Characterization of number fields by their integral trace form
We prove that the integral trace form is a complete invariant for totally real number fields of fundamental discriminant. We also study the relations of this invariant with the trace-zero form and the shape of a number field, and give analog results for such invariants. As a consequence, we settle a...
- Autores:
-
Rivera Guaca, Carlos Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/76670
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/76670
http://bdigital.unal.edu.co/73309/
- Palabra clave:
- Trace form
Totally real number fields
Shapes of number fields
Casimir invariant
Higher composition laws
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fba2c7de57fb9613573d546bbfbe9d25 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/76670 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mantilla Soler, GuillermoRodriguez Vega, John JaimeRivera Guaca, Carlos Andrésdd5dff07-c166-429d-b4db-ab13c48f22113002020-03-30T06:24:29Z2020-03-30T06:24:29Z2018-11https://repositorio.unal.edu.co/handle/unal/76670http://bdigital.unal.edu.co/73309/We prove that the integral trace form is a complete invariant for totally real number fields of fundamental discriminant. We also study the relations of this invariant with the trace-zero form and the shape of a number field, and give analog results for such invariants. As a consequence, we settle a conjecture from 2012 by Mantilla-Soler about tamely ramified quartic fields of fundamental discriminant. Our method of proof is based on what we call Casimir elements and Casimir pairings, new tools we introduce in this work, which are related to (and generalize) the Casimir elements from the representation theory of Lie algebras. Additionally, we give an alternative proof of this conjecture via Bhargava's parametrization of quartic rings.Resumen: Probamos que la forma traza entera es un invariante completo para cuerpos de números totalmente reales de discriminante fundamental, también estudiamos la relación de este invariante con la forma traza-cero y la forma geométrica de un cuerpo de números, y damos resultados análogos para estos invariantes. Como consecuencia, probamos una conjetura del 2012 propuesta por Mantilla-soler sobre cuerpos cuarticos moderadamente ramificados de discriminante fundamental. Nuestro método de prueba se basa en lo que llamamos elementos de Casimir y emparejamientos de Casimir, herramientas nuevas introducidas en este trabajo, las cuales están relacionadas con (y generalizan) los elementos de Casimir de la teoría de representación de álgebras de Lie. Adicionalmente, damos una prueba alternativa de esta conjetura via la parametrización de anillos cuárticos de Bhargava.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de MatemáticasDepartamento de Matemáticas51 Matemáticas / MathematicsRivera Guaca, Carlos Andrés (2018) Characterization of number fields by their integral trace form. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.Characterization of number fields by their integral trace formTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMTrace formTotally real number fieldsShapes of number fieldsCasimir invariantHigher composition lawsORIGINALThesis.ms.pdfapplication/pdf722277https://repositorio.unal.edu.co/bitstream/unal/76670/1/Thesis.ms.pdf144e906240476cb1bbe050a0a17080e4MD51THUMBNAILThesis.ms.pdf.jpgThesis.ms.pdf.jpgGenerated Thumbnailimage/jpeg4347https://repositorio.unal.edu.co/bitstream/unal/76670/2/Thesis.ms.pdf.jpg293e386011be8f6b18135bde988e616fMD52unal/76670oai:repositorio.unal.edu.co:unal/766702024-07-14 01:05:19.139Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Characterization of number fields by their integral trace form |
title |
Characterization of number fields by their integral trace form |
spellingShingle |
Characterization of number fields by their integral trace form Trace form Totally real number fields Shapes of number fields Casimir invariant Higher composition laws |
title_short |
Characterization of number fields by their integral trace form |
title_full |
Characterization of number fields by their integral trace form |
title_fullStr |
Characterization of number fields by their integral trace form |
title_full_unstemmed |
Characterization of number fields by their integral trace form |
title_sort |
Characterization of number fields by their integral trace form |
dc.creator.fl_str_mv |
Rivera Guaca, Carlos Andrés |
dc.contributor.author.spa.fl_str_mv |
Rivera Guaca, Carlos Andrés |
dc.contributor.spa.fl_str_mv |
Mantilla Soler, Guillermo Rodriguez Vega, John Jaime |
dc.subject.proposal.spa.fl_str_mv |
Trace form Totally real number fields Shapes of number fields Casimir invariant Higher composition laws |
topic |
Trace form Totally real number fields Shapes of number fields Casimir invariant Higher composition laws |
description |
We prove that the integral trace form is a complete invariant for totally real number fields of fundamental discriminant. We also study the relations of this invariant with the trace-zero form and the shape of a number field, and give analog results for such invariants. As a consequence, we settle a conjecture from 2012 by Mantilla-Soler about tamely ramified quartic fields of fundamental discriminant. Our method of proof is based on what we call Casimir elements and Casimir pairings, new tools we introduce in this work, which are related to (and generalize) the Casimir elements from the representation theory of Lie algebras. Additionally, we give an alternative proof of this conjecture via Bhargava's parametrization of quartic rings. |
publishDate |
2018 |
dc.date.issued.spa.fl_str_mv |
2018-11 |
dc.date.accessioned.spa.fl_str_mv |
2020-03-30T06:24:29Z |
dc.date.available.spa.fl_str_mv |
2020-03-30T06:24:29Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/76670 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/73309/ |
url |
https://repositorio.unal.edu.co/handle/unal/76670 http://bdigital.unal.edu.co/73309/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Matemáticas Departamento de Matemáticas |
dc.relation.haspart.spa.fl_str_mv |
51 Matemáticas / Mathematics |
dc.relation.references.spa.fl_str_mv |
Rivera Guaca, Carlos Andrés (2018) Characterization of number fields by their integral trace form. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/76670/1/Thesis.ms.pdf https://repositorio.unal.edu.co/bitstream/unal/76670/2/Thesis.ms.pdf.jpg |
bitstream.checksum.fl_str_mv |
144e906240476cb1bbe050a0a17080e4 293e386011be8f6b18135bde988e616f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089335073406976 |