contamination of trace metals in Pantai Lido than Sungai Semerak: Evidence from trace metal concentrations in Polymesoda expansa and surface sediments. Malaysian Applied Biology, 40(1), 55-59. https://www.mabjournal.com/images/40_1_June_2011/10_yapck.pdf
Ybañez, N., Montoro, R., Caroli, S. (1996). Trace element food toxicology: An old and ever‐growing discipline. Critical Reviews in Food Science and Nutrition, 36(4), 299-320. https://doi.org/10.1080/10408399609527727
Zar, J. H. (2010). Biostatistical analysis. Upper Sadd. Prentice-Hall NJ, editor.
Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Science of The Total Environment, 599-600, 721-731. https://doi.org/10.1016/j.scitotenv.2017.04.232
Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G. (2008). Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135-150. https://doi.org/10.1016/j.aca.2007.11.018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv XIX, 132 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Maestría en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Exactas y Naturales
dc.publisher.place.spa.fl_str_mv San Andrés Islas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Caribe
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86443/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86443/4/1143147191.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86443/5/1143147191.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1a2648803b0fe584479f792f82d7d17d
877b94bc3a4c45a26dcbef6291736fa5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090158923841536
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Néstor Hernando, Campos Campos (Thesis advisor)dfa894332eba89d1c7508a8cb5d0e675600Rico Mora, Jeimmy Paola784c900ebfa0084a307b6f94f9682bba600Vélez-Mendoza, Anubis939c41a3b32b03f61b12480f2d178c6b600Fauna Marina Colombiana: Biodiversidad y UsosVélez Mendoza, Anubis [0000000338788107]Vélez Mendoza, Anubis Jorge Luis [0000094366]Vélez Mendoza, Anubis [57203971403]2024-07-12T20:45:14Z2024-07-12T20:45:14Z2024-07-03https://repositorio.unal.edu.co/handle/unal/86443Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La creciente industrialización y descarga de contaminantes han alterado significativamente el equilibrio de los ecosistemas marino-costeros, particularmente en términos de contaminación por metales. Cuando sus contenidos superan las concentraciones de efecto umbral, inducen efectos adversos en los ecosistemas y sus habitantes. En la costa Caribe colombiana, es necesario intensificar la vigilancia en la Ciénaga Grande de Santa Marta (CGSM) y la bahía de Cispatá (BhC), dos ecosistemas de gran importancia ecológica y socioeconómica de la región, en donde es crucial mejorar en la comprensión del impacto de la contaminación por estos elementos potencialmente tóxicos. En este contexto, la ostra Crassostrea rhizophorae resultó ser un bivalvo idóneo para el estudio, por su capacidad de bioacumular estos contaminantes sin sufrir efectos perjudiciales. Se determinó la contaminación por metales (Hg, Cd y Cu) en las ostras, como el factor de bioconcentración respecto el seston y sedimentos, considerando la talla del organismo, variables fisicoquímicas y épocas climáticas. En cada una de las seis estaciones de muestreo (tres en CGSM y tres en la BhC), se midieron variables fisicoquímicas, se recolectaron muestras compuestas de ostras en tallas juveniles (22 mm-32 mm) y tallas adultas (35 mm-56.5 mm), una muestra compuesta de seston (de tres réplicas) y tres de sedimento (se determinó la materia orgánica, el potencial redox y el contenido de metales). La determinación de los metales se realizó mediante la técnica de espectrofotometría de absorción atómica, utilizando el método EPA 7473 por hidruros para Hg, el método AOAC 999.11 (2002) por horno de grafito (GF-AAS) para Cd y Pb, y por flama (FA-AAS) para Cu. En Pb, tanto en sedimentos como en seston, se presentó el contenido más alto de este elemento potencialmente tóxico en época seca en comparación con la época lluviosa, no obstante, en época seca las estaciones CGS-3 en CGSM y CIS-2 en BhC presentaron una concentración baja ≤0.0003 µg/g Pb p.s., que, junto con la acumulación baja de este metal en bivalvos, se excluyó su análisis en la ostra. El análisis de PERMANOVA reveló diferencias significativas en las concentraciones de Hg, Cd y Cu en las ostras por épocas climáticas, ecosistemas y estaciones, con la mayor bioconcentración relacionada con el seston. En la BhC se determinó la mayor contaminación por Hg y Cu, con una presencia más elevada de Hg durante la época lluviosa correlacionada con la temperatura, y una mayor presencia de Cu durante la época seca con influencia significativa de la salinidad. En CGSM, para el Cd se determinó la mayor contaminación durante la época lluviosa, asociada con la temperatura. En cuanto a las tallas, la bioconcentración de Hg y Cd fue mayor en tallas juveniles, las cuales presentan una mayor tasa de absorción de metales. Sin embargo, este patrón también estuvo influenciado por las condiciones locales, evidenciando una mayor bioconcentración de Hg en tallas adultas en CGSM y de Cd en BhC, ambos durante la época lluviosa. Para Cu, la bioconcentración fue similar en ambas tallas, sugiriendo una mayor influencia de las condiciones locales en cada ecosistema. Aunque las concentraciones de Hg y Cd no representan un riesgo en el consumo de las ostras, se deben mantener medidas de control y gestión. Contrariamente, la situación con el Cu es crítica en la BhC, presentando uno de los mayores riesgos de contaminación por el metal en el mundo durante la última década. Este estudio proporciona una base valiosa para la toma de decisiones y acciones de gestión ambiental, enfocándose en reducir los riesgos asociados con la contaminación por estos metales en estas áreas críticas (Texto tomado de la fuente)The increasing industrialization and discharge of pollutants have significantly altered the balance of marine-coastal ecosystems, particularly in terms of metal pollution. When concentrations exceed threshold effect levels, they induce adverse effects on ecosystems and their inhabitants. On the the Colombian Caribbean coast, it is essential to intensify monitoring in the Ciénaga Grande de Santa Marta (CGSM) and Cispatá Bay (BhC), two ecologically and socioeconomically important ecosystems in the region, to better understand the impact of contamination by these potentially toxic elements. In this context, the oyster Crassostrea rhizophorae was identified as an ideal bivalve for study due to its ability to bioaccumulate these contaminants without suffering detrimental effects. Metal pollution (Hg, Cd, and Cu) in oysters was determined, considering the bioconcentration factor concerning seston and sediments, organism size, physicochemical variables, and climatic seasons. At each of the six sampling stations (three in CGSM and three in BhC), physicochemical variables were measured, composite samples of oysters were collected in juvenile (22 mm-32 mm) and adult sizes (35 mm-56.5 mm), a composite sample of seston (from three replicates), and three sediment samples (determining organic matter, redox potential, and metals content). Metal determination was carried out using atomic absorption spectrophotometry, employing the EPA 7473 method for Hg by hydrides, the AOACC 999.11 (2002) method for Cd and Pb by graphite furnace (GF-AAS), and flame (FA-AAS) for Cu. For Pb, both in sediments and seston, the highest content of this potentially toxic element was observed in the dry season compared to the rainy season. However, during the dry season, stations CGS-3 in CGSM and CIS-2 in BhC exhibited low concentrations ≤0.0003 µg/g Pb p.s., which, along with the low accumulation of this metal in bivalves, led to its exclusion from oyster analysis. PERMANOVA analysis revealed significant differences in Hg, Cd, and