Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia

ilustraciones, mapas

Autores:
David Flórez, Diego Andrés
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86070
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86070
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Bosques tropicales húmedos - Colombia
Dendroecología
Biogeografía - Chocó, Colombia
Bosques tropicales - Colombia
Selva lluviosa - Colombia
Arboles - Anillos de crecimiento
Dendroecology
Ever-wet tropical forest
Biogeographic Chocó Region
ENSO
Dendroecología
Bosques siempre húmedos tropicales
Chocó Biogeográfico
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fc38c10ab1c70384283f54215fb4b7d7
oai_identifier_str oai:repositorio.unal.edu.co:unal/86070
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
dc.title.translated.spa.fl_str_mv Anillos de crecimiento anuales de Goupia glabra en el bosque tropical hiperhúmedo de Colombia
title Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
spellingShingle Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
550 - Ciencias de la tierra
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Bosques tropicales húmedos - Colombia
Dendroecología
Biogeografía - Chocó, Colombia
Bosques tropicales - Colombia
Selva lluviosa - Colombia
Arboles - Anillos de crecimiento
Dendroecology
Ever-wet tropical forest
Biogeographic Chocó Region
ENSO
Dendroecología
Bosques siempre húmedos tropicales
Chocó Biogeográfico
title_short Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
title_full Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
title_fullStr Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
title_full_unstemmed Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
title_sort Annual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
dc.creator.fl_str_mv David Flórez, Diego Andrés
dc.contributor.advisor.none.fl_str_mv Valle Arango, Jorge Ignacio del
dc.contributor.author.none.fl_str_mv David Flórez, Diego Andrés
dc.contributor.researchgroup.spa.fl_str_mv Bosques y Cambio Climático
dc.contributor.orcid.spa.fl_str_mv David Flórez, Diego Andrés [0009-0002-7636-3695]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
topic 550 - Ciencias de la tierra
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Bosques tropicales húmedos - Colombia
Dendroecología
Biogeografía - Chocó, Colombia
Bosques tropicales - Colombia
Selva lluviosa - Colombia
Arboles - Anillos de crecimiento
Dendroecology
Ever-wet tropical forest
Biogeographic Chocó Region
ENSO
Dendroecología
Bosques siempre húmedos tropicales
Chocó Biogeográfico
dc.subject.agrovoc.none.fl_str_mv Bosques tropicales húmedos - Colombia
Dendroecología
Biogeografía - Chocó, Colombia
dc.subject.lemb.none.fl_str_mv Bosques tropicales - Colombia
Selva lluviosa - Colombia
Arboles - Anillos de crecimiento
dc.subject.proposal.eng.fl_str_mv Dendroecology
Ever-wet tropical forest
Biogeographic Chocó Region
ENSO
dc.subject.proposal.spa.fl_str_mv Dendroecología
Bosques siempre húmedos tropicales
Chocó Biogeográfico
description ilustraciones, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-14T13:44:07Z
dc.date.available.none.fl_str_mv 2024-05-14T13:44:07Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86070
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86070
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics Int. 11, 36–43.
Andreu-Hayles, L., Santos, G., Herrera, D., Martín-Fernández, J., Ruiz-Carrascal, D., Boza-Espinoza, T., Fuentes, A., Jorgensen, P., 2015. Matching dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57, 1–13. doi:10.2458/azu
Balima, L.H., Gebrekirstos, A., Kouamé, F.N.G., Nacoulma, B.M.I., Thiombiano, A., Bräuning, A., 2020. Life-span growth dynamics and xylem anatomical patterns of diffuse-porous Afzelia africana Sm. (Fabaceae) in different ecological zones in Burkina Faso. Dendrochronologia 64. doi:10.1016/j.dendro.2020.125752
Borchert, R., Rivera, G., 2001. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol. 21, 213–221. doi:10.1093/treephys/21.4.213
Breitsprecher, A., Bethel, J., 1990. Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71, 1156–1164.
Brienen, R., Schöngart, J., Zuidema, P., 2016. Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees, in: Goldstein, G., Santiago, S.L. (Eds.), Tropical Tree Physiology. Springer, Switzerland, pp. 441–461. doi:10.1007/978-3-319-27422-5
Bunn, A.G., 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. doi:10.1016/j.dendro.2009.12.001
Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124. doi:10.1016/j.dendro.2008.01.002
Callado, C., da Silva Neto, S., Scarano, F., Costa, C., 2001. Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15, 492–497. doi:10.1007/s00468-001-0128-4
Callado, C.H., Roig, F.A., Tomazello-Filho, M., Barros, C.F., 2013. Cambial growth periodicity studies of South American woody species -a review. IAWA J. 34, 213–230. doi:10.1163/22941932-00000019
Cannon, P.,1985. Comparative analysis of the soils in the Bajo Calima concession in the primary forest and after clearcutting. In: Ladrach, W.E., (Ed.), Forestry Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 95-98.
