Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas
Ilustraciones, mapas
- Autores:
-
Pérez Jiménez, María Marcela
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85449
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Escorrentía
Andisoles
Erosión hídrica
Uso del suelo
Escorrentía
Erosión
Andisols
Erosion
Runoff
land use
Andean mountain
Andisol
Erosión hídrica
Uso del suelo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fbbbb14a0987a56fa8698468b2bd0746 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85449 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
dc.title.translated.eng.fl_str_mv |
Evaluation of susceptibility to water erosion in Andisols. Case study: Las Palmas watershed |
title |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
spellingShingle |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Escorrentía Andisoles Erosión hídrica Uso del suelo Escorrentía Erosión Andisols Erosion Runoff land use Andean mountain Andisol Erosión hídrica Uso del suelo |
title_short |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
title_full |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
title_fullStr |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
title_full_unstemmed |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
title_sort |
Evaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las Palmas |
dc.creator.fl_str_mv |
Pérez Jiménez, María Marcela |
dc.contributor.advisor.none.fl_str_mv |
Loaiza Úsuga, Juan Carlos Poveda Jaramillo, Germán |
dc.contributor.author.none.fl_str_mv |
Pérez Jiménez, María Marcela |
dc.contributor.orcid.spa.fl_str_mv |
0000-0002-3109-763X |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica |
topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica Escorrentía Andisoles Erosión hídrica Uso del suelo Escorrentía Erosión Andisols Erosion Runoff land use Andean mountain Andisol Erosión hídrica Uso del suelo |
dc.subject.lemb.none.fl_str_mv |
Escorrentía |
dc.subject.proposal.spa.fl_str_mv |
Andisoles Erosión hídrica Uso del suelo Escorrentía Erosión |
dc.subject.proposal.eng.fl_str_mv |
Andisols Erosion Runoff land use Andean mountain |
dc.subject.wikidata.none.fl_str_mv |
Andisol Erosión hídrica Uso del suelo |
description |
Ilustraciones, mapas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-26T13:57:40Z |
dc.date.available.none.fl_str_mv |
2024-01-26T13:57:40Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85449 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85449 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., & Ruiz-Sánchez, M. C. (2007). Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agricultural Water Management, 93(1–2), 11–18. https://doi.org/10.1016/j.agwat.2007.06.002 Alatorre, L. C., & Beguería, S. (2009). Los modelos de erosión: Una Revisión. C&G, May 2014, 29–48. Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May). https://doi.org/10.3389/feart.2019.00092 Ben-Hur, M., Yolcu, G., Uysal, H., Lado, M., & Paz, A. (2009). Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Australian Journal of Soil Research, 47(7), 688–696. https://doi.org/10.1071/SR09009 Bond, W. (1998). Soil physical methods for estimating recharge - Part 3: Basic of Recharge and Discharge Series. CSIRO PUBLISHING. Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7 Bryan, R. B., & Poesen, J. (1989). Laboratory experiments on the influence of slope length on runoff, percolation and rill development. Earth Surface Processes and Landforms, 14(3), 211–231. https://doi.org/10.1002/esp.3290140304 Buol, S. W., Hole, F. D., & McCracken, R. J. (1989). Soil Genesis and Classification. Iowa State University Press. https://www.cambridge.org/core/article/soil-genesis-and-classification-3rd-edn-by-s-w-buol-f-d-hole-r-j-mccracken-xiv-446-pp-ames-iowa-state-university-press-1989-4495-hard-covers-isbn-0-8138-1462-6/8F7EBC3902D83FDF628F69469DDB0B1A Cantón, Y., Domingo, F., Solé-Benet, A., & Puigdefábregas, J. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252(1–4), 65–84. https://doi.org/10.1016/S0022-1694(01)00450-4 Casamitjana, M., & Loaiza-Usuga, J. C. (2019). Capitulo 4. Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas. In Movimientos en Masa (pp. 109–131). Cerdá, A. (1999). Simuladores de lluvia y su aplicación a la Geomorfología : Estado de la cuestión. In Cuadernos de Investigación Geográfica (Vol. 25, Issue 0, pp. 45–84). https://doi.org/10.18172/cig.1036 Cerdà, A. (1995). Factores y variaciones espacio-temporales de la infiltracion en los ecosistemas mediterraneos (Geoforma E). Chow, V. Te, Maidment, D. R., & Mays, L. W. (1994). Chow, Maidment, Mays - 1994 - Hidrologia Aplicada.pdf (McGraw Hill (Ed.)). Climate Prediction Center - ONI. (n.d.). Retrieved April 21, 2021, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php Comino, J. R., Ruiz Sinoga, J. D., Senciales González, J. M., Guerra-Merchán, A., Seeger, M., & Ries, J. B. (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). https://doi.org/10.1016/j.catena.2016.06.012 Cosentino, D., Chenu, C., & Le Bissonnais, Y. (2006). Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry, 38, 2053–2062. https://doi.org/10.1016/j.soilbio.2005.12.022 de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. https://doi.org/https://doi.org/10.1016/j.earscirev.2013.08.014 Defersha, M. B., & Melesse, A. M. (2011). Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. https://doi.org/10.1016/j.catena.2011.11.002 Dingman, S. L. (2002). Physical hydrology (2nd ed). https://doi.org/10.1177/030913338701100407 Donjadee, S., & Chinnarasri, C. (2012). Effects of rainfall intensity and slope gradient on the application of vetiver grass mulch in soil and water conservation. International Journal of Sediment Research, 27(2), 168–177. https://doi.org/10.1016/S1001-6279(12)60025-0 Dörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L., & Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693–702. https://doi.org/10.1002/jpln.201500112 Fang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.06.048 Fu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., & Wang, X. (2011). Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma, 167–168, 41–53. https://doi.org/10.1016/j.geoderma.2011.08.013 García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. https://doi.org/10.1016/j.geomorph.2015.03.008 Garcia, C., Batalla, R. J., Gallart, F., Caries Balasch, J., Regii6s, D., Soler, M., & Castelltort, X. (2005). Catchment Dynamics and River Processes: Mediterranean and Other Climate Regions Chapter 2 Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (southeastern Pyrenees) II: temporal and spatial dynamics of erosion and st. Gargouri-Ellouze, E., Eslamian, S., Ostad-Ali-Askari, K., Chérif, R., Bouteffeha, M., & Slama, F. (2017). Infiltration BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_169-1 Gerlach, T. (1967). Hillslope troughs for measuring sediment movement. Revue de Geomorphologie Dynamique, 17, 173. Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena, 85(1), 34–47. https://doi.org/10.1016/j.catena.2010.11.005 Guerra, J., Rodríguez, A., Arbelo, C., & Mora, J. (2002). Erosión hídrica en andosoles de las Islas Canarias. Edafología, 9(1), 23–30. Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water : a review. 2, 189–217. Hermelin, M. (1992). Los suelos del oriente antioqueño un recurso no renovable. Bull. Inst. Fr. Études Andines, 21(1), 25–36. Holz, D. J., Williard, K. W. J., Edwards, P. J., & Schoonover, J. E. (2015). Soil Erosion in Humid Regions: A Review. Journal of Contemporary Water Research & Education, 154(1), 48–59. https://doi.org/10.1111/j.1936-704x.2015.03187.x Hu, B., Wang, Y., Wang, B., Wang, Y., Liu, C., & Wang, C. (2018). Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China. Journal of Soil and Water Conservation, 73(4), 469–478. https://doi.org/10.2489/jswc.73.4.469 Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220–228. https://doi.org/https://doi.org/10.1016/j.still.2006.07.012 Jaramillo Jaramillo, D. (2002). Introducción a la ciencia del suelo. In Introduccion a La Ciencia Del Suelo. Kinnell, P. I. A. (2005). Raindrop-impact-induced erosion processes and prediction: A review. Hydrological Processes, 19(14), 2815–2844. https://doi.org/10.1002/hyp.5788 Knighton, D. (1998). Fluvial forms and processes : a new perspective. Arnold ; Oxford University Press. Kogo, B. K., Kumar, L., & Koech, R. (2020). Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability, 12(22), 9740. https://doi.org/10.3390/su12229740 Lal, R. (2000). Soil management in the developing countries. Soil Science, 165(1), 57–72. https://doi.org/10.1097/00010694-200001000-00008 Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7 Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope gradient effects on soil loss for steep slopes. Soil Science Society of America Journal, 37(6), 1759–1763. https://doi.org/10.13031/2013.28273 Liu, J., Xu, C., Hu, F., Wang, Z., Ma, R., & Zhao, S. (2021). Effect of soil internal forces on fragment size distributions after aggregate breakdown and their relations to splash erosion. European Journal of Soil Science, ejss.13094. https://doi.org/10.1111/ejss.13094 Loaiza-Usuga, J. C., León-Peláez, J. D., González-Hernández, M. I., Gallardo-Lancho, J. F., Osorio-Vega, W., & Correa-Londoño, G. (2013). Alterations in litter decomposition patterns in tropical montane forests of Colombia: A comparison of oak forests and coniferous plantations. Canadian Journal of Forest Research, 43(6), 528–533. https://doi.org/10.1139/cjfr-2012-0438 Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008a). Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. Journal of Hydrology, 356(1–2), 223–233. https://doi.org/10.1016/j.jhydrol.2008.04.018 Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008b). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo: ecuaciones de calibración. Suelos Ecuatoriales, 38(1), 24–33. Loaiza-Usuga, J. C., & Poch, R. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan pre-pyrenees NE Spain). Zeitschrift Fur Geomorphologie, 53(4), 519–537. https://doi.org/10.1127/0372-8854/2009/0053-0519 Loaiza-Usuga, J. C., Poch, R., & Pauwels, V. R. N. (2015). Environmental Sustainability through Soil Conservation (J. C. Loaiza Usuga, A. Quinchia Figueroa, L. Osorio Bedoya, & I. Pla (Eds.); Issue September). Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951–961. https://doi.org/10.1016/j.jhydrol.2015.09.018 Ma, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., & Yang, W. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research, 149, 1–11. https://doi.org/https://doi.org/10.1016/j.still.2014.12.016 Ma, R. M., Li, Z. X., Cai, C. F., & Wang, J. G. (2014). The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena, 121, 279–287. https://doi.org/10.1016/j.catena.2014.05.028 Machado, J., Villegas-Palacio, C., Loaiza-Usuga, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96, 116–126. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.08.060 Mcdaniel, P. A., Lowe, D. J., Arnalds, O., Ping, C.-L., Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences (Vol. 2). CRC Press. Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., & Gash, J. H. C. (2009). A review of rainfall interception modelling. In Journal of Hydrology (Vol. 370, Issues 1–4, pp. 191–206). https://doi.org/10.1016/j.jhydrol.2009.02.058 Nanzyo, M. (2005). Unique properties of volcanic ash soil and perspective on their applicatios. Journal of Integrated Field Science, 2, 1–4. Neall, V. E. (2006). Volcanic soils. In Encyclopedia of Life Support Systems (EOLSS).: Vol. VII. Neves dos Santos, J. C., de Andrade, E. M., Augusto Medeiros, P. H., Simas Guerreiro, M. J., & de Queiroz Palácio, H. A. (2017). Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region. Water Resources Management, 31(1), 173–185. https://doi.org/10.1007/s11269-016-1517-1 NSW Department of Primary Industries. (2005). Maintaining groundcover to reduce erosion and sustain production. In Agfact P2.1.14. www.dpi.nsw.gov.au Osman, K. T. (2014). Soil degradation, conservation and remediation. In Soil Degradation, Conservation and Remediation (Vol. 9789400775). https://doi.org/10.1007/978-94-007-7590-9 Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1–2), 178–185. https://doi.org/10.1016/j.jhydrol.2006.05.011 Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012 Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/https://doi.org/10.1016/j.catena.2016.08.002 Parvizi, S., Eslamian, S., Ostad-Ali-Askari, K., Yazdani, A., & Singh, V. P. (2018). Percolation BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_216-1 Patin, J., Mouche, E., Ribolzi, O., Chaplot, V., Sengtahevanghoung, O., Latsachak, K. O., Soulileuth, B., & Valentin, C. (2012). Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. Journal of Hydrology, 426–427, 79–92. https://doi.org/10.1016/j.jhydrol.2012.01.015 Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117 Pla. (1981). Simuladores De Lluvia Para El Estudio De Relaciones Suelo-Agua Bajo Agricultura De Secano En Los Tropicos. Rev.Fac.Agron.(Maracay), XII, 81–93. Pla. (1992a). La erosividad de los andisoles en Latino América. Suelos Ecuatoriales, 22 (1), 33–43. Pla. (2010). Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores mas frecuentes. II - Propiedades hidrológicas. Suelos Ecuatoriales, 40(2), 94–127. Pla, I. (1992b). La erodabilidad de los Andisoles en Latinoamerica. Suelos Ecuatoriales, 22 (1), 33–43. Posada Garcia, L. (1994). Hidraulica Fluvial. In Transporte de sedimentos. Poveda, G. (2004). Hidroclimatologia de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Ciencias de La Tierra, XXVIII. Poveda, G. (2006). El Clima de Antioquia. In Geografía De Antioquia - Geografía Histórica, Física, Humana Y Económica (pp. 117–128). Poveda, G., Mesa, O. J., Agudelo, P. A., Álvarez, J. F., Arias, P. A., Moreno, H. A., Salazar, L. F., Toro, V. G., Vieira, S. C., Jaramillo, A., & Guzman, O. (2002). Diagnóstico del ciclo diurno de la precipitación en los Andes tropicales de Colombia. Meteorología Colombiana, 5, 23–30. Prosser, I. P., Dietrich, W. E., & Stevenson, J. (1995). Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1–4), 71–86. https://doi.org/10.1016/0169-555X(95)00020-6 Ramos, M. C., Nacci, S., & Pla, I. (2003). Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces. Catena, 53(4), 365–376. https://doi.org/10.1016/S0341-8162(03)00086-9 Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1), 1–31. https://doi.org/10.1017/S1464793105006846 Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.x Shoji, S., Dahlgren, R., & Nanzyo, M. (1993a). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0 Shoji, S., Dahlgren, R., & Nanzyo, M. (1993b). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0 Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use. Suprayogo, D., van Noordwijk, M., Hairiah, K., Meilasari, N., Rabbani, A. L., Ishaq, R. M., & Widianto, W. (2020). Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land, 9(8), 240. https://doi.org/10.3390/land9080240 Suryatmojo, H. (2014). Recovery of Forest Soil Disturbance in the Intensive Forest Management System. Procedia Environmental Sciences, 20, 832–840. https://doi.org/10.1016/j.proenv.2014.03.101 Tuset, J., Vericat, D., & Batalla, R. J. (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Science of the Total Environment, 540, 114–132. https://doi.org/10.1016/j.scitotenv.2015.07.075 Unidad Nacional para la Gestión del Riesgo de Desastres. (2016). Unidad Nacional para la Gestión del Riesgo de Desastres |Objetivos y funciones. http://portal.gestiondelriesgo.gov.co/Paginas/Objetivos.aspx Vaezi, A. R., Ahmadi, M., & Cerdà, A. (2017). Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, 583, 382–392. https://doi.org/10.1016/j.scitotenv.2017.01.078 Verdú, J. M., Batalla, R. J., & Poch, R. (2000). Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña mediterránea (Ribera Salada, Cuenca del Segre, Lleida, España). Pirineos, 155(0), 37–57. https://doi.org/10.3989/pirineos.2000.v155.87 Warren, S. D., Thurow, T. L., Blackburn, W. H., & Garza, N. E. (1986). The Influence of Livestock Trampling under Intensive Rotation Grazing on Soil Hydrologic Characteristics. Journal of Range Management, 39(6), 491. https://doi.org/10.2307/3898755 Wilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences. In Encyclopedia of Ecology, Five-Volume Set (2nd ed.). Wu, L., Zeng, C., Li, Y., Tian, Y., Wang, S., Luo, G., Bai, X., & Li, Y. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 721–736. https://doi.org/10.5194/se-8-721-2017 Zapata, R. ., & Loaiza-Usuga, J. C. (2014). Estudio semi detallado de suelos de la zona 13 del municipio de Envigado con fines de uso potencial (Instituto de Estudios Ambientales, Universidad Nacional de Colombia – Sede Medellin, & Municipio de Envigado (Eds.)). Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of Rainfall Intensity and Vegetation Cover on Erosion Characteristics of a Soil Containing Rock Fragments Slope. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/7043428 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
80 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85449/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85449/4/11028424402023.pdf https://repositorio.unal.edu.co/bitstream/unal/85449/5/11028424402023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5205f3dab9e8381baeb95d0a7521afbd d723f008b2c130958632f7d539952943 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089628205973504 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Loaiza Úsuga, Juan Carlos055b5a48b5571c52e5b22475b14eabadPoveda Jaramillo, Germán9c41f332f4b961d18fd86f26f14f47a3Pérez Jiménez, María Marcela0c37eac292ef27fdbf958f667e03c3750000-0002-3109-763X2024-01-26T13:57:40Z2024-01-26T13:57:40Z2023https://repositorio.unal.edu.co/handle/unal/85449Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasEsta tesis ha investigado la respuesta de la escorrentía y la erosión del suelo en condiciones de lluvia natural y el comportamiento del suelo en relación a las condiciones de uso y manejo en la cuenca Las Palmas localizada en los Andes centrales de Colombia; mediante trabajo experimental en parcelas lluvia-escorrentía con la medición de precipitación, escorrentía, arrastre de sedimentos, infiltración y percolación, usando métodos de análisis de correlación estadística, con el propósito de evaluar la susceptibilidad a la erosión hídrica durante el periodo de 14/10/2018 – 12/12/2018, periodo catalogado como de transición entre la época de lluvia y época seca. Los resultados sugieren que cambios en la dinámica del uso del suelo en las parcelas de bosque (densidad vegetal 100%) a cultivo (densidad vegetal 5%) puede ocasionar aumentos en la escorrentía de hasta el 33% y erosión hasta un 87%. Los cambios de uso en las parcelas de bosque a pasturas (densidad vegetal 90%) dieron lugar a un aumento de la escorrentía y erosión del 32% y 