Cu concentrations in oysters by climatic seasons, ecosystems, and stations, with the highest bioconcentration related to seston. In BhC, the highest contamination by Hg and Cu was determined, with a higher presence of Hg during the rainy season correlated with temperature and a higher presence of Cu during the dry season with a significant influence of salinity. In CGSM, the highest Cd contamination was determined during the rainy season, associated with temperature. Regarding sizes, bioconcentration of Hg and Cd was higher in juvenile sizes, which exhibit a higher rate of metal absorption. However, this pattern was also influenced by local conditions, showing higher bioconcentration of Hg in adult sizes in CGSM and Cd in BhC, both during the rainy season. For Cu, bioconcentration was similar in both sizes, suggesting a greater influence of local conditions in each ecosystem. Although Hg and Cd concentrations do not pose a risk in oyster consumption, control and management measures must be maintained. Conversely, the situation with Cu is critical in BhC, presenting one of the highest levels of metal contamination in the world over the last decade. This study provides a valuable foundation for decision-making and environmental management actions, focusing on reducing risks associated with metals pollution in these critical areas.Fundación para la Promoción de la Investigación y la Tecnología del Banco de la RepúblicaFondo de Becas Colombia Biodiversa y Fundación Alejandro Ángel Escobar1. Minciencias a través del proyecto “Niveles de contaminación por metales pesados (Hg, Cd, Cr, Ni, Pb, Se, As y Cu), PCB (bifenilos policlorados) y HAP (hidrocarburos aromáticos policíclicos) en ambientes marinos y costeros del Caribe colombiano (Código 71641)” en el marco del programa “Redes tróficas marinas del Caribe colombiano en la era del plástico y los contaminantes tóxicos (Código Minciencias 71475)”, apoyo el sostenimiento, matrícula, salida de campo y análisis de laboratorio del estudiante. 2. La Fundación para la Promoción de la Investigación y la Tecnología del Banco de la República en el marco del Proyecto 5.131 con la Universidad Nacional de Colombia (Código Hermes 59755) y el Fondo de Becas Colombia Biodiversa y para la Fundación Alejandro Ángel Escobar, apoyaron financieramente la investigación en los análisis de laboratorio en la determinación de metales en la ostra Crassostrea rhizophorae. 3. La Universidad Nacional de Colombia, Sede Caribe con fondos del posgrado apoyó al estudiante en las salidas de campo en la Ciénaga Grande de Santa Marta (CGSM) y económicamente en las participaciones de los eventos científicos: II y III Seminario Nacional de la Asociación Colombiana de Investigaciones en Ciencias del Mar-ACIMAR (2022 y 2023), XIX Seminario Nacional de Ciencias y Tecnologías del Mar-SENALMAR (2022), y al International Conference on Marine Science: the future ocean we want-ICMS CEMarin (2023).MaestríaMagíster en Ciencias - BiologíaBiología marinaXIX, 132 paginasapplication/pdfspaUniversidad Nacional de ColombiaCaribe - Caribe - Maestría en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad de Ciencias Exactas y NaturalesSan Andrés IslasUniversidad Nacional de Colombia - Sede Caribe500 - Ciencias naturales y matemáticas550 - Ciencias de la tierra570 - BiologíaElementos potencialmente tóxicosSestonSedimentosOstrasPotencially toxic elementsSestonSedimentsOystersContaminación por metales pesados (Hg, Cd, Pb y Cu) en la ostra Crassostrea rhizophorae para dos ecosistemas marino-costeros del Caribe colombianoContamination by heavy metals (Hg, Cd, Pb and Cu) in the oyster Crassostrea rhizophorae for two marine-coastal ecosystems of the Colombian CaribbeanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdel-Wahab, M., Yassien, M. H., Thabet, A. A., Said, R. E. M., Mahdy, A., Amer, O. S. O., Saber, S. A. (2022). Seasonal variations of some heavy metal concentrations in seawater, sediment, and the surf clam, Mactra olorina (Philippi, 1846) in the Great Bitter Lake, Suez Canal, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 26(1), 83-98. https://doi.org/10.21608/ejabf.2022.215047Aboal, J. R., Pacín, C., García-Seoane, R., Varela, Z., González, A. G., Fernández, J. A. (2023). Global decrease in heavy metal concentrations in brown algae in the last 90 years. Journal of Hazardous Materials, 445, 130511. https://doi.org/10.1016/j.jhazmat.2022.130511Aguirre, S. E., Piraneque, N. V., Linero-Cueto, J. (2021). Concentración de metales pesados y calidad físico-química del agua de la Ciénaga Grande de Santa Marta. Revista U.D.C.A Actualidad y Divulgación Científica, 24(1), e1313. https://doi.org/10.31910/rudca.v24.n1.2021.1313Aguirre-Rubí, J. R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M. J., Marigómez, I. (2017). Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environmental Science and Pollution Research, 25(14), 13396-13415. https://doi.org/10.1007/s11356-017-9159-2Aldridge, K. T., Ganf, G. G. (2003). Modification of sediment redox potential by three contrasting macrophytes: Implications for phosphorus adsorption/desorption. Marine and Freshwater Research, 54(1), 87-94. https://doi.org/10.1071/MF02087Al-Fartusie, F. S., Mohssan, S. N. (2017). Essential trace elements and their vital roles in human body. Indian Journal of Advances in Chemical Science, 5(3), 127-136. https://www.ijacskros.com/5%20Volume%203%20Issue/10.22607IJACS.2017.503003.pdfAlfonso, J. A., Handt, H., Mora, A., Vásquez, Y., Azocar, J., Marcano, E. (2013). Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuelan coast. Marine Pollution Bulletin, 73(1), 394-398. https://doi.org/10.1016/j.marpolbul.2013.05.010Ali, H., Khan, E. (2018). Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs-Concepts and implications for wildlife and human health. Human and Ecological Risk Assessment: An International Journal, 25(6), 1353-1376. https://doi.org/10.1080/10807039.2018.1469398Alonso, D., Pineda, P., Olivero, J., González, H., Campos, N. (2000). Mercury levels in muscle of two fish species and sediments from the Cartagena Bay and the Ciénaga Grande de Santa Marta, Colombia. Environmental Pollution, 109(1), 157-163. https://doi.org/10.1016/s0269-7491(99)00225-0Alvarez, S., Kolok, A. S., Jimenez, L. F., Granados, C., Palacio, J. A. (2012). Mercury concentrations in muscle and liver tissue of fish from marshes along the Magdalena river, Colombia. Bulletin of Environmental Contamination and Toxicology, 89(4), 836-840. https://doi.org/10.1007/s00128-012-0782-9Amoatey, P., Baawain, M. S. (2019). Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 1272-1287. https://doi.org/10.1002/wer.1221Anderson, M. J., Gorley, R. N., Clarke, K. R. (2008). Guide to Software and Statistical Methods. PRIMER-E.Aristizábal-Alzate, C. E., González-Manosalva, J. L., Vargas, A. F. (2021). Revalorización de residuos de equipos eléctricos y electrónicos en Colombia: Una alternativa para la obtención de metales preciosos y metales para la industria. TecnoLógicas, 24(51), e1740. https://doi.org/10.22430/22565337.1740Avelar, W. E. P., Mantelatto, F. L. M., Tomazelli, A. C., Silva, D. M. L., Shuhama, T., Lopes, J. L. C. (2000). The marine mussel Perna perna (Mollusca, Bivalvia, Mytilidae) as an indicator of contamination by heavy metals in the Ubatuba Bay, São Paulo, Brazil. Water, Air, and Soil Pollution, 118, 65-72. https://doi.org/10.1023/A:1005109801683Ayling, G. M. (1974). Uptake of cadmium, zinc, copper, lead and chromium in the pacific oyster. Crassostrea gigas. Grown in the tamar river. Tasmania. Water Research, 8(10), 729-738. https://doi.org/10.1016/0043-1354(74)90017-7Azizi, G., Layachi, M., Akodad, M., Yáñez-Ruiz, D. R., Martín-García, A. I., Baghour, M., Mesfioui, A., Skalli, A., Moumen, A. (2018a). Seasonal variations of heavy metals content in mussels (Mytilus galloprovincialis) from Cala Iris offshore (Northern Morocco). Marine Pollution Bulletin, 137, 688-694. https://doi.org/10.1016/j.marpolbul.2018.06.052Azizi, G., Akodad, M., Baghour, M., Layachi, M., Moumen, A. (2018b). The use of Mytilus spp. Mussels as bioindicators of heavy metal pollution in the coastal environment. A review. Journal of Materials and Environmental Sciences, 9(4), 1170-1181. http://jmaterenvironsci.com/Document/vol9/vol9_N4/129-JMES-3495-Azizi.pdfBalls, P. W. (1985). Copper, lead and cadmium in coastal waters of the western North Sea. Marine Chemistry, 15(4), 363-378. https://doi.org/10.1016/0304-4203(85)90047-7Baraj, B., Niencheski, L. F., Corradi, C. (2003). Trace metal contend trend of mussel Perna perna (Linnaeus, 1758) from the Atlantic coast of southern Brazil. Water, Air, and Soil Pollution, 145, 205-214. https://doi.org/10.1023/A:1023614822121Bayne, B. L. (1976). Aspects of reproduction in bivalve molluscs. Estuarine Processes. Elsevier, 1, 432-448. https://doi.org/10.1016/B978-0-12-751801-5.50043-5Bazzi, A. O. (2014). Heavy metals in seawater, sediments and marine organisms in the Gulf of Chabahar, Oman Sea. Journal of Oceanography and Marine Science, 5(3), 20-29. https://doi.org/10.5897/JOMS2014.0110Bigas, M., Durfort, M., Poquet, M. (2001). Cytological effects of experimental exposure to Hg on the gill epithelium of the European flat oyster Ostrea edulis: Ultrastructural and quantitative changes related to bioaccumulation. Tissue and Cell, 33(2), 178-188. https://doi.org/10.1054/tice.2000.0169Bodin, N., Burgeot, T., Stanisière, J. Y., Bocquené, G., Menard, D., Minier, C., Boutet, I., Amat, A., Cherel, Y., Budzinski, H. (2004). Seasonal variations of a battery of biomarkers and physiological indices for the mussel Mytilus galloprovincialis transplanted into the northwest Mediterranean Sea. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 138(4), 411-427. https://doi.org/10.1016/j.cca.2004.04.009Bolaños-Alvarez, Y., Ruiz-Fernández, A. C., Sanchez-Cabeza, J.-A., Díaz Asencio, M., Espinosa, L. F., Parra, J. P., Garay, J., Delanoy, R., Solares, N., Montenegro, K., Pena, A., López, F., Castillo-Navarro, A. C., Gómez Bastidas, M., Quejido-Cabezas, A., Metian, M., Pérez-Bernal, L. H., Alonso-Hernández, C. M., 2024. Regional assessment of the historical trends of mercury in sediment cores from Wider Caribbean coastal environments. Science of The Total Environment, 170609. https://doi.org/10.1016/j.scitotenv.2024.170609Bourg, A. C. M., Loch, J. P. G. (1995). Mobilization of Heavy Metals as Affected by pH and Redox Conditions. In: Salomons, W., Stigliani, W. M. (Eds), Biogeodynamics of Pollutants in Soils and Sediments. Springer-Verlag, Berlin, Heidelberg, 87-102. https://doi.org/10.1007/978-3-642-79418-6_4Boyden, C. R., Romeril, M. G. (1974). A trace metal problem in pond oyster culture. Marine Pollution Bulletin, 29(5), 74-78. https://doi.org/10.1016/0025-326X(74)90163-5Bryan, G. W., Hummerstone, W. J., Burt, G. R. (1985). A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Marine Biological Association of the United Kingdom, 4. https://plymsea.ac.uk/id/eprint/271Buchman, M. F. (2008). NOAA Screening Quick Reference Tables NOAA ORR Report 08-1, Seatle WA, Office of Response and Restoriation Division. National Oceanic and Atmospheric Administration, 34p. https://repository.library.noaa.gov/view/noaa/9327Burgos-Nuñez, S., Marrugo N, J., Navarro F, A., Urango C, I. (2014). Mercury in Pelecanus occidentalis of the Cispata bay, Colombia. Revista MVZ Córdoba, 19(2), 4168-4174. https://doi.org/10.21897/rmvz.110Burgos-Núñez, S., Navarro-Frómeta, A., Marrugo-Negrete, J., Enamorado-Montes, G., Urango-Cárdenas, I. (2017). Polycyclic aromatic hydrocarbons and heavy metals in the Cispatá Bay, Colombia: A marine tropical ecosystem. Marine Pollution Bulletin, 120(1-2), 379-386. https://doi.org/10.1016/j.marpolbul.2017.05.016Butler, P. A., Andren, L., Bonde, G. J., Jernelov, A., Reisch, D. J., Ruivo, M. (1971). Monitoring organisms. En: Food and Agricultural Organization Technical Conference on Marine Pollution and its Effects on Living Resources and Fishing, Rome, 1970. Supplement 1. Methods of detection, measurement and monitoring of pollutants in the marine environment. Fishing News, London, 101-112.Cadavid-Velásquez, E. D. J., Pérez-Vásquez, N. D. S., Marrugo-Negrete, J. (2019). Contaminación por metales pesados en la bahía Cispatá en Córdoba-Colombia y su bioconcentración en macromicetos. Gestión y Ambiente, 22(1), 43-53. https://doi.org/10.15446/ga.v22n1.76380Cajaraville, M. P., Bebianno, M. J., Blasco, J., Porte, C., Sarasquete, C., Viarengo, A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: A practical approach. Science of The Total Environment, 247(2-3), 295-311. https://doi.org/10.1016/S0048-9697(99)00499-4Campos, N. H. (1987). Determinación de metales pesados en Isognomon bicolor en la Bahía de Santa Marta, Colombia. Instituto de Investigaciones Marinas Punta de Betin, 17, 155-162. https://doi.org/10.25268/bimc.invemar.1987.17.0.461Campos, N. H. (1988). Selected Bivalves for Monitoring of Heavy Metal Contamination in the Colombian Caribbean. En: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. Metals in Coastal Environments of Latin America. Springer Berlin Heidelberg, 270-275. https://doi.org/10.1007/978-3-642-71483-2_23Campos, N. H. (1990). La contaminación por metales en Ciénaga Grande de Santa Marta, Caribe colombiano. Caldasia, 16(77), 231-244. https://revistas.unal.edu.co/index.php/cal/article/view/35544Campos, N. H., Dueñas-Ramírez, P. R., Genes, N. (2015). Malformación en cangrejos de la superfamilia Xanthoidea (Crustacea: Brachyura) en la bahía de Cispatá (Córdoba, Colombia). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(150), 91-99. https://doi.org/10.18257/raccefyn.172Campos, N. H., Gallo, M. C. (1997). Contenido de Cd, Cu y Zn en Rhizophora mangle y Avicennia germinans de la Cienaga Grande de Santa Marta y Bahía de Chengue, costa Caribe colombiana. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 21(79), 73-90. https://raccefyn.co/index.php/raccefyn/issue/view/123Cantle, J. E. (1982). Atomic Absorption Spectrometry. Elsevier Scientific Publishing Company. https://shop.elsevier.com/books/atomic-absorption-spectrometry/cantle/978-0-444-42015-2Carvalho, C. E. V., Cavalacante, M. P. O., Gomes, P. O., Faria, V. V., Rezende, C. E. (2001). Distribuição de Metais Pesados em Mexilhões (Perna perna, L.) da Ilha de Santana, Macaé, SE, Brasil. Ecotoxicology and Environmental Restoration, 4(1), 1-4.Catharino, M. G. M., Vasconcellos, M. B. A., De Sousa, E. C. P. M., Moreira, E. G., Pereira, C. D. S. (2008). Biomonitoring of Hg, Cd, Pb and other elements in coastal regions of São Paulo State, Brazil, using the transplanted mussel Perna perna (Linnaeus, 1758). Journal of Radioanalytical and Nuclear Chemistry, 278(3), 547-551. https://doi.org/10.1007/s10967-008-1003-1Chafik, A., Cheggour, M., Cossa, D., Sifeddine, S. B. M. (2001). Quality of Moroccan Atlantic coastal waters: Water monitoring and mussel watching. Aquatic Living Resources, 14, 239-249. https://doi.org/10.1016/S0990-7440(01)01123-8Cheung, K.-S., Seto, W.-K., Fung, J., Mak, L.-Y., Lai, C.-L., Yuen, M.-F. (2017). Epidemiology and natural history of Wilson’s disease in the Chinese: A territory-based study in Hong Kong between 2000 and 2016. World Journal of Gastroenterology, 23(43), 7716-7726. https://doi.org/10.3748/wjg.v23.i43.7716Cogua, P., Campos-Campos, N. H., Duque, G. (2012). Concentración de mercurio total y metilmercurio en sedimento y seston de la bahía de Cartagena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 41(2), 267-285. http://boletin.invemar.org.co/ojs/index.php/boletin/article/view/88/85Compeau, G., Bartha, R. (1984). Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. Applied and Environmental Microbiology, 48(6), 1203-1207. https://doi.org/10.1128/aem.48.6.1203-1207.1984Coimbra, A. G. (2003). Distribuição de metais pesados em moluscos e sedimentos nos manguezais de coroa grande e da enseada das garças, baía de Sepetiba, RJ [Tesis de Maestría, Universidade Federal Fluminense]. https://app.uff.br/riuff/handle/1/5820Cordy, P., Veiga, M. M., Salih, I., Al-Saadi, S., Console, S., Garcia, O., Mesa, L. A., Velásquez-López, P. C., Roeser, M. (2011). Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Science of The Total Environment, 410-411, 154-160. https://doi.org/10.1016/j.scitotenv.2011.09.006Cossa, D. (1989). A review of the use of Mytilus ssp. As quantitative indicators of cadmium and mercury contamination in coastal waters. Oceanologica Acta, 12(4), 417-432. https://archimer.ifremer.fr/doc/00106/21736/19309.pdfCosta, M., Paiva, E., Moreira, I. (2000). Total mercury in Perna perna mussels from Guanabara Bay-10 years later. The Science of the Total Environment, 261(1-3), 69-73. https://doi.org/10.1016/S0048-9697(00)00596-9Curtius, A. J., Seibert, E. L., Fiedler, H. D., Ferreira, J. F., Vieira, P. H. F. (2003). Avaliando a contaminação por elementos traço em atividades de maricultura: Resultados parciais de um estudo de caso realizado na ilha de Santa Catarina, Brasil. Química Nova, 26(1), 44-52. https://doi.org/10.1590/S0100-40422003000100010da Silva Ferreira, M. D. S., Mársico, E. T., Conte Junior, C. A., Marques Júnior, A. N., Mano, S. B., Clemente, S. C. D. S. (2013). Contaminação por metais traço em mexilhões Perna perna da costa brasileira. Ciência Rural, 43(6), 1012-1020. https://doi.org/10.1590/S0103-84782013005000062de Gregori, I., Delgado, D., Pinochet, H., Gras, N., Muñoz, L., Bruhn, C., Navarrete, G. (1994). Cadmium, lead, copper and mercury levels in fresh and canned bivalve mussels Tagelus dombeii (Navajuela) and Semelle solida (Almeja) from the Chilean coast. The Science of the Total Environment, 148(1), 1-10. https://doi.org/10.1016/0048-9697(94)90367-0de Gregori, I., Pinochet, H., Gras, N., Muñoz, L. (1996). Variability of cadmium, copper and zinc levels in molluscs and associated sediments from Chile. Environmental Pollution, 92(3), 359-368. https://doi.org/10.1016/0269-7491(95)00077-1Depledge, M. H., Rainbow, P. S. (1990). Models of regulation and accumulation of trace metals in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 97(1), 1-7. https://doi.org/10.1016/0742-8413(90)90163-4Desideri, D., Meli, M. A., Roselli, C., Feduzi, L. (2009). A biomonitoring study: 210Po and heavy metals in mussels. Journal of Radioanalytical and Nuclear Chemistry, 279(2), 591-600. https://doi.org/10.1007/s10967-008-7334-0Dharmadasa, P., Kim, N., Thunders, M. (2017). Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food and Chemical Toxicology, 109(1), 714-720. https://doi.org/10.1016/j.fct.2017.09.002Díaz, O., Encina, F., Chuecas, L., Becerra, J., Cabello, J., Figueroa, A., Muñoz, F. (2001). Influencia de variables estacionales, espaciales, biológicas y ambientales en la bioconcentración de mercurio total y metilmercurio en Tagelus dombeii. Revista de biología marina y oceanografía, 36(1), 15-29. https://doi.org/10.4067/S0718-19572001000100003Dietz, R., Fort, J., Sonne, C., Albert, C., Bustnes, J. O., Christensen, T. K., Ciesielski, T. M., Danielsen, J., Dastnai, S., Eens, M., Erikstad, K. E., Galatius, A., Garbus, S.-E., Gilg, O., Hanssen, S. A., Helander, B., Helberg, M., Jaspers, V. L. B., Jenssen, B. M., Jhonson, J. E., Kauhala, K., Kolveinsson, Y., Kyhn, L. A., Labansen, A. L., Larsen, M. M., Lindstom, U., Sveegaard, S., Sondergaard, J., Sun, J., Teilmann, J., Therkildsen, O. R., Thorarinsson, T. L., Tjornlov, R. S., Wilson, S., Eulaers, I. (2021). A risk assessment of the effects of mercury on Baltic Sea, Greater North Sea and North Atlantic wildlife, fish and bivalves. Environment International, 146, 106178. https://doi.org/10.1016/j.envint.2020.106178Ding, H., Zhao, Y., Sheng, X., Kang, X., Ning, J., Zhong, X., Shang, D. (2022). Heavy metal bioaccumulation in five bivalves from coastal areas of yellow sea and Bohai Sea, China: Evaluation of contamination and human health risk. Research Square. https://doi.org/10.21203/rs.3.rs-1512790/v1Duarte, C. A., Giarratano, E., Amin, O. A., Comoglio, L. I. (2011). Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Marine Pollution Bulletin, 62(8), 1895-1904. https://doi.org/10.1016/j.marpolbul.2011.05.031Edward, F. B., Yap, C. K., Ismail, A., Tan, S. G. (2008). Interspecific variation of heavy metal concentrations in the different parts of tropical intertidal bivalves. Water, Air, and Soil Pollution, 196(1-4), 297-309. https://doi.org/10.1007/s11270-008-9777-xEl-Moselhy, K. M., Yassien, M. H. (2005). Accumulation patterns of heavy metals in venus clams, Paphia undulata (born, 1780) and Gafrarium pectinatum (linnaeus, 1758), from Lake Timsah, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 31(1), 13-27.EPA. Environmental Protection Agency. (2007). Method 7473 Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Environmental Protection Agency, 1-17. https://www.epa.gov/esam/epa-method-7473-sw-846-mercury-solids-and-solutions-thermal-decomposition-amalgamation-andEspinosa, L. F., Parra, J. P., Villamil, C. (2011). Determinación del contenido de metales pesados en las fracciones geoquímicas del sedimento superficial asociado a los manglares de la Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 40(1), 7-23. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/98Espinosa, L. F., Ramírez, G., Campos, N. H. (1995). Análisis de residuos de organoclorados en sedimentos de zonas de manglar en la Ciénaga Grande de Santa Marta y la bahía de Chengue, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 24, 79-94. https://doi.org/10.25268/bimc.invemar.1995.24.0.378Eto, K. (1997). Review Article: Pathology of Minamata Disease. Toxicologic Pathology, 25(6), 614-623. https://journals.sagepub.com/doi/epdf/10.1177/019262339702500612FAO/WHO. (2022). GSFA Online. Information on the group(s) of food additives (The Food and Agriculture Organization of the United Nations, and World Health Organization). CODEX alimentarius. https://www.fao.org/gsfaonline/groups/details.html?id=83Feria, J. J., Marrugo, J. L., González, H. (2010). Heavy metals in Sinú river, department of Córdoba, Colombia, South America. Revista Facultad de Ingeniería Universidad de Antioquía, 55, 35-44. https://doi.org/10.17533/udea.redin.14679Fernandez, A., Singh, A., Jaffé, R. (2007). A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Marine Pollution Bulletin, 54(11), 1681-1691. https://doi.org/10.1016/j.marpolbul.2007.08.007Fernández-Martínez, R., Rucandio, I., Gómez-Pinilla, I., Borlaf, F., García, F., Larrea, M. T. (2015). Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry. Journal of Food Composition and Analysis, 38, 7-12. https://doi.org/10.1016/j.jfca.2014.10.003Fischer, H. (1989). Cadmium in seawater recorded by mussels: Regional decline established. Marine Ecology Progress Series, 55, 159-169. https://doi.org/10.3354/meps055159Förstner, U., Wittmann, G. T. W. (1981). Metal pollution in the aquatic environment. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-69385-4Francioni, E., Wagener, A. D. L. R., Calixto, R. D. C., Bastos, G. C. (2004). Evaluation of Perna perna (Linné, 1758) as a tool to monitoring trace metals contamination in estuarine and coastal waters of Río de Janeiro, Brazil. Journal of the Brazilian Chemical Society, 15(1), 103-110. https://doi.org/10.1590/S0103-50532004000100016Frías-Espericueta, M. G., Ortiz-Arellano, M. A., Osuna-López, J. I., Ronson-Paulin, J. A. (1999). Heavy metals in.the rock oyster Crassostrea iridescens (Filibranchia: Ostreidae) from Mazatlan, Sinaloa, Mexico. Revista de Biología Tropical, 47(4), 843-849. https://doi.org/10.15517/rbt.v47i4.19261Gagnaire, B., Thomas-Guyon, H., Renault, T. (2004). In vitro effects of cadmium and mercury on Pacific oyster, Crassostrea gigas (Thunberg), haemocytes. Fish & Shellfish Immunology, 16(4), 501-512. https://doi.org/10.1016/j.fsi.2003.08.007Gambrell, R. P. (1994). Trace and Toxic Metals in Wetlands-A Review. Journal of Environmental Quality, 23, 883-891. https://doi.org/10.2134/jeq1994.00472425002300050005xGarcés-Ordóñez, O., Rodríguez Rodríguez, J. A., Espinosa Díaz, L. E., Escobar Toledo, F. E., DelValle Borrero, D. (2021). Respuesta a corto plazo de parámetros fisicoquímicos del agua a la rehabilitación hidrológica de caños en manglares de Cispata, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras, 50(2), 151-160. https://doi.org/10.25268/bimc.invemar.2021.50.2.1106Giarratano, E., Duarte, C. A., Amin, O. A. (2010). Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicology and Environmental Safety, 73(3), 270-279. https://doi.org/10.1016/j.ecoenv.2009.10.009Gray, J. S. (2002). Biomagnification in marine systems: The perspective of an ecologist. Marine Pollution Bulletin, 45(1-12), 46-52. https://doi.org/10.1016/S0025-326X(01)00323-XGriscom, S. B., Fisher, N. S. (2004). Bioavailability of sediment-bound metals to marine bivalve molluscs: An overview. Estuaries, 27(5), 826-838. https://doi.org/10.1007/BF02912044Gutiérrez-Galindo, E. A. G., Pérez-Rodríguez, J. C. P., Muñoz-Barbosa, A. M. (2014). Cadmio, cobre, zinc en el mejillón Mytilus californianus (Conrad 1837) de la costa oeste de Baja California. Revista Internacional de Contaminación Ambiental, 30(3), 285-295. https://www.redalyc.org/articulo.oa?id=37031522005Harada, M. (1995). Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Critical Reviews in Toxicology, 25(1), 1-24. https://doi.org/10.3109/10408449509089885Harada, M., Kawaguchi, T., Kumemura, H., Terada, K., Ninomiya, H., Taniguchi, E., Hanada, S., Baba, S., Maeyama, M., Koga, H., Ueno, T., Furuta, K., Suganuma, T., Sugiyama, T., Sata, M. (2005). The Wilson Disease Protein ATP7B Resides in the Late Endosomes with Rab7 and the Niemann-Pick C1 Protein. The American Journal of Pathology, 166(2), 499-510. https://doi.org/10.1016/S0002-9440(10)62272-9Hungspreugs, M., Utoomprurkporn, W., Dharmvanij, S., Sompongchaiyakul, P. (1989). The present status of the aquatic environment of Thailand. Marine Pollution Bulletin, 20(7), 327-332. https://doi.org/10.1016/0025-326X(89)90155-0Hussein, A., Khaled, A. (2014). Determination of metals in tuna species and bivalves from Alexandria, Egypt. The Egyptian Journal of Aquatic Research, 40(1), 9-17. https://doi.org/10.1016/j.ejar.2014.02.003Ikuta, K. (1986). Metal concentrations in byssuses and soft bodies of bivalves. Bulletin of the Faculty of Agriculture, Yamagata University, 33, 255-264.NVEMAR (2022). Monitoreo de las condiciones ambientales y los cambios estructurales y funcionales de las comunidades vegetales y de los recursos pesqueros durante la rehabilitación de la Ciénaga Grande de Santa Marta. Instituto de Investigaciones Marinas y Costeras. Informe Técnico Final 2022, Volumen 21. Santa Marta 168p. https://www.invemar.org.co/inf-cgsmIsmail, A. (2006). The use of intertidal molluscs in the monitoring of heavy metals and organotin compounds in the west coast of Peninsular Malaysia. Coastal Marine Science, 30(1), 401-406. https://doi.org/10.15083/00040804Jaffé, R., Leal, I., Alvarado, J., Gardinali, P. R., Sericano, J. L. (1998). Baseline study on the levels of organic pollutants and heavy metals in bivalves from the Morrocoy National Park, Venezuela. Marine Pollution Bulletin, 36(11), 925-929. https://doi.org/10.1016/S0025-326X(98)00090-3Khalid, R. A., Gambrell, R. P., Patrick, W. H. (1981). Chemical Availability of Cadmium in Mississippi River Sediment. Journal of Environmental Quality, 10(4), 523-528. https://doi.org/10.2134/jeq1981.00472425001000040021xKasuya, M., Teranishi, H., Aoshima, K., Katoh, T., Horiguchi, H., Nishijo, M. (1992). Water pollution by cadmium and the onset of Itai-itai disease. Water Science and Tecnology, 25(11), 149-156. https://doi.org/10.2166/wst.1992.0286Kenny, A. J., Sotheran, I. (2013). Characterising the Physical Properties of Seabed Habitats. En: A. Eleftheriou (Ed.), Methods for the Study of Marine Benthos. John Wiley and Sons, Ltd, 47-95. https://doi.org/10.1002/9781118542392.ch2Kılıç, Ö., Belivermiş, M. (2013). Spatial and seasonal distribution of trace metal concentrations in mussel (Mytilus galloprovincialis) and sediment of Bosphorus and Golden Horn. Bulletin of Environmental Contamination and Toxicology, 91(4), 402-408. https://doi.org/10.1007/s00128-013-1077-5Kim, G.-H., Yang, J. Y., Park, J.-Y., Lee, J. J., Kim, J. H., Yoo, H.-W. (2008). Estimation of Wilson’s Disease Incidence and Carrier Frequency in the Korean Population by Screening ATP7B Major Mutations in Newborn Filter Papers Using the SYBR Green Intercalator Method Based on the Amplification Refractory Mutation System. Genetic Testing, 12(3), 395-399. https://doi.org/10.1089/gte.2008.0016Kljaković-Gašpić, Z., Herceg-Romanić, S., Kožul, D., Veža, J. (2010). Biomonitoring of organochlorine compounds and trace metals along the Eastern Adriatic coast (Croatia) using Mytilus galloprovincialis. Marine Pollution Bulletin, 60(10), 1879-1889. https://doi.org/10.1016/j.marpolbul.2010.07.019Kumar Gupta, S. K., Singh, J. (2011). Evaluation of mollusc as sensitive indicator of heavy metal pollution in aquatic system: A review. Institute of Integrative Omics and Applied Biotecnology, 2(1), 49-57. http://www.iioab.org/Vol2n1.htmLagos Bayona, A. L., Daza, P. V., Sanabria Ochoa, A. I. (2007). La ostra del Caribe Crassostrea rhizophorae: una alternativa de maricultura. Ministerio de Agricultura y Desarrollo Rural: INCODER, Instituto Colombiano de Desarrollo Rural. http://hdl.handle.net/20.500.12324/34353Langston, W. J., Bryan, G. W. (1984). The relationships between metal speciation in the environment and bioaccumulation in aquatic organisms. En: Kramer, C. J. M., Duinker, J. C. (Eds.), Complexation of trace metals in natural waters. Springer Netherlands,1, 375-392 https://doi.org/10.1007/978-94-009-6167-8Lee, J. A., Marsden, I. D., Glover, C. N. (2010). The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies. Aquatic Toxicology, 99(1), 65-72. https://doi.org/10.1016/j.aquatox.2010.04.006Lettieri, G., Mollo, V., Ambrosino, A., Caccavale, F., Troisi, J., Febbraio, F., Piscopo, M. (2019). Molecular effects of copper on the reproductive system of Mytilus galloprovincialis. Molecular Reproduction and Development, 86(10), 1357-1368. https://doi.org/10.1002/mrd.23114Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere, 244, 125516. https://doi.org/10.1016/j.chemosphere.2019.125516Liao, J., Cui, X., Feng, H., Yan, S. (2021). Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water, 14(1), 51-67. https://doi.org/10.3390/w14010051Liu, Q., Xu, X., Zeng, J., Shi, X., Liao, Y., Du, P., Tang, Y., Huang, W., Chen, Q., Shou, L. (2019). Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin, 141, 215-226. https://doi.org/10.1016/j.marpolbul.2019.02.058López-Sánchez, C. M. (2017). Estructura poblacional de la ostra del mangle Crassostrea rhizophorae (Guilding, 1828) en el sistema estuarino de Bahía Cispatá, Colombia [Tesis de Maestría, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/63446López-Sánchez, C. M., Mancera-Pineda, J. E. (2019). Parámetros estructurales de dos poblaciones de Crassostrea rhizophorae (Ostreidae) en Bahía Cispatá, Caribe Colombiano. Acta Biológica Colombiana, 24(2), 361-371. https://doi.org/10.15446/abc.v24n2.68941MacFarlane, G. R., Koller, C. E., Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69(9), 1454-1464. https://doi.org/10.1016/j.chemosphere.2007.04.059Madero, A., Marrugo-Negrete, J. (2011). Detección de metales pesados en bovinos, en los valles de los ríos Sinú y San Jorge, departamento de Córdoba, Colombia. Revista MVZ Córdoba, 16(1), 2391-2401. https://doi.org/10.21897/rmvz.298Madrigal Castro, E., Alfaro Montoya, J., Quesada Quesada, R., Pacheco Urpí, O., Zamora Madriz, E. (1985). Estructura de la población y distribución de talla del ostión de manglar (Crassostrea rhizophorae, Guilding, 1828), en el Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 33(1), 61-62. https://revistas.ucr.ac.cr/index.php/rbt/article/view/24502Mancera-Rodríguez, N. J., Álvarez-León, R. (2006). Estado de conocimiento de las concentraciones de mercurio y otros metales pesados en peces dulciacuícolas de Colombia. Acta Biológica Colombiana, 11(1), 3-23. https://revistas.unal.edu.co/index.php/actabiol/article/view/27140Manjarrez-Paba, G. M., Angulo, I. C., Padilla, L. U. (2008). Bioconcentración de cadmio en ostras de la bahía de Cartagena. Revista Ingenierías Universidad de Medellín, 7(13), 11-20. https://revistas.udem.edu.co/index.php/ingenierias/article/view/192Marigómez, I., Soto, M., Cajaraville, M. P., Angulo, E., Giamberini, L. (2002). Cellular and subcellular distribution of metals in molluscs. Microscopy Research and Technique, 56(5), 358-392. https://doi.org/10.1002/jemt.10040Marrugo-Negrete, J. L., Paternina-Uribe, R. (2011). Evaluación de la contaminación por metales pesados en la Ciénaga la Soledad y bahía de Cispatá, cuencua del Bajo Sinú, Departamento de Córdoba [Informe final]. Universidad de Córdoba, Facultad de Ciencias Básicas, Departamento de Química, 121p. https://docplayer.es/12366607-Evaluacion-de-la-contaminacion-por-metales-pesados-en-la-cienaga-la-soledad-y-bahia-de-cispata-cuenca-del-bajo-sinu-departamento-de-cordoba.htmlMarrugo-Negrete, J., Pinedo-Hernández, J., Marrugo-Madrid, S., Navarro-Frómeta, E., Díez, S. (2020). Sea cucumber as Bioindicator of Trace Metal Pollution in Coastal Sediments. Biological Trace Element Research, 199(5), 2022-2030. https://doi.org/10.1007/s12011-020-02308-3Martinčić, D., Nürnberg, H. W., Branica, M. (1986). Bioaccumulation of heavy metals by bivalves from Limski Kanal (North Adriatic Sea). II. Copper distribution between oysters, Ostrea edulis, and ambient water. Marine Chemistry, 18(2-4), 299-319. https://doi.org/10.1016/0304-4203(86)90014-9Masson, R. P., Reinfelder, J. R., Morel, F. M. M. (1995). Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution, 80(1-4), 915-921. https://doi.org/10.1007/BF01189744McBride, M. B. (1994). Environmental Chemistry of Soils. Oxford University Press, Inc., New York. 406p.Mehri, A., Marjan, R. F. (2013). Review article trace elements in human nutrition: a review. International Journal of Medical Investigation, 2(3), 115-128. https://intjmi.com/article-1-141-en.htmlMejía-Torres, L. A. M. (2008). Variación espacio temporal de la larva de la ostra de mangle Crassostrea rhizophorae (Guilding, 1828), de abril a agosto de 2006, en la Bahía de Cispatá, Caribe colombiano [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1198Melwani, A. R., Gregorio, D., Jin, Y., Stephenson, M., Ichikawa, G., Siegel, E., Crane, D., Lauenstein, G., Davis, J. A. (2014). Mussel watch update: Long-term trends in selected contaminants from coastal California, 1977–2010. Marine Pollution Bulletin, 81(2), 291-302. https://doi.org/10.1016/j.marpolbul.2013.04.025Mills, W. B. (1995). Water Quality Assessment: A screening procedure for toxic and conventional pollutants in surface and ground water – part 1 (Revised 1985). US EPA. https://rais.ornl.gov/documents/WQASP.PDFMinoia, C., Caroli, S. (1992). Applications of Zeeman Graphite Furnace Atomic Absorption Spectrometry in the chemical laboratory and toxicology. Pergmon press. https://shop.elsevier.com/books/applications-of-zeeman-graphite-furnace-atomic-absorption-spectrometry-in-the-chemical-laboratory-and-in-toxicology/minoia/978-0-08-041019-7Monsefrad, F., Namin, J. I., Heidary, S. (2012). Concentration of heavy and toxic metals Cu, Zn, Cd, Pb and Hg in liver and muscles of Rutilus frisii kutum during spawning season with respect to growth parameters. Iranian Journal of Fisheries Sciences, 1(4), 825-839. http://dorl.net/dor/20.1001.1.15622916.2012.11.4.10.2Moore, H. J. (1971). The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Marine Biology, 11(1), 23-27. https://doi.org/10.1007/BF00348017Mountouris, A., Voutsas, E., Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44(10), 1136-1141. https://doi.org/10.1016/S0025-326X(02)00168-6Mubiana, V. K., Qadah, D., Meys, J., Blust, R. (2005). Temporal and spatial trends in heavy metal concentrations in the marine mussel Mytilus edulis from the Western Scheldt estuary (The Netherlands). Hydrobiologia, 540(1-3), 169-180. https://doi.org/10.1007/s10750-004-7134-7Muñoz-Maya, O. G., Vélez-Hernández, J. E., Santos, O. M., Marín, J. I., Restrepo-Gutiérrez, J. C. (2021). Enfermedad de Wilson: Experiencia de un centro de referencia en Colombia. Revista colombiana de Gastroenterología, 36(1), 51-57. https://doi.org/10.22516/25007440.593Navarro-Aviño, J. P., Aguilar Alonso, I., López-Moya, J. R. (2007). Aspectos bioquímicos y genéticos de la tolerancia y acumulación de metales pesados en plantas. Ecosistemas, 16(2), 10-25. https://www.revistaecosistemas.net/index.php/ecosistemas/article/view/125NOAA. (1995). Lnternational Mussel Watch Project- Initial Implementation Phase Final Report. National Oceanic and Atmospheric Administration. https://repository.library.noaa.gov/view/noaa/1507Nor, Y. M. (1987). Ecotoxicity of copper to aquatic biota a review. Environmental Research, 43, 274-282. https://doi.org/10.1016/S0013-9351(87)80078-6Pacheco Urpí, P., Cabrera Peña, J., Zamora Madriz, E. (1983). Crecimiento y madurez sexual de Crassostrea rhizophorae (Guilding, 1828) cultivada en sistema suspendido en Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 31(2), 277-281. https://revistas.ucr.ac.cr/index.php/rbt/article/view/25006Panesso Guevara, M. (2017). Influencia de las variables ambientales en la estructura de las comunidades bentónicas y su relación con el flujo de mercurio en la bahía de Buenaventura [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/59430Parra, J. P., Espinosa, L. F. (2007). Acumulación de Pb, Cd y Zn en sedimentos asociados a Rhizophora mangle, en el río Sevilla, Ciénaga Grande de Santa Marta, Colombia. Academía Colombiana de Ciencias Exactas, Físicas y Naturales, 31(120), 347-354. https://doi.org/10.18257/raccefyn.31(120).2007.2344Parra, J. P., Espinosa, L. F. (2008). Distribución de metales pesados (Pb, Cd y Zn) en perfiles de sedimento asociado a Rhizophora mangle en el río Sevilla-Ciénaga Grande de Santa Marta, Colombia. Boletín de Investigaciones Marinas y Costeras, 37(1), 95-110. https://doi.org/10.25268/bimc.invemar.2008.37.1.184Patiño, C., Flórez, A. (1993). Ecología Marina del Golfo de Morrosquillo. Universidad Nacional de Colombia y Fondo FEN. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4881Perošević, A., Joksimović, D., Đurović, D., Milašević, I., Radomirović, M., Stanković, S. (2018). Human exposure to trace elements via consumption of mussels Mytilus galloprovincialis from Boka Kotorska Bay, Montenegro. Journal of Trace Elements in Medicine and Biology, 50, 554-559. https://doi.org/10.1016/j.jtemb.2018.03.018Phillips, D. J. H. (1977). The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments-A review. Environmental Pollution (1970), 13(4), 281-317. https://doi.org/10.1016/0013-9327(77)90047-7Pineda-Osorio, M. C. P. (2013). Composición de la malacofauna asociada a sustratos duros en dos ecosistemas (zonas portuarias y zonas estuarinas) del Caribe colombiano, primer semestre de 2010 [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería. http://hdl.handle.net/20.500.12010/1311Pinto, R., Acosta, V., Segnini, M. I., Brito, L., Martínez, G. (2015). Temporal variations of heavy metals levels in Perna viridis, on the Chacopata-Bocaripo lagoon axis, Sucre State, Venezuela. Marine Pollution Bulletin, 91(2), 418-423. https://doi.org/10.1016/j.marpolbul.2014.09.059Pinzón-Bedoya, C. H. (2020). Metales pesados en sedimentos y peces de la Ciénaga Grande de Santa Marta, como indicadores de riesgo para la salud humana y el ambiente [Tesis de Maestría]. Universidad del Atlántico. https://hdl.handle.net/20.500.12834/603Pourang, N., Bahrami, A., Nasrolahzadeh Saravi, H. (2019). Shells of Bufonaria echinata as biomonitoring materials of heavy metals (Cd, Ni and Pb) pollution in the Persian Gulf: With emphasis on the annual growth sections. Iranian Journal of Fisheries Sciences, 18(2), 256-271. https://doi.org/10.22092/ijfs.2018.115734Pujos, M., Pagliardini, J.