Cintra, B.B.L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., Levis, C., Quesada, C.A., Schöngart, J., 2013. Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus-Madeira interfluvial wetlands in Amazonia. Biogeosciences 10, 7759–7774. doi:10.5194/bg-10-7759-2013
Clark, D.A., Clark, D.B., 1994. Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J. Ecol. 82, 865–872.
del Valle, J.I., Guarín, J.R., Sierra, C.A., 2014. Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56, 39–52. doi:10.2458/56.16486
Détienne, P., 1989. Appearance and periodicity of growth rings in some tropical woods. IAWA J. 10, 123–132. doi:10.1163/22941932-90000480
Detienne, P., Barbier, C., 1988. Rythmes de croissance de quelques essences de Guyane Francaise. Bois forêts des Trop. 217, 63–76.
dos Santos, M., de Assis Ribeiro dos Santos, F., Callado, C.H., Barros, C.F., da Silva, L.B., 2017. Growth rings in woody species of Ombrophilous Dense Forest: occurrence, anatomical features and ecological considerations. Brazilian J. Bot. 40, 281–290. doi:10.1007/s40415-016-0313-8
Duarte, P.J., Borges, C.C., Ferreira, C.A., Cruz, T.M., de Souza, W.R.Q., Mori, F.A., 2021. Anatomical identification of tropical woods traded in Lavras, Brazil. J. Trop. For. Sci. 33, 95–103. doi:10.26525/jtfs2020.32.4.95
Faber-Langendoen, D., 1992. Ecological constraints on rain forest management at Bajo Calima, western Colombia. For. Ecol. Manage. 53, 213–244. doi:10.1016/0378-1127(92)90044-A
Faber-Langendoen, D., Gentry, A.H., 1991. The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica 23, 2. doi:10.2307/2388682
Fahn, A., 1995. Seasonal cambial activity and phytogeographic origin of woody plants: a hypothesis. Isr. J. Plant Sci. 43, 69–75. doi:10.1080/07929978.1995.10676592
Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. doi:10.1002/joc.5086
Fonti, P., Von Arx, G., García-González, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., Eckstein, D., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53. doi:10.1111/j.1469-8137.2009.03030.x
Forero, Luz Amalia, 2014. Dinámica del bosque húmedo tropical en un periodo de 30 años de intervenciones y sus efectos en algunas variables edafológicas. Bajo Calima, Buenaventura, Colombia. Disertación, Universidad Nacional de Colombia, Bogotá
Frisk, T., 1978. Utilización de las maderas tropicales mixtas para papel. Organ. las Nac. Unidas para la Agric. y la Aliment. Vol. 30, N, pp. 63–64.
Galviz, Y.C.F., Ribeiro, R. V., Souza, G.M., 2020. Yes, plants do have memory. Theor. Exp. Plant Physiol. 32, 195–202. doi:10.1007/s40626-020-00181-y
GBIF, 2022. Infraestructura Mundial de Información en Biodiversidad. https://www.gbif.org/es/occurrence/search [WWW Document].
Gentry, A.H., 1982. Patterns of neotropical plant species diversity. Evol. Biol., 15, 1-84.
Giraldo, Jorge Andrés, 2022. Annual tree rings in the rainiest forests of the americas. Dissertation, Universidad Nacional de Colombia, Medellín.
Giraldo, J.A., del Valle, J.I., González-Caro, S., Sierra, C.A., 2022. Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees - Struct. Funct. doi:10.1007/s00468-022-02271-7
Giraldo, J.A.,Valle, J.I., Sierra, C.A., Melo, O., 2020. Dendrochronological potential of trees from America’s rainiest region. In: Pompa-García M., Camarero J.J. (Eds.), Latin American Dendroecology. Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory. Springer, Cham, pp. 79–119. doi:10.1007/978-3-030-36930-9_6
Gómez, Alejando., 2019. Delimitación de anillos de crecimiento en la especie Goupia glabra mediante técnicas de visión por computador. Disertación, Universidad Nacional de Colombia, Medellín..
Green, J.K., Berry, J., Ciais, P., Zhang, Y., Gentine, P., 2020. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10. doi:DOI: 10.1126/sciadv.abb7232
Hammond, D.S., 2005. Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World. CABI publishing, Oxfordshire UK, p. 528.
Herrera, D.A., del Valle, J.I., 2011. Reconstrucción de los niveles del río Atrato con los anillos de Priora copaifera. Dyna 78, 121–130.
Hua, Q., Turnbull, J.C., Santos, G.M., Rakowski, A.Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S.J., Levin, I., Miller, J.B., Palmer, J.G., Turney, C.S.M., 2021. Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64, 723–745. doi:10.1017/RDC.2021.95
Islam, M., Rahman, M., Bräuning, A., 2019. Impact of extreme drought on tree-ring width and vessel anatomical features of Chukrasia tabularis. Dendrochronologia 53, 63–72. doi:10.1016/j.dendro.2018.11.007
Islam, M., Rahman, M., Bräuning, A., 2018. Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Front. Plant Sci. 871, 1–16. doi:10.3389/fpls.2018.01761
ITTO, 2017. Cupiúba, Kabukalli (Goupia glabra),International Tropical Timbers Organization, p. 7.
Kassambara, A., 2022. Package : ggpubr. “ggplot2’’ Based Publication Ready Plots.”
Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L., Weller, R.A., 2013. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740. doi:10.1175/JCLI-D-12-00436.1
Köhl, M., Neupane, P.R., Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12, 1–17. doi:10.1371/journal.pone.0181187
Lacoste, J.F., Alexandre, D.Y., 1991. Le goupi (Goupia glabra Aubl), essence forestiere d’avenir en Guyane: analyse bibliographique. Ann. des Sci. For. 48, 429–441.
Ladrach. W.E., 1985. History and management of the Bajo Calima Concession. In: Ladrach, W.E. (Ed.), Forest Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 3-4.