78%, respectivamente. (texto tomado de la fuente)This thesis has investigated the response of runoff and soil erosion under natural rainfall conditions and soil behavior in relation to use and management conditions in the Las Palmas watershed located in the central Andes of Colombia; through experimental work in rainfall-runoff plots with the measurement of precipitation, runoff, sediment entrainment, infiltration and percolation, using statistical correlation analysis methods, with the purpose of evaluating the susceptibility to water erosion during the period spanning from 14/10/2018 to 12/12/2018 catalogued as transition between the rainy and dry seasons. The results suggest that changes in land use dynamics from forest plot (vegetation density 100%) to cropland plot (vegetation density 5%) were associated with an increase in runoff of up to 33% and erosion of up to 87%. Changes from plot forest to pasture plot (vegetation density 90%) were associated with an increase in runoff and erosion of 32% and 78%, respectively.MaestríaMaestría en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambiente80 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaEscorrentíaAndisolesErosión hídricaUso del sueloEscorrentíaErosiónAndisolsErosionRunoffland useAndean mountainAndisolErosión hídricaUso del sueloEvaluación de la susceptibilidad a la erosión hídrica en Andisoles. Caso de estudio: Cuenca Las PalmasEvaluation of susceptibility to water erosion in Andisols. Case study: Las Palmas watershedTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbrisqueta, J. M., Plana, V., Mounzer, O. H., Mendez, J., & Ruiz-Sánchez, M. C. (2007). Effects of soil tillage on runoff generation in a Mediterranean apricot orchard. Agricultural Water Management, 93(1–2), 11–18. https://doi.org/10.1016/j.agwat.2007.06.002Alatorre, L. C., & Beguería, S. (2009). Los modelos de erosión: Una Revisión. C&G, May 2014, 29–48.Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., & Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of Colombia (1998–2005). Frontiers in Earth Science, 7(May). https://doi.org/10.3389/feart.2019.00092Ben-Hur, M., Yolcu, G., Uysal, H., Lado, M., & Paz, A. (2009). Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Australian Journal of Soil Research, 47(7), 688–696. https://doi.org/10.1071/SR09009Bond, W. (1998). Soil physical methods for estimating recharge - Part 3: Basic of Recharge and Discharge Series. CSIRO PUBLISHING.Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7Bryan, R. B., & Poesen, J. (1989). Laboratory experiments on the influence of slope length on runoff, percolation and rill development. Earth Surface Processes and Landforms, 14(3), 211–231. https://doi.org/10.1002/esp.3290140304Buol, S. W., Hole, F. D., & McCracken, R. J. (1989). Soil Genesis and Classification. Iowa State University Press. https://www.cambridge.org/core/article/soil-genesis-and-classification-3rd-edn-by-s-w-buol-f-d-hole-r-j-mccracken-xiv-446-pp-ames-iowa-state-university-press-1989-4495-hard-covers-isbn-0-8138-1462-6/8F7EBC3902D83FDF628F69469DDB0B1ACantón, Y., Domingo, F., Solé-Benet, A., & Puigdefábregas, J. (2001). Hydrological and erosion response of a badlands system in semiarid SE Spain. Journal of Hydrology, 252(1–4), 65–84. https://doi.org/10.1016/S0022-1694(01)00450-4Casamitjana, M., & Loaiza-Usuga, J. C. (2019). Capitulo 4. Propiedades físicas e hidrología en suelos derivados de cenizas volcánicas. In Movimientos en Masa (pp. 109–131).Cerdá, A. (1999). Simuladores de lluvia y su aplicación a la Geomorfología : Estado de la cuestión. In Cuadernos de Investigación Geográfica (Vol. 25, Issue 0, pp. 45–84). https://doi.org/10.18172/cig.1036Cerdà, A. (1995). Factores y variaciones espacio-temporales de la infiltracion en los ecosistemas mediterraneos (Geoforma E).Chow, V. Te, Maidment, D. R., & Mays, L. W. (1994). Chow, Maidment, Mays - 1994 - Hidrologia Aplicada.pdf (McGraw Hill (Ed.)).Climate Prediction Center - ONI. (n.d.). Retrieved April 21, 2021, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpComino, J. R., Ruiz Sinoga, J. D., Senciales González, J. M., Guerra-Merchán, A., Seeger, M., & Ries, J. B. (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). https://doi.org/10.1016/j.catena.2016.06.012Cosentino, D., Chenu, C., & Le Bissonnais, Y. (2006). Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biology & Biochemistry, 38, 2053–2062. https://doi.org/10.1016/j.soilbio.2005.12.022de Vente, J., Poesen, J., Verstraeten, G., Govers, G., Vanmaercke, M., Van Rompaey, A., Arabkhedri, M., & Boix-Fayos, C. (2013). Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth-Science Reviews, 127, 16–29. https://doi.org/https://doi.org/10.1016/j.earscirev.2013.08.014Defersha, M. B., & Melesse, A. M. (2011). Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. https://doi.org/10.1016/j.catena.2011.11.002Dingman, S. L. (2002). Physical hydrology (2nd ed). https://doi.org/10.1177/030913338701100407Donjadee, S., & Chinnarasri, C. (2012). Effects of rainfall intensity and slope gradient on the application of vetiver grass mulch in soil and water conservation. International Journal of Sediment Research, 27(2), 168–177. https://doi.org/10.1016/S1001-6279(12)60025-0Dörner, J., Huertas, J., Cuevas, J. G., Leiva, C., Paulino, L., & Arumí, J. L. (2015). Water content dynamics in a volcanic ash soil slope in southern Chile. Journal of Plant Nutrition and Soil Science, 178(4), 693–702. https://doi.org/10.1002/jpln.201500112Fang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.06.048Fu, Z., Li, Z., Cai, C., Shi, Z., Xu, Q., & Wang, X. (2011). Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma, 167–168, 41–53. https://doi.org/10.1016/j.geoderma.2011.08.013García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160–173. https://doi.org/10.1016/j.geomorph.2015.03.008Garcia, C., Batalla, R. J., Gallart, F., Caries Balasch, J., Regii6s, D., Soler, M., & Castelltort, X. (2005). Catchment Dynamics and River Processes: Mediterranean and Other Climate Regions Chapter 2 Catchment dynamics in a Mediterranean mountain environment: the Vallcebre research basins (southeastern Pyrenees) II: temporal and spatial dynamics of erosion and st.Gargouri-Ellouze, E., Eslamian, S., Ostad-Ali-Askari, K., Chérif, R., Bouteffeha, M., & Slama, F. (2017). Infiltration BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_169-1Gerlach, T. (1967). Hillslope troughs for measuring sediment movement. Revue de Geomorphologie Dynamique, 17, 173.Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: A plot-scale study. Catena, 85(1), 34–47. https://doi.org/10.1016/j.catena.2010.11.005Guerra, J., Rodríguez, A., Arbelo, C., & Mora, J. (2002). Erosión hídrica en andosoles de las Islas Canarias. Edafología, 9(1), 23–30.Gyssels, G., Poesen, J., Bochet, E., & Li, Y. (2005). Impact of plant roots on the resistance of soils to erosion by water : a review. 2, 189–217.Hermelin, M. (1992). Los suelos del oriente antioqueño un recurso no renovable. Bull. Inst. Fr. Études Andines, 21(1), 25–36.Holz, D. J., Williard, K. W. J., Edwards, P. J., & Schoonover, J. E. (2015). Soil Erosion in Humid Regions: A Review. Journal of Contemporary Water Research & Education, 154(1), 48–59. https://doi.org/10.1111/j.1936-704x.2015.03187.xHu, B., Wang, Y., Wang, B., Wang, Y., Liu, C., & Wang, C. (2018). Impact of drying-wetting cycles on the soil aggregate stability of Alfisols in southwestern China. Journal of Soil and Water Conservation, 73(4), 469–478. https://doi.org/10.2489/jswc.73.4.469Hussein, M. H., Kariem, T. H., & Othman, A. K. (2007). Predicting soil erodibility in northern Iraq using natural runoff plot data. Soil and Tillage Research, 94(1), 220–228. https://doi.org/https://doi.org/10.1016/j.still.2006.07.012Jaramillo Jaramillo, D. (2002). Introducción a la ciencia del suelo. In Introduccion a La Ciencia Del Suelo.Kinnell, P. I. A. (2005). Raindrop-impact-induced erosion processes and prediction: A review. Hydrological Processes, 19(14), 2815–2844. https://doi.org/10.1002/hyp.5788Knighton, D. (1998). Fluvial forms and processes : a new perspective. Arnold ; Oxford University Press.Kogo, B. K., Kumar, L., & Koech, R. (2020). Impact of Land Use/Cover Changes on Soil Erosion in Western Kenya. Sustainability, 12(22), 9740. https://doi.org/10.3390/su12229740Lal, R. (2000). Soil management in the developing countries. Soil Science, 165(1), 57–72. https://doi.org/10.1097/00010694-200001000-00008Lal, R. (2003). Soil erosion and the global carbon budget. Environment International, 29(4), 437–450. https://doi.org/10.1016/S0160-4120(02)00192-7Liu, B. Y., Nearing, M. A., Shi, P. J., & Jia, Z. W. (2000). Slope gradient effects on soil loss for steep slopes. Soil Science Society of America Journal, 37(6), 1759–1763. https://doi.org/10.13031/2013.28273Liu, J., Xu, C., Hu, F., Wang, Z., Ma, R., & Zhao, S. (2021). Effect of soil internal forces on fragment size distributions after aggregate breakdown and their relations to splash erosion. European Journal of Soil Science, ejss.13094. https://doi.org/10.1111/ejss.13094Loaiza-Usuga, J. C., León-Peláez, J. D., González-Hernández, M. I., Gallardo-Lancho, J. F., Osorio-Vega, W., & Correa-Londoño, G. (2013). Alterations in litter decomposition patterns in tropical montane forests of Colombia: A comparison of oak forests and coniferous plantations. Canadian Journal of Forest Research, 43(6), 528–533. https://doi.org/10.1139/cjfr-2012-0438Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008a). Calibration