-L., Steer, R., Vernette, G., Weber, O. (1986). Influencia de la contracorriente norte colombiana para la circulación de las aguas en la plataforma continental. Boletín Científico del CIOH, 6, 3-15. https://doi.org/10.26640/22159045.18Rainbow, P. S. (1995). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31(4-12), 183-192. https://doi.org/10.1016/0025-326X(95)00116-5Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: Why and so what? Environmental Pollution, 120(3), 497-507. https://doi.org/10.1016/S0269-7491(02)00238-5Rainbow, P., Wolowicz, M., Fialkowski, W., Smith, B. D., Sokolowski, A. (2000). Biomonitoring of trace metals in the Gulf of Gdansk, using mussels (Mytilus trossulus) and barnacles (Balanus improvisus). Water Research, 34(6), 1823-1829. https://doi.org/10.1016/S0043-1354(99)00345-0Rajeshkumar, S., Liu, Y., Zhang, X., Ravikumar, B., Bai, G., Li, X. (2017). Studies on seasonal pollution of heavy metals in water, sediment, fish and oyster from the Meiliang Bay of Taihu Lake in China. Chemosphere, 191, 626-638. https://doi.org/10.1016/j.chemosphere.2017.10.078Rangel-Ch, J., Arellano, H. (2010). Clima. En: J. Rangel-Ch (Ed.), Colombia Diversidad Biótica IX. Ciénagas de Córdoba: Biodiversidad, ecología y manejo ambiental. Instituto de Ciencias Naturales. Universidad Nacional de Colombia-CVS, 1-14. https://repositorio.unal.edu.co/handle/unal/81890Riaño, R., de la Osa, J. (1999). Guía para el manejo, cría y conservación de la ostra Crassostrea rhizophorae (Guilding). Convenio Instituto de Investigación Marinas y Costeras José Benito Vives de Andréis. https://www.invemar.org.co/redcostera1/invemar/docs/RinconLiterario/U_204.pdfRichter, C. A., Martyniuk, C. J., Annis, M. L., Brumbaugh, W. G., Chasar, L. C., Denslow, N. D., Tillitt, D. E. (2014). Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). General and Comparative Endocrinology, 203, 215-224. https://doi.org/10.1016/j.ygcen.2014.03.029Rivera, L. F. (1978). Experiencias en el cultivo de la ostra Crassostrea rhizophorae, Guilding (1828), en la Ciénaga Grande do Santa Marta y estudio preliminar de Ia dinámica de su población [Tesis de pregrado]. Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias Naturales e Ingeniería.Romero-Estévez, D., Yánez-Jácome, G. S., Simbaña-Farinango, K., Vélez-Terreros, P. Y., Navarrete, H. (2019). Evaluation of two sample preparation methods for the determination of cadmium, nickel and lead in natural foods by Graphite Furnace Atomic Absorption Spectrophotometry. Universitas Scientiarum, 24(3), 497-521. https://doi.org/10.11144/Javeriana.SC24-3.eotsRomero-Murillo, P., Campos-Campos, N. H., Orrego, R. (2023). Metal concentrations in Isognomon alatus by stages and climatic seasons in San Andrés Island, Colombian Caribbean. Acta Biológica Colombiana, 28(3), 415-427. https://doi.org/10.15446/abc.v28n3.97227Rueda, M., Defeo, O. (2003). Linking fishery management and conservation in a tropical estuarine lagoon: Biological and physical effects of an artisanal fishing gear. Estuarine, Coastal and Shelf Science, 56(5-6), 935-942. https://doi.org/10.1016/S0272-7714(02)00298-6Ruelas-Inzunza, J., Soto, L. A., Páez-Osuna, F. (2003). Heavy-metal accumulation in the hydrothermal vent clam Vesicomya gigas from Guaymas basin, Gulf of California. Deep Sea Research Part I: Oceanographic Research Papers, 50(6), 757-761. https://doi.org/10.1016/S0967-0637(03)00054-2Ruesink, J. L., Lenihan, H. S., Trimble, A. C., Heiman, K. W., Micheli, F., Byers, J. E., Kay, M. C. (2005). Introduction of Non-Native Oysters: Ecosystem Effects and Restoration Implications. Annual Review of Ecology, Evolution, and Systematics, 36(1), 643-689. https://doi.org/10.1146/annurev.ecolsys.36.102003.152638Sadiq, M. (1992). Toxic metal chemistry in marine environments. Boca Raton. https://doi.org/10.1201/9781003210214Salomons, W., Kerdijk, H., van Pagee, H., Klomp, R., Schreur, A. (1988). Behaviour and impact assessment of heavy metals in estuarine and coastal zones. In: Seeliger, U., de Lacerda, L. D., Patchineelam, S. R. (Eds), Metals in coastal environments of Latin America. Springer-Verlag, Berlin, Heidelberg, 157-198. https://link.springer.com/chapter/10.1007/978-3-642-71483-2_17Sánchez-Páez, H., Ulloa-Delgado, G. A., Tavera-Escobar, H. A. (2004). Manejo integral de los manglares por comunidades locales del Caribe de Colombia. MinAmbiente, CONIF, OIMT.Satoh, M., Koyama, H., Kaji, T., Kito, H., Tohyama, C. (2002). Perspectives on cadmium toxicity research. Tohoku Journal of Experimental Medicine, 196, 23-32. https://doi.org/10.1620/tjem.196.23Sbriz, L., Aquino, M. R., Alberto De Rodriguez, N. M., Fowler, S. W., Sericano, J. L. (1998). Levels of chlorinated hydrocarbons and trace metals in bivalves and nearshore sediments from the Dominican Republic. Marine Pollution Bulletin, 36(12), 971-979. https://doi.org/10.1016/S0025-326X(98)00097-6Shulkin, V. M., Presley, B. J., Kavun, V. Ia. (2003). Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environment International, 29(4), 493-502. https://doi.org/10.1016/S0160-4120(03)00004-7Silva, C. A. R., Rainbow, P. S., Smith, B. D. (2003). Biomonitoring of trace metal contamination in mangrove-lined Brazilian coastal systems using the oyster Crassostrea rhizophorae: Comparative study of regions affected by oil, salt pond and shrimp farming activities. Hydrobiologia, 501, 199-206. https://doi.org/10.1023/A:1026242417427Silva, C. A. R., Smith, B. D., Rainbow, P. S. (2006). Comparative biomonitors of coastal trace metal contamination in tropical South America (N. Brazil). Marine Environmental Research, 61(4), 439-455. https://doi.org/10.1016/j.marenvres.2006.02.001Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61(5-6), 405-412. https://doi.org/10.1007/s00253-003-1244-4Skoog, D. A., Holler, F. J., Crouch, S. R. (2017). Principles of Instumental Analysis. Section two: Atomic Spectroscopy. Thomson Learning Academic Resource Center, 131-334. ISBN-13: 978-495-012101-6.Squadrone, S., Brizio, P., Stella, C., Prearo, M., Pastorino, P., Serracca, L., Ercolini, C., Abete, M. C. (2016). Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environmental Pollution, 215, 77-83. https://doi.org/10.1016/j.envpol.2016.04.096Sunlu, U. (2006). Trace Metal Levels in Mussels (Mytilus Galloprovincialis L. 1758) from Turkish Aegean Sea Coast. Environmental Monitoring and Assessment, 114(1-3), 273-286. https://doi.org/10.1007/s10661-006-4780-4Suryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Nurdiani, R., Putra, R. B. D. S. (2018). Relationship between levels of the heavy metals lead, cadmium and mercury, and metallothionein in the gills and stomach of Crassostrea iredalei and Crassostrea glomerata. F1000Research, 7, 1239. https://doi.org/10.12688/f1000research.14861.1Suryanto Hertika, A. M. S., Kusriani, K., Indrayani, E., Putra, R. B. D. S. (2021). Density and intensity of metallothionein of Crassostrea sp. As biomarkers of heavy metal contamination in the Northern coast of East Java, Indonesia. The Egyptian Journal of Aquatic Research, 47(2), 109-116. https://doi.org/10.1016/j.ejar.2021.04.006Szefer, P., Kim, B.-S., Kim, C.-K., Kim, E.-H., Lee, C.