Ladrach, W., Wright, J., 1995. Natural regeneration in a secondary Colombian rain forest. J. Sustain. For. 3, 15–38. doi:10.1300/j091v03n01_02
Laurance, W.F., Nascimento, H.E.M., Laurance, S.G., Condit, R., D’Angelo, S., Andrade, A., 2004. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For. Ecol. Manage. 190, 131–143. doi:10.1016/j.foreco.2003.09.011
López, J., Del Valle, J.I., Giraldo, J.A., 2014. Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiol. 34, 1079–1089. doi:10.1093/treephys/tpu077
Lotfiomran, N., Köhl, M., 2017. Retrospective analysis of growth: A contribution to sustainable forest management in the tropics. IAWA J. 38, 297–312. doi:10.1163/22941932-20170173
Lozano, L.A., González, J., 2011. Bajo Calima: riqueza biológica y cultural afectada por la extracción de maderas tropicales. Lebret 3, 205–220. doi:10.15332/rl.v0i3.52
Mesa, O.J., Rojo, J.D., 2020. On the general circulation of the atmosphere around Colombia. Rev. Acad. Colomb. Cienc. Exact. Fís. Nat. 44, 857–875. doi:10.18257/raccefyn.899
Miller, R.B., Détienne, P., 2001. Major Timber Trees of Guyana. Wood Anatomy. Tropenbos, The Netherlands,Wageningen, p. 218.
Moreno, M.M., del Valle, J.I., 2015. Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia. Trees 29, 97–107. doi:10.1007/s00468-014-1094-y
Myers, N., Mittermeler, R.A., Mittermeler, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. doi:10.1038/35002501
Nahuz et al., A., 2013. Catálogo de Madeiras Brasileiras para a Construção Civil. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, Brasil, p. 103.
Nogueira, E.M., Fearnside, P.M., Nelson, B.W., França, M.B., 2007. Wood density in forests of Brazil’s “arc of deforestation”: Implications for biomass and flux of carbon from land-use change in Amazonia. For. Ecol. Manage. 248, 119–135. doi:10.1016/j.foreco.2007.04.047
O´Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., 2008. Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest. Biotropica 40, 151–159. doi:10.1111/j.1744-7429.2007.00354.x
Lopez de Oliveira, Christiane, 2010. Estimativas da dinâmica de carbono na biomassa lenhosa de terra firme na reserva de desenvolvimento sustentável Amanã por métodos dendrocronológicos. Dissertação, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brasil. http://www.bibliotecaflorestal.ufv.br/handle/123456789/8465
Oliveira, Mariana Ferrz de, 2014. Critérios para o manejo sustentável de duas espécies madeireiras das florestas tropicais do Mato Grosso. Dissertação, Universidade Federal do Paraná,Curitiba, Brasil.
Pacheco, A., 2020. Assessing forest degradation in Bajo Calima – Colombia from multi-frequency and multittemporal synthetic aperture radar ( SAR ). Dissertation, University of Leicester, UK.
Pérez, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó Biogeographic Region. Front. Plant Sci. 10, 1–9. doi:10.3389/fpls.2019.01328
Pons, T.L., Helle, G., 2011. Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25, 83–93. doi:10.1007/s00468-010-0527-5
Poveda, G., Mesa, O., 2000. On the existence of Lloró (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. doi:10.1029/1999GL006091
R Development Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramírez, del Valle, 2011. Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev. Biol. Trop. 59, 1389–1405. doi:10.15517/rbt.v0i0.3406
Ramírez, J.A., del Valle, J.I., 2012. Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. Int. J. Climatol. 32, 1077–1088. doi:10.1002/joc.2335
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., Van Der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725–757. doi:10.1017/RDC.2020.41
Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., de Camargo, P.B., Cardoso, F.L., da Costa, A.C.L., Fitzjarrald, D.R., Goulden, M.L., Kruijt, B., Maia, J.M.F., Malhi, Y.S., Manzi, A.O., Miller, S.D., Nobre, A.D., von Randow, C., Sá, L.D.A., Sakai, R.K., Tota, J., Wofsy, S.C., Zanchi, F.B., Saleska, S.R., 2013. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 182–183, 128–144. doi:10.1016/j.agrformet.2013.04.031
Santini Junior Luiz, 2013. Descrição macroscópica e microscópica da madeira aplicada na identificação das principais espécies comercializadas no Estado de São Paulo - Programas “São Paulo Amigo da Amazônia” e “Cadmadeira.” Dissertação, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queieroz, Piracicaba, Brasil.
Schöngart, J., Bräuning, A., Barbosa, A.C.M.C., Lisi, C.S., de Oliveira, J.M., 2017. Dendroecological studies in the Neotropics: History, status and future challenges. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (Eds.), Dendroecology. Dendroecological Studies in the Neotropics: History, Status and Future Challenges. Springer, Cham, pp. 35–73. doi:10.1007/978-3-319-61669-8_3Shelford, E., 1931. Some concepts of bioecology. Ecology. 12, 455–467.
Aguilar, S., Barajas, J., 2017. Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bol. Soc. Sci. Méx. 77, 51–58. doi:10.17129/botsci.1712
Speer, J.H., 2010. Fundamentals of Tree-Ring Research. The University of Arizona Press, Tucson. .doi:10.1080/00330124.2010.536466
Steinhof, A., Altenburg, M., Machts, H., 2017. Sample preparation at the Jena 14C Laboratory. Radiocarbon 59, 815–830. doi:10.1017/RDC.2017.50
Tally, 2006. SilverFast: The Official Guide. John Wiley.
Tanaka Akira, 2005. Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã. Dissertação, Universidade Federal do Amazonas-UFAM-, ;Manaus, Brasil.
ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., Castilho, C. V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J.C., Feldpausch, T.R., Coronado, E.N.H., Killeen, T.J., Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G.W., Marimon, B.S., Marimon, B.-H., Guimarães Vieira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D. de A., Dávila, N., García-Villacorta, R., Stevenson Diaz, P.R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A.J.D., Fernandez Piedade, M.T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P.V.A., Peres, C.A., Toledo, M., Aymard C., G.A., Baker, T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Lima Filho, D. de A., Jørgensen, P.M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G., Silman, M.R., 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092. doi:10.1126/science.1243092
Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. doi:10.2307/210739
Trevizor, T.T., 2011. Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará. dissertação, Escola Superior de Agricultura “Luiz de Queiroz.”
Underwood, E.C., Olson, D., Hollander, A.D., Quinn, J.F., 2014. Ever-wet tropical forests as biodiversity refuges. Nat. Clim. Chang. 4, 740–741. doi:10.1038/nclimate2351
Vásquez, A., Ramírez, A., 2005. Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, Medellín.
Vetter, R., Botosso, P., 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bull. n.s.,10 (2), 133–145..
Yan, Y., 2005. Inter tropical convergence zone (ITCZ), in: Oliver, J.E. (Ed.), Encyclopedia of World Climatology. Springer, Dordrecht, pp. 429–432.
Zang, C., Biondi, F., 2015. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop.). 38, 431–436. doi:10.1111/ecog.01335
Filho, E., Alfaro-Sánchez, R., Aragão, J.R.V., Assis-Pereira, G., Bai, X., Barbosa, A.C., Battipaglia, G., Beeckman, H., Botosso, P.C., Bradley, T., Bräuning, A., Brienen, R., Buckley, B.M., Camarero, J.J., Carvalho, A., Ceccantini, G., Centeno-Erguera, L.R., Cerano-Paredes, J., Chávez-Durán, Á.A., Cintra, B.B.L., Cleaveland, M.K., Couralet, C., D’Arrigo, R., del Valle, J.I., Dünisch, O., Enquist, B.J., Esemann-Quadros, K., Eshetu, Z., Fan, Z.X., Ferrero, M.E., Fichtler, E., Fontana, C., Francisco, K.S., Gebrekirstos, A., Gloor, E., Granato-Souza, D., Haneca, K., Harley, G.L., Heinrich, I., Helle, G., Inga, J.G., Islam, M., Jiang, Y. mei, Kaib, M., Khamisi, Z.H., Koprowski, M., Kruijt, B., Layme, E., Leemans, R., Leffler, A.J., Lisi, C.S., Loader, N.J., Locosselli, G.M., Lopez, L., López-Hernández, M.I., Lousada, J.L.P.C., Mendivelso, H.A., Mokria, M., Montóia, V.R., Moors, E., Nabais, C., Ngoma, J., Nogueira Júnior, F. de C., Oliveira, J.M., Olmedo, G.M., Pagotto, M.A., Panthi, S., Pérez-De-Lis, G., Pucha-Cofrep, D., Pumijumnong, N., Rahman, M., Ramirez, J.A., Requena-Rojas, E.J., Ribeiro, A. de S., Robertson, I., Roig, F.A., Rubio-Camacho, E.A., Sass-Klaassen, U., Schöngart, J., Sheppard, P.R., Slotta, F., Speer, J.H., Therrell, M.D., Toirambe, B., Tomazello-Filho, M., Torbenson, M.C.A., Touchan, R., Venegas-González, A., Villalba, R., Villanueva-Diaz, J., Vinya, R., Vlam, M., Wils, T., Zhou, Z.K., 2022. Tropical tree growth driven by dry-season climate variability. Nat. Geosci. 15, 269–276. doi:10.1038/s41561-022-00911-8
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 61 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86070/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86070/2/1128406038.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86070/3/1128406038.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
13d454bced32c5d7f11fe84d1acb01d4
b271b862b2aa1307ab04be68591d12a9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090055819460608
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Valle Arango, Jorge Ignacio del41b645b38a7424e689d511e28d885652David Flórez, Diego Andrés2f92d29699ad5d52aa614a01a455930fBosques y Cambio ClimáticoDavid Flórez, Diego Andrés [0009-0002-7636-3695]2024-05-14T13:44:07Z2024-05-14T13:44:07Z2024https://repositorio.unal.edu.co/handle/unal/86070Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasGoupia glabra is a very important Neotropical tree. G. glabra is distributed throughout the Amazon, Guianas forests, and Central America from Panama to Guatemala. In Colombia, besides the Amazon, it is also found in the middle Magdalena River valley and its tributaries, and in the Pacific littoral of South America, North Ecuador to the Colombian-Panamian Darien Gap called the Biogeographic Chocó Region (BCHR). G. glabra is a large, dense-wood pioneer tree species. It grows under mean annual rainfalls of 900 to 7400 mm in both seasonally dry and ever-wet climates. In the Amazon forests, G. glabra is a hyper-dominant tree species and a monodominant tree in some Guianas forests. It is the most abundant large species (diameter at breast height > 70 cm) in the Brazilian Amazon. Despite this, no study has been up now published linking annual rings and the climate in G. glabra. Perhaps the difficulties in crossdating this species explain this gap. The existence of small scars from damages to the cambium, apparently caused by insects, makes it difficult crossdating because false, or double rings, are produced. Subtle changes in the direction of the medullary rays