and multiple data set-based validation of a land surface model in a mountainous Mediterranean study area. Journal of Hydrology, 356(1–2), 223–233. https://doi.org/10.1016/j.jhydrol.2008.04.018Loaiza-Usuga, J. C., & Pauwels, V. R. N. (2008b). Utilización de sensores de humedad para la determinación del contenido de humedad del suelo: ecuaciones de calibración. Suelos Ecuatoriales, 38(1), 24–33.Loaiza-Usuga, J. C., & Poch, R. (2009). Evaluation of soil water balance components under different land uses in a mediterranean mountain catchment (Catalan pre-pyrenees NE Spain). Zeitschrift Fur Geomorphologie, 53(4), 519–537. https://doi.org/10.1127/0372-8854/2009/0053-0519Loaiza-Usuga, J. C., Poch, R., & Pauwels, V. R. N. (2015). Environmental Sustainability through Soil Conservation (J. C. Loaiza Usuga, A. Quinchia Figueroa, L. Osorio Bedoya, & I. Pla (Eds.); Issue September).Lozano-Parra, J., Schnabel, S., & Ceballos-Barbancho, A. (2015). The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. Journal of Hydrology, 529, 951–961. https://doi.org/10.1016/j.jhydrol.2015.09.018Ma, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., & Yang, W. (2015). Evaluation of soil aggregate microstructure and stability under wetting and drying cycles in two Ultisols using synchrotron-based X-ray micro-computed tomography. Soil and Tillage Research, 149, 1–11. https://doi.org/https://doi.org/10.1016/j.still.2014.12.016Ma, R. M., Li, Z. X., Cai, C. F., & Wang, J. G. (2014). The dynamic response of splash erosion to aggregate mechanical breakdown through rainfall simulation events in Ultisols (subtropical China). Catena, 121, 279–287. https://doi.org/10.1016/j.catena.2014.05.028Machado, J., Villegas-Palacio, C., Loaiza-Usuga, J. C., & Castañeda, D. A. (2019). Soil natural capital vulnerability to environmental change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators, 96, 116–126. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.08.060Mcdaniel, P. A., Lowe, D. J., Arnalds, O., Ping, C.-L., Huang, P. M., Li, Y., & Sumner, M. E. (2012). Handbook of Soil Sciences (Vol. 2). CRC Press.Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., & Gash, J. H. C. (2009). A review of rainfall interception modelling. In Journal of Hydrology (Vol. 370, Issues 1–4, pp. 191–206). https://doi.org/10.1016/j.jhydrol.2009.02.058Nanzyo, M. (2005). Unique properties of volcanic ash soil and perspective on their applicatios. Journal of Integrated Field Science, 2, 1–4.Neall, V. E. (2006). Volcanic soils. In Encyclopedia of Life Support Systems (EOLSS).: Vol. VII.Neves dos Santos, J. C., de Andrade, E. M., Augusto Medeiros, P. H., Simas Guerreiro, M. J., & de Queiroz Palácio, H. A. (2017). Effect of Rainfall Characteristics on Runoff and Water Erosion for Different Land Uses in a Tropical Semiarid Region. Water Resources Management, 31(1), 173–185. https://doi.org/10.1007/s11269-016-1517-1NSW Department of Primary Industries. (2005). Maintaining groundcover to reduce erosion and sustain production. In Agfact P2.1.14. www.dpi.nsw.gov.auOsman, K. T. (2014). Soil degradation, conservation and remediation. In Soil Degradation, Conservation and Remediation (Vol. 9789400775). https://doi.org/10.1007/978-94-007-7590-9Pan, C., & Shangguan, Z. (2006). Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. Journal of Hydrology, 331(1–2), 178–185. https://doi.org/10.1016/j.jhydrol.2006.05.011Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. CATENA, 147, 595–620. https://doi.org/https://doi.org/10.1016/j.catena.2016.08.002Parvizi, S., Eslamian, S., Ostad-Ali-Askari, K., Yazdani, A., & Singh, V. P. (2018). Percolation BT - Encyclopedia of Engineering Geology (P. Bobrowsky & B. Marker (Eds.); pp. 1–3). Springer International Publishing. https://doi.org/10.1007/978-3-319-12127-7_216-1Patin, J., Mouche, E., Ribolzi, O., Chaplot, V., Sengtahevanghoung, O., Latsachak, K. O., Soulileuth, B., & Valentin, C. (2012). Analysis of runoff production at the plot scale during a long-term survey of a small agricultural catchment in Lao PDR. Journal of Hydrology, 426–427, 79–92. https://doi.org/10.1016/j.jhydrol.2012.01.015Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117Pla. (1981). Simuladores De Lluvia Para El Estudio De Relaciones Suelo-Agua Bajo Agricultura De Secano En Los Tropicos. Rev.Fac.Agron.