-B. (2004). Distribution and coassociations of trace elements in soft tissue and byssus of Mytilus galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of the Korean Peninsula. Environmental Pollution, 129(2), 209-228. https://doi.org/10.1016/j.envpol.2003.10.012Takeuchi, T., Morikawa, N., Matsumoto, H., Shiraishi, Y. (1962). A pathological study of Minamata disease in Japan. Acta Neuropathologica, 2(1), 40-57. https://doi.org/10.1007/BF00685743Tirado Amador, L. R., González Martínez, F. D., Martínez Hernández, L. J., Wilches Vergara, L. A., Celedón Suárez, J. N. (2015). Niveles de metales pesados en muestras biológicas y su importancia en salud. Revista Nacional de Odontología, 11(21), 83-98. https://doi.org/10.16925/od.v11i21.895Troncoso Olivo, W., Campos C., N. H., Marín Z., B. (2004). Variaciones en las concentraciones de cadmio, cobre y zinc en la planta Ipomea setifera en el canal del Clarín (Ciénaga Grande de Santa Marta). En: Contribuciones en ciencias del mar en Colombia: Investigación y desarrollo de territorios promisorios. Universidad Nacional de Colombia UNIBIBLIOS, 139-153. https://centrodocumentacion.invemar.org.co/cgi-bin/koha/opac-detail.pl?biblionumber=4871Tudor, D. T., Williams, A. T., Randerson, P., Ergin, A., Earll, R. E. (2002). The use of multivariate statistical techniques to establish beach debris pollution sources. Journal of Coastal Research, 36, 716-725. https://doi.org/10.2112/1551-5036-36.sp1.716Tudor, D. T., Williams, A. T. (2004). The use of multivariate statistical tecniques to establish beach debris pollution sources. Journal of Coastal Conservation, 10(1), 119-127. https://doi.org/10.1652/1400-0350(2004)010[0119:DOAMST]2.0.CO;2UNESCO. (2001). Ciénaga Grande de Santa Marta Biosphere Reserve, Colombia. En: Final Report International. Part 8. New Biosphere Reserves: Results of the MAB Bureau. Co-ordinating Council of the Programe on Man and the Biosphere. Sixteenth Session UNESCO Headquaters. 21p.Uriu-Adams, J. Y., Keen, C. L. (2005). Copper, oxidative stress, and human health. Molecular Aspects of Medicine, 26(4-5), 268-298. https://doi.org/10.1016/j.mam.2005.07.015Usme, S. (1984). Evaluación de los niveles de contaminación por cobre y cadmio en sedimentos procedentes de la Ciénaga Grande de Santa Marta [Tesis de pregrado]. Universidad Nacional de Colombia.Uwah, I. E., Dan, S. F., Etiuma, R. A., Umoh, U. E. (2013). Evaluation of Status of Heavy Metals Pollution of Sediments in Qua-Iboe River Estuary and Associated Creeks, South-Eastern Nigeria. Environment and Pollution, 2(4), 110-122. https://doi.org/10.5539/ep.v2n4p110Valdelamar-Villegas, J., Olivero-Verbel, J. (2018). Bioecological aspects and heavy metal contamination of the mollusk Donax denticulatus in the Colombian Caribbean coastline. Bulletin of Environmental Contamination and Toxicology, 100, 234-239. https://doi.org/10.1007/s00128-017-2203-6Vardanyan, L. G., Ingole, B. S. (2006). Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environment International, 32(2), 208-218. https://doi.org/10.1016/j.envint.2005.08.013Velasco, L. A., Vega, D., Acosta, E., Barros, J. (2010). Reproducción artificial de la ostra del mangle Crassostrea rhizophorae Guilding, 1828 en el Caribe colombiano. Revista Intropica, 5, 47-56. https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/150Vélez-Mendoza, A., Rico Mora, J.P., Campos-C., N.H., Almario-García, M.L., Sanjuan-Muñoz, A. (sometido). Heavy metals in bivalves: a global view. Reviews of Environmental Contamination and Toxicology.Victoria-Daza, P. L., Arias, M., Rodríguez, H. (1994). Evaluación preliminar del cultivo de ostra Crassostrea rhizophorae en el estuario de la Bahía de Cispatá, Ciénaga de Mestizo y Pepino (San Antero, Córdoba). In: Memorias primera reunión grupo de trabajo sobre cultivo de bivalvos en Colombia. INPA-CVS. Córdoba. 38-49p.Viarengo, A., Nott, J. A. (1993). Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 104(3), 355-372. https://doi.org/10.1016/0742-8413(93)90001-2Villamil, C. A. V. (2010). Evaluación de manglar con diferente cobertura en cuanto a los procesos de retención, absorción y acumulación de metales pesados (Cr, Cd, Pb, Zn y Cu) [Tesis de Maestría]. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/6731Volety, A. K. (2008). Effects of salinity, heavy metals and pesticides on health and physiology of oysters in the Caloosahatchee Estuary, Florida. Ecotoxicology, 17(7), 579-590. https://doi.org/10.1007/s10646-008-0242-9Wang, L., Wang, X., Chen, H., Wang, Z., Jia, X. (2021). Oyster As, Cd, Cu, Hg, Pb and Zn Levels in the Northern South China Sea: Long-term Spatiotemporal Distributions, Interacting Effects, and Risk Assessment to Human Health. Research Square. https://doi.org/10.21203/rs.3.rs-478762/v1Wang, W.-X. (2013). Prediction of metal toxicity in aquatic organisms. Chinese Science Bulletin, 58(2), 194-202. https://doi.org/10.1007/s11434-012-5403-9Wang, X.-N., Gu, Y.-G., Wang, Z.-H., Ke, C.-L., Mo, M.-S. (2018). Biological risk assessment of heavy metals in sediments and health risk assessment in bivalve mollusks from Kaozhouyang Bay, South China. Marine Pollution Bulletin, 133, 312-319. https://doi.org/10.1016/j.marpolbul.2018.05.059Wang, Z., Lin, Q., Wang, X., Li, L-D. (2011). Characteristics of heavy metal content in oysters along the coast of South China and their risk assessment. Journal of Fisheries of China, 35(2), 291-297. https://www.china-fishery.com/jfcen/article/issue/2011_35_2Wedler, E. (1980). Experimental spat collecting and growing of the oyster, Crassostrea rhizophorae Guilding, in the Ciénaga Grande de Santa Marta, Colombia. Aquaculture, 21(3), 251-259. https://doi.org/10.1016/0044-8486(80)90135-0Wedler, E. (1983). El cultivo de la ostra del Caribe: Crassostrea rhizophorae. Ingeniería Pesquera, 3(2). Serie de Manuales y Técnicas.White, S. L., Rainbow, P. S. (1985). On the metabolic requirements for copper and zinc in molluscs and crustaceans. Marine Environmental Research, 16(3), 215-229. https://doi.org/10.1016/0141-1136(85)90139-4Yap, C. K., Chew, W. (2011). A higher bioavailability and contamination of trace metals in Pantai Lido than Sungai Semerak: Evidence from trace metal concentrations in Polymesoda expansa and surface sediments. Malaysian Applied Biology, 40(1), 55-59. https://www.mabjournal.com/images/40_1_June_2011/10_yapck.pdfYbañez, N., Montoro, R., Caroli, S. (1996). Trace element food toxicology: An old and ever‐growing discipline. Critical Reviews in Food Science and Nutrition, 36(4), 299-320. https://doi.org/10.1080/10408399609527727Zar, J. H. (2010). Biostatistical analysis. Upper Sadd. Prentice-Hall NJ, editor.Zhang, Y., Chu, C., Li, T., Xu, S., Liu, L., Ju, M. (2017). A water quality management strategy for regionally protected water through health risk assessment and spatial distribution of heavy metal pollution in 3 marine reserves. Science of The Total Environment, 599-600, 721-731. https://doi.org/10.1016/j.scitotenv.2017.04.232Zhou, Q., Zhang, J., Fu, J., Shi, J., Jiang, G. (2008). Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135-150. https://doi.org/10.1016/j.aca.2007.11.018Niveles de contaminación por metales pesados (Hg, Cd, Cr, Ni, Pb, Se, As y Cu), PCB (bifenilos policlorados) y HAP (hidrocarburos aromáticos policíclicos) en ambientes marinos y costeros del Caribe colombiano (Código 71641)MincienciasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86443/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1143147191.2024.pdf1143147191.2024.pdfTesis de Maestría en Ciencias Biologíaapplication/pdf4933900https://repositorio.unal.edu.co/bitstream/unal/86443/4/1143147191.2024.pdf1a2648803b0fe584479f792f82d7d17dMD54THUMBNAIL1143147191.2024.pdf.jpg1143147191.2024.pdf.jpgGenerated Thumbnailimage/jpeg4217https://repositorio.unal.edu.co/bitstream/unal/86443/5/1143147191.2024.pdf.jpg877b94bc3a4c45a26dcbef6291736fa5MD55unal/86443oai:repositorio.unal.edu.co:unal/864432024-07-12 23:15:16.318Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=