allow the detection of true annual rings in this species. Our chronology of tree-rings width consists of 23 disks, 61 series, inter-series correlation 0.434, p < 0.05. It occurs in the BCHR, the rainiest in America, under a mean annual temperature of 25.9 °C and a mean annual rainfall of 7219 mm. February, the least rainy month, receives a mean of 350 mm and exceeds 2.8 times the potential evapotranspiration (127 mm). Our chronology correlated with annual precipitation (r = 0.51, p < 0.01), and during several months of the current year (p < 0.05). This study contradicts both Liebig's law, which would assume chronology would not respond to precipitation, and Shelford's law, which would predict negative responses. It also contradicts tropical dendrochronologists who claim that in non-flooded forests, annual droughts are responsible for annual-rings formation. Our study, under the most extreme precipitations ever attempted, expands the frontier of dendrochronology to ever-wet tropical forests that comprise about 30% of tropical rainforests. (Tomado de la fuente)Goupia glabra es un árbol neotropical de gran importancia. Se distribuye por toda la Amazonía, los bosques de las Guayanas y América Central, desde Panamá hasta Guatemala. En Colombia, además de la Amazonía, también se encuentra en el valle medio del río Magdalena y sus afluentes, así como en el litoral Pacífico de América del Sur, desde el norte de Ecuador hasta el Tapón del Darién colombo-panameño, conocido como la Región Biogeográfica del Chocó (RBCH). G. glabra es una especie de árbol pionera de madera densa y de gran tamaño. Crece en áreas con precipitaciones medias anuales de 900 a 7400 mm, tanto en climas estacionalmente secos como siempre húmedos. En los bosques amazónicos, G. glabra es una especie arbórea hiperdominante y un árbol monodominante en algunos bosques de las Guayanas. Es la especie de gran tamaño más abundante (diámetro a la altura del pecho > 70 cm) en la Amazonía brasileña. A pesar de esto, hasta ahora no se ha publicado ningún estudio que relacione los anillos anuales con el clima en G. glabra. Quizás las dificultades para cofechar esta especie expliquen esta carencia. La existencia de pequeñas cicatrices el cambium dificulta la datación por anillos cruzados, ya que producen anillos falsos o dobles, también esta especie presenta discontinuidad tangencial y es común encontrar anillos en cuña. Cambios sutiles en la dirección de los radios medulares permiten detectar los verdaderos anillos anuales en esta especie. Nuestra cronología del ancho de los anillos de los árboles consta de 23 discos, 61 series, correlación entre series 0.434, p < 0.05. Se encuentra en la RBCH, la región más lluviosa de América, con una temperatura media anual de 25.9 °C y una precipitación media anual de 7219 mm. Febrero, el mes menos lluvioso, recibe una media de 350 mm y supera 2.8 veces la evapotranspiración potencial (127 mm). Nuestra cronología se correlacionó con la precipitación anual (r = 0.51, p < 0.01), y durante varios meses del año actual (p < 0.05). Este estudio contradice tanto la ley de Liebig, que supondría que la cronología no respondería a la precipitación, como la ley de Shelford, que prevería respuestas negativas. También contradice a los dendrocronólogos tropicales que afirman que, en los bosques no inundados, las sequías anuales son responsables de la formación de anillos anuales. Nuestro estudio, bajo las precipitaciones más extremas jamás intentadas, amplía la frontera de la dendrocronología a los bosques tropicales siempre húmedos que comprenden aproximadamente el 30% de los bosques tropicales lluviosos.MaestríaMagíster en Bosques y Conservación AmbientalDendrocronologíaDendroecologíaBosques Y Conservación Ambiental.Sede Medellín61 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología580 - Plantas::582 - Plantas destacadas por características vegetativas y floresBosques tropicales húmedos - ColombiaDendroecologíaBiogeografía - Chocó, ColombiaBosques tropicales - ColombiaSelva lluviosa - ColombiaArboles - Anillos de crecimientoDendroecologyEver-wet tropical forestBiogeographic Chocó RegionENSODendroecologíaBosques siempre húmedos tropicalesChocó BiogeográficoAnnual tree rings in Goupia glabra from a hyper-humid tropical forest; ColombiaAnillos de crecimiento anuales de Goupia glabra en el bosque tropical hiperhúmedo de ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics Int. 11, 36–43.Andreu-Hayles, L., Santos, G., Herrera, D., Martín-Fernández, J., Ruiz-Carrascal, D., Boza-Espinoza, T., Fuentes, A., Jorgensen, P., 2015. Matching dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57, 1–13. doi:10.2458/azuBalima, L.H., Gebrekirstos, A., Kouamé, F.N.G., Nacoulma, B.M.I., Thiombiano, A., Bräuning, A., 2020. Life-span growth dynamics and xylem anatomical patterns of diffuse-porous Afzelia africana Sm. (Fabaceae) in different ecological zones in Burkina Faso. Dendrochronologia 64. doi:10.1016/j.dendro.2020.125752Borchert, R., Rivera, G., 2001. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol. 21, 213–221. doi:10.1093/treephys/21.4.213Breitsprecher, A., Bethel, J., 1990. Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71, 1156–1164.Brienen, R., Schöngart, J., Zuidema, P., 2016. Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees, in: Goldstein, G., Santiago, S.L. (Eds.), Tropical Tree Physiology. Springer, Switzerland, pp. 441–461. doi:10.1007/978-3-319-27422-5Bunn, A.G., 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. doi:10.1016/j.dendro.2009.12.001Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124. doi:10.1016/j.dendro.2008.01.002Callado, C., da Silva Neto, S., Scarano, F., Costa, C., 2001. Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15, 492–497. doi:10.1007/s00468-001-0128-4Callado, C.H., Roig, F.A., Tomazello-Filho, M., Barros, C.F., 2013. Cambial growth periodicity studies of South American woody species -a review. IAWA J. 34, 213–230. doi:10.1163/22941932-00000019Cannon, P.,1985. Comparative analysis of the soils in the Bajo Calima concession in the primary forest and after clearcutting. In: Ladrach, W.E., (Ed.), Forestry Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 95-98.Cintra, B.B.L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., Levis, C., Quesada, C.A., Schöngart, J., 2013. Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus-Madeira interfluvial wetlands in Amazonia. Biogeosciences 10, 7759–7774. doi:10.5194/bg-10-7759-2013Clark, D.A., Clark, D.B., 1994. Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J. Ecol. 82, 865–872.del Valle, J.I., Guarín, J.R., Sierra, C.A., 2014. Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56, 39–52. doi:10.2458/56.16486Détienne, P., 1989. Appearance and periodicity of growth rings in some tropical woods. IAWA J. 10, 123–132. doi:10.1163/22941932-90000480Detienne, P., Barbier, C., 1988. Rythmes de croissance de quelques essences de Guyane Francaise. Bois forêts des Trop. 217, 63–76.dos Santos, M., de Assis Ribeiro dos Santos, F., Callado, C.H., Barros, C.F., da Silva, L.B., 2017. Growth rings in woody species of Ombrophilous Dense Forest: occurrence, anatomical features and ecological considerations. Brazilian J. Bot. 40, 281–290. doi:10.1007/s40415-016-0313-8Duarte, P.J., Borges, C.C., Ferreira, C.A., Cruz, T.M., de Souza, W.R.Q., Mori, F.A., 2021. Anatomical identification of tropical woods traded in Lavras, Brazil. J. Trop. For. Sci. 33, 95–103. doi:10.26525/jtfs2020.32.4.95Faber-Langendoen, D., 1992. Ecological constraints on rain forest management at Bajo Calima, western Colombia. For. Ecol. Manage. 53, 213–244. doi:10.1016/0378-1127(92)90044-AFaber-Langendoen, D., Gentry, A.H., 1991. The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica 23, 2. doi:10.2307/2388682Fahn, A., 1995. Seasonal cambial activity and phytogeographic origin of woody plants: a hypothesis. Isr. J. Plant Sci. 43, 69–75. doi:10.1080/07929978.1995.10676592Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. doi:10.1002/joc.5086Fonti, P., Von Arx, G., García-González, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., Eckstein, D., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53. doi:10.1111/j.1469-8137.2009.03030.xForero, Luz Amalia, 2014. Dinámica del bosque húmedo tropical en un periodo de 30 años de intervenciones y sus efectos en algunas variables edafológicas. Bajo Calima, Buenaventura, Colombia. Disertación, Universidad Nacional de Colombia, BogotáFrisk, T., 1978. Utilización de las maderas tropicales mixtas para papel. Organ. las Nac. Unidas para la Agric. y la Aliment. Vol. 30, N, pp. 63–64.Galviz, Y.C.F., Ribeiro, R. V., Souza, G.M., 2020. Yes, plants do have memory. Theor. Exp. Plant Physiol. 32, 195–202. doi:10.1007/s40626-020-00181-yGBIF, 2022. Infraestructura Mundial de Información en Biodiversidad. https://www.gbif.org/es/occurrence/search [WWW Document].Gentry, A.H., 1982. Patterns of neotropical plant species diversity. Evol. Biol., 15, 1-84.Giraldo, Jorge Andrés, 2022. Annual tree rings in the rainiest forests of the americas. Dissertation, Universidad Nacional de Colombia, Medellín.Giraldo, J.A., del Valle, J.I., González-Caro, S., Sierra, C.A., 2022. Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees - Struct. Funct. doi:10.1007/s00468-022-02271-7Giraldo, J.A.,Valle, J.I., Sierra, C.A., Melo, O., 2020. Dendrochronological potential of trees from America’s rainiest region. In: Pompa-García M., Camarero J.J. (Eds.), Latin American Dendroecology. Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory. Springer, Cham, pp. 79–119. doi:10.1007/978-3-030-36930-9_6Gómez, Alejando., 2019. Delimitación de anillos de crecimiento en la especie Goupia glabra mediante técnicas de visión por computador. Disertación, Universidad Nacional de Colombia, Medellín..Green, J.K., Berry, J., Ciais, P., Zhang, Y., Gentine, P., 2020. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10. doi:DOI: 10.1126/sciadv.abb7232Hammond, D.S., 2005. Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World. CABI publishing, Oxfordshire UK, p. 528.Herrera, D.A., del Valle, J.I., 2011. Reconstrucción de los niveles del río Atrato con los anillos de Priora copaifera. Dyna 78, 121–130.Hua, Q., Turnbull, J.C., Santos, G.M., Rakowski, A.Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S.J., Levin, I., Miller, J.B., Palmer, J.G., Turney, C.S.M., 2021. Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64, 723–745. doi:10.1017/RDC.2021.95Islam, M., Rahman, M., Bräuning, A., 2019. Impact of extreme drought on tree-ring width and vessel anatomical features of Chukrasia tabularis. Dendrochronologia 53, 63–72. doi:10.1016/j.dendro.2018.11.007Islam, M., Rahman, M., Bräuning, A., 2018. Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Front. Plant Sci. 871, 1–16. doi:10.3389/fpls.2018.01761ITTO, 2017. Cupiúba, Kabukalli (Goupia glabra),International Tropical Timbers Organization, p. 7.Kassambara, A., 2022. Package : ggpubr. “ggplot2’’ Based Publication Ready Plots.”Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L., Weller, R.A., 2013. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740. doi:10.1175/JCLI-D-12-00436.1Köhl, M., Neupane, P.R., Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12, 1–17. doi:10.1371/journal.pone.0181187Lacoste, J.F., Alexandre, D.Y., 1991. Le goupi (Goupia glabra Aubl), essence forestiere d’avenir en Guyane: analyse bibliographique. Ann. des Sci. For. 48, 429–441.Ladrach. W.E., 1985. History and management of the Bajo Calima Concession. In: Ladrach, W.E. (Ed.), Forest Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 3-4.Ladrach, W., Wright, J., 1995. Natural regeneration in a secondary Colombian rain forest. J. Sustain. For. 3, 15–38. doi:10.1300/j091v03n01_02Laurance, W.F., Nascimento, H.E.M., Laurance, S.G., Condit, R., D’Angelo, S., Andrade, A., 2004. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For. Ecol. Manage. 190, 131–143. doi:10.1016/j.foreco.2003.09.011López, J., Del Valle, J.I., Giraldo, J.A., 2014. Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiol. 34, 1079–1089. doi:10.1093/treephys/tpu077Lotfiomran, N., Köhl, M., 2017. Retrospective analysis of growth: A contribution to sustainable forest management in the tropics. IAWA J. 38, 297–312. doi:10.1163/22941932-20170173Lozano, L.A., González, J., 2011. Bajo Calima: riqueza biológica y cultural afectada por la extracción de maderas tropicales. Lebret 3, 205–220. doi:10.15332/rl.v0i3.52Mesa, O.J., Rojo, J.D., 2020. On the general circulation of the atmosphere around Colombia. Rev. Acad. Colomb. Cienc. Exact. Fís. Nat. 44, 857–875. doi:10.18257/raccefyn.899Miller, R.B., Détienne, P., 2001. Major Timber Trees of Guyana. Wood Anatomy. Tropenbos, The Netherlands,Wageningen, p. 218.Moreno, M.M., del Valle, J.I., 2015. Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia. Trees 29, 97–107. doi:10.1007/s00468-014-1094-yMyers, N., Mittermeler, R.A., Mittermeler, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. doi:10.1038/35002501Nahuz et al., A., 2013. Catálogo de Madeiras Brasileiras para a Construção Civil. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, Brasil, p. 103.Nogueira, E.M., Fearnside, P.M., Nelson, B.W., França, M.B., 2007. Wood density in forests of Brazil’s “arc of deforestation”: Implications for biomass and flux of carbon from land-use change in Amazonia. For. Ecol. Manage. 248, 119–135. doi:10.1016/j.foreco.2007.04.047O´Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., 2008. Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest. Biotropica 40, 151–159. doi:10.1111/j.1744-7429.2007.00354.xLopez de Oliveira, Christiane, 2010. Estimativas da dinâmica de carbono na biomassa lenhosa de terra firme na reserva de desenvolvimento sustentável Amanã por métodos dendrocronológicos. Dissertação, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brasil. http://www.bibliotecaflorestal.ufv.br/handle/123456789/8465Oliveira, Mariana Ferrz de, 2014. Critérios para o manejo sustentável de duas espécies madeireiras das florestas tropicais do Mato Grosso. Dissertação, Universidade Federal do Paraná,Curitiba, Brasil.Pacheco, A., 2020. Assessing forest degradation in Bajo Calima – Colombia from multi-frequency and multittemporal synthetic aperture radar ( SAR ). Dissertation, University of Leicester, UK.Pérez, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó Biogeographic Region. Front. Plant Sci. 10, 1–9. doi:10.3389/fpls.2019.01328Pons, T.L., Helle, G., 2011. Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25, 83–93. doi:10.1007/s00468-010-0527-5Poveda, G., Mesa, O., 2000. On the existence of Lloró (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. doi:10.1029/1999GL006091R Development Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Ramírez, del Valle, 2011. Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev. Biol. Trop. 59, 1389–1405. doi:10.15517/rbt.v0i0.3406Ramírez, J.A., del Valle, J.I., 2012. Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. Int. J. Climatol. 32, 1077–1088. doi:10.1002/joc.2335Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., Van Der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725–757. doi:10.1017/RDC.2020.41Restrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., de Camargo, P.B., Cardoso, F.L., da Costa, A.C.L., Fitzjarrald, D.R., Goulden, M.L., Kruijt, B., Maia, J.M.F., Malhi, Y.S., Manzi, A.O., Miller, S.D., Nobre, A.D., von Randow, C., Sá, L.D.A., Sakai, R.K., Tota, J., Wofsy, S.C., Zanchi, F.B., Saleska, S.R., 2013. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 182–183, 128–144. doi:10.1016/j.agrformet.2013.04.031Santini Junior Luiz, 2013. Descrição macroscópica e microscópica da madeira aplicada na identificação das principais espécies comercializadas no Estado de São Paulo - Programas “São Paulo Amigo da Amazônia” e “Cadmadeira.” Dissertação, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queieroz, Piracicaba, Brasil.Schöngart, J., Bräuning, A., Barbosa, A.C.M.C., Lisi, C.S., de Oliveira, J.M., 2017. Dendroecological studies in the Neotropics: History, status and future challenges. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (Eds.), Dendroecology. Dendroecological Studies in the Neotropics: History, Status and Future Challenges. Springer, Cham, pp. 35–73. doi:10.1007/978-3-319-61669-8_3Shelford, E., 1931. Some concepts of bioecology. Ecology. 12, 455–467.Aguilar, S., Barajas, J., 2017. Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bol. Soc. Sci. Méx. 77, 51–58. doi:10.17129/botsci.1712Speer, J.H., 2010. Fundamentals of Tree-Ring Research. The University of Arizona Press, Tucson. .doi:10.1080/00330124.2010.536466Steinhof, A., Altenburg, M., Machts, H., 2017. Sample preparation at the Jena 14C Laboratory. Radiocarbon 59, 815–830. doi:10.1017/RDC.2017.50Tally, 2006. SilverFast: The Official Guide. John Wiley.Tanaka Akira, 2005. Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã. Dissertação, Universidade Federal do Amazonas-UFAM-, ;Manaus, Brasil.ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., Castilho, C. V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J.C., Feldpausch, T.R., Coronado, E.N.H., Killeen, T.J., Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G.W., Marimon, B.S., Marimon, B.-H., Guimarães Vieira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D. de A., Dávila, N., García-Villacorta, R., Stevenson Diaz, P.R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A.J.D., Fernandez Piedade, M.T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P.V.A., Peres, C.A., Toledo, M., Aymard C., G.A., Baker, T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Lima Filho, D. de A., Jørgensen, P.M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G., Silman, M.R., 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092. doi:10.1126/science.1243092Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. doi:10.2307/210739Trevizor, T.T., 2011. Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará. dissertação, Escola Superior de Agricultura “Luiz de Queiroz.”Underwood, E.C., Olson, D., Hollander, A.D., Quinn, J.F., 2014. Ever-wet tropical forests as biodiversity refuges. Nat. Clim. Chang. 4, 740–741. doi:10.1038/nclimate2351Vásquez, A., Ramírez, A., 2005. Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, Medellín.Vetter, R., Botosso, P., 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bull. n.s.,10 (2), 133–145..Yan, Y., 2005. Inter tropical convergence zone (ITCZ), in: Oliver, J.E. (Ed.), Encyclopedia of World Climatology. Springer, Dordrecht, pp. 429–432.Zang, C., Biondi, F., 2015. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop.). 38, 431–436. doi:10.1111/ecog.01335Filho, E., Alfaro-Sánchez, R., Aragão, J.R.V., Assis-Pereira, G., Bai, X., Barbosa, A.C., Battipaglia, G., Beeckman, H., Botosso, P.C., Bradley, T., Bräuning, A., Brienen, R., Buckley, B.M., Camarero, J.J., Carvalho, A., Ceccantini, G., Centeno-Erguera, L.R., Cerano-Paredes, J., Chávez-Durán, Á.A., Cintra, B.B.L., Cleaveland, M.K., Couralet, C., D’Arrigo, R., del Valle, J.I., Dünisch, O., Enquist, B.J., Esemann-Quadros, K., Eshetu, Z., Fan, Z.X., Ferrero, M.E., Fichtler, E., Fontana, C., Francisco, K.S., Gebrekirstos, A., Gloor, E., Granato-Souza, D., Haneca, K., Harley, G.L., Heinrich, I., Helle, G., Inga, J.G., Islam, M., Jiang, Y. mei, Kaib, M., Khamisi, Z.H., Koprowski, M., Kruijt, B., Layme, E., Leemans, R., Leffler, A.J., Lisi, C.S., Loader, N.J., Locosselli, G.M., Lopez, L., López-Hernández, M.I., Lousada, J.L.P.C., Mendivelso, H.A., Mokria, M., Montóia, V.R., Moors, E., Nabais, C., Ngoma, J., Nogueira Júnior, F. de C., Oliveira, J.M., Olmedo, G.M., Pagotto, M.A., Panthi, S., Pérez-De-Lis, G., Pucha-Cofrep, D., Pumijumnong, N., Rahman, M., Ramirez, J.A., Requena-Rojas, E.J., Ribeiro, A. de S., Robertson, I., Roig, F.A., Rubio-Camacho, E.A., Sass-Klaassen, U., Schöngart, J., Sheppard, P.R., Slotta, F., Speer, J.H., Therrell, M.D., Toirambe, B., Tomazello-Filho, M., Torbenson, M.C.A., Touchan, R., Venegas-González, A., Villalba, R., Villanueva-Diaz, J., Vinya, R., Vlam, M., Wils, T., Zhou, Z.K., 2022. Tropical tree growth driven by dry-season climate variability. Nat. Geosci. 15, 269–276. doi:10.1038/s41561-022-00911-8Proyecto 1118-714-51372 y por el proyecto 4083 de la Universidad Nacional de Colombia.Colciencias y Universidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86070/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1128406038.2024.pdf1128406038.2024.pdfTesis de Maestría en Bosques y Conservación Ambientalapplication/pdf2337880https://repositorio.unal.edu.co/bitstream/unal/86070/2/1128406038.2024.pdf13d454bced32c5d7f11fe84d1acb01d4MD52THUMBNAIL1128406038.2024.pdf.jpg1128406038.2024.pdf.jpgGenerated Thumbnailimage/jpeg4641https://repositorio.unal.edu.co/bitstream/unal/86070/3/1128406038.2024.pdf.jpgb271b862b2aa1307ab04be68591d12a9MD53unal/86070oai:repositorio.unal.edu.co:unal/860702024-08-24 23:13:59.994Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=