(Maracay), XII, 81–93.Pla. (1992a). La erosividad de los andisoles en Latino América. Suelos Ecuatoriales, 22 (1), 33–43.Pla. (2010). Medición y evaluación de propiedades físicas de los suelos: Dificultades y errores mas frecuentes. II - Propiedades hidrológicas. Suelos Ecuatoriales, 40(2), 94–127.Pla, I. (1992b). La erodabilidad de los Andisoles en Latinoamerica. Suelos Ecuatoriales, 22 (1), 33–43.Posada Garcia, L. (1994). Hidraulica Fluvial. In Transporte de sedimentos.Poveda, G. (2004). Hidroclimatologia de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Ciencias de La Tierra, XXVIII.Poveda, G. (2006). El Clima de Antioquia. In Geografía De Antioquia - Geografía Histórica, Física, Humana Y Económica (pp. 117–128).Poveda, G., Mesa, O. J., Agudelo, P. A., Álvarez, J. F., Arias, P. A., Moreno, H. A., Salazar, L. F., Toro, V. G., Vieira, S. C., Jaramillo, A., & Guzman, O. (2002). Diagnóstico del ciclo diurno de la precipitación en los Andes tropicales de Colombia. Meteorología Colombiana, 5, 23–30.Prosser, I. P., Dietrich, W. E., & Stevenson, J. (1995). Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1–4), 71–86. https://doi.org/10.1016/0169-555X(95)00020-6Ramos, M. C., Nacci, S., & Pla, I. (2003). Effect of raindrop impact and its relationship with aggregate stability to different disaggregation forces. Catena, 53(4), 365–376. https://doi.org/10.1016/S0341-8162(03)00086-9Sayer, E. J. (2006). Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society, 81(1), 1–31. https://doi.org/10.1017/S1464793105006846Schoonover, J. E., & Crim, J. F. (2015). An Introduction to Soil Concepts and the Role of Soils in Watershed Management. Journal of Contemporary Water Research & Education, 154(1), 21–47. https://doi.org/10.1111/j.1936-704x.2015.03186.xShoji, S., Dahlgren, R., & Nanzyo, M. (1993a). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0Shoji, S., Dahlgren, R., & Nanzyo, M. (1993b). Chapter 2 Morphology of Volcanic Ash Soils. Developments in Soil Science, 21(C), 7–35. https://doi.org/10.1016/S0166-2481(08)70263-0Sidle, R. C., & Ochiai, H. (2006). Landslides: Processes, Prediction, and Land Use.Suprayogo, D., van Noordwijk, M., Hairiah, K., Meilasari, N., Rabbani, A. L., Ishaq, R. M., & Widianto, W. (2020). Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land, 9(8), 240. https://doi.org/10.3390/land9080240Suryatmojo, H. (2014). Recovery of Forest Soil Disturbance in the Intensive Forest Management System. Procedia Environmental Sciences, 20, 832–840. https://doi.org/10.1016/j.proenv.2014.03.101Tuset, J., Vericat, D., & Batalla, R. J. (2016). Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment. Science of the Total Environment, 540, 114–132. https://doi.org/10.1016/j.scitotenv.2015.07.075Unidad Nacional para la Gestión del Riesgo de Desastres. (2016). Unidad Nacional para la Gestión del Riesgo de Desastres |Objetivos y funciones. http://portal.gestiondelriesgo.gov.co/Paginas/Objetivos.aspxVaezi, A. R., Ahmadi, M., & Cerdà, A. (2017). Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Science of the Total Environment, 583, 382–392. https://doi.org/10.1016/j.scitotenv.2017.01.078Verdú, J. M., Batalla, R. J., & Poch, R. (2000). Dinámica erosiva y aplicabilidad de modelos físicos de erosión en una cuenca de montaña mediterránea (Ribera Salada, Cuenca del Segre, Lleida, España). Pirineos, 155(0), 37–57. https://doi.org/10.3989/pirineos.2000.v155.87Warren, S. D., Thurow, T. L., Blackburn, W. H., & Garza, N. E. (1986). The Influence of Livestock Trampling under Intensive Rotation Grazing on Soil Hydrologic Characteristics. Journal of Range Management, 39(6), 491. https://doi.org/10.2307/3898755Wilks, D. S. (2005). Statistical Methods in the Atmospheric Sciences. In Encyclopedia of Ecology, Five-Volume Set (2nd ed.).Wu, L., Zeng, C., Li, Y., Tian, Y., Wang, S., Luo, G., Bai, X., & Li, Y. (2017). Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS. Solid Earth, 8(4), 721–736. https://doi.org/10.5194/se-8-721-2017Zapata, R. ., & Loaiza-Usuga, J. C. (2014). Estudio semi detallado de suelos de la zona 13 del municipio de Envigado con fines de uso potencial (Instituto de Estudios Ambientales, Universidad Nacional de Colombia – Sede Medellin, & Municipio de Envigado (Eds.)).Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of Rainfall Intensity and Vegetation Cover on Erosion Characteristics of a Soil Containing Rock Fragments Slope. Advances in Civil Engineering, 2019. https://doi.org/10.1155/2019/7043428EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85449/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL11028424402023.pdf11028424402023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf4221065https://repositorio.unal.edu.co/bitstream/unal/85449/4/11028424402023.pdf5205f3dab9e8381baeb95d0a7521afbdMD54THUMBNAIL11028424402023.pdf.jpg11028424402023.pdf.jpgGenerated Thumbnailimage/jpeg5089https://repositorio.unal.edu.co/bitstream/unal/85449/5/11028424402023.pdf.jpgd723f008b2c130958632f7d539952943MD55unal/85449oai:repositorio.unal.edu.co:unal/854492024-08-21 23:14:17.982Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |