Diversidad genética de bananos y bananitos con microsatélites fluorescentes
Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collecti...
- Autores:
-
Gutierrez Salamanca, Madeleine Lieset
- Tipo de recurso:
- Informe
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/78310
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/78310
- Palabra clave:
- Diversidad genética
marcadores moleculares
Musáceas
simple sequence repeats
SSR
Genetic diversity
molecular markers
Musaceas
simple sequence repeats
SSR
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_fb9e0926b94e980cec384c76836bd96c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/78310 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
title |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
spellingShingle |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes Diversidad genética marcadores moleculares Musáceas simple sequence repeats SSR Genetic diversity molecular markers Musaceas simple sequence repeats SSR |
title_short |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
title_full |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
title_fullStr |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
title_full_unstemmed |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
title_sort |
Diversidad genética de bananos y bananitos con microsatélites fluorescentes |
dc.creator.fl_str_mv |
Gutierrez Salamanca, Madeleine Lieset |
dc.contributor.advisor.spa.fl_str_mv |
Muñoz Florez, Jaime Eduardo Caicedo Arana, Alvaro |
dc.contributor.author.spa.fl_str_mv |
Gutierrez Salamanca, Madeleine Lieset |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional sede palmira |
dc.subject.proposal.spa.fl_str_mv |
Diversidad genética marcadores moleculares Musáceas simple sequence repeats SSR |
topic |
Diversidad genética marcadores moleculares Musáceas simple sequence repeats SSR Genetic diversity molecular markers Musaceas simple sequence repeats SSR |
dc.subject.proposal.eng.fl_str_mv |
Genetic diversity molecular markers Musaceas simple sequence repeats SSR |
description |
Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collection of Musa spp. that are part of the germplasm bank of the Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), were evaluated by twelve fluorescent microsatellite molecular markers (SSR). A total of 206 alleles were identified, with a polymorphic information content (PIC) average of 0.106 and a marker index (IM) average of 1.377, indicating the presence of polymorphic and informative markers. The expected heterozygocity and number of alleles were superior in banana and ornamentals (He=0.836–Na=14.1 y He=0.848–Na=8.5, respectively), while bananitos presented inferior values (He=0.569–Na=6.25). The dissimilarity analysis allowed to identify possible duplicate accessions, given its identical genetic profile as: NATU08, NATU09, SABO03 y SABO01. Cluster and structure analysis identified three highly differentiated population groups, one formatted by bananitos, and the other two by banana of commercial cultivars and banana with wild characteristics plus ornamental ones. In conclusion, the collection presents a high genetic diversity mainly in the banana and ornamentals and in smaller amounts in bananitos; likewise, it is divided into discrete populations with high identity and low gene flow. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-05-16 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-28T16:09:42Z |
dc.date.available.spa.fl_str_mv |
2020-08-28T16:09:42Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_93fc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/78310 |
identifier_str_mv |
Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020. |
url |
https://repositorio.unal.edu.co/handle/unal/78310 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alcántara, M. R. (2007). Breve revisión de los marcadores moleculares. Ecología Molecular, 541–566. Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2004). La economía mundial del banano: 1985-2002. Fao. Retrieved from https://books.google.es/books?id=vaNJC7-F5WIC Arteaga, F. (2015). Origen y evolución del banano. Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers, 11(26), 6769–6775. https://doi.org/10.5897/AJB10.1319 Becerra, V., & Paredes, M. (2000). Use of biochemical and molecular markers in genetic diversity studies. Retrieved from https://dx.doi.org/10.4067/S0365-28072000000300007 Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6247908 Bregård, A., Vu, P., Geitvik, G., & Børresen-Dale, A. L. (2000). Promising method for DNA extraction from paraffin embedded archive material. In Breast Cancer Research (Vol. 2, pp. P8-01). Springer. Caicedo, A. (2015). Caracterización y evaluación morfológica, física y química de introducciones del banco de germoplasma de musáceas en el Centro de Investigación Corpoica Palmira. Castillo, Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa ’saba’(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1), 202–207. Creste, S., Benatti, T., Orsi, M., Risterucci, A., & Figueira, A. (2006). Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata, 303–306. https://doi.org/10.1111/j.1471-8286.2005.01209.x Cruz, C. D., Salgado, C. C., & Bhering, L. L. (2014). Chapter 3 - Biometrics Applied to Molecular Analysis in Genetic Diversity BT - Biotechnology and Plant Breeding (pp. 47–81). San Diego: Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-418672-9.00003-9 Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.” BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-683 Fundacion Hondureña de Investigacion Agricola. (n.d.). No Title. Retrieved December 13, 2019, from http://fhia.org.hn/ Fundacion Hondureña de Investigacion Agricola. (1990). Banano fhia-01, (504), 1–4. Giraldo, D., & Montoya, N. (2012). Manual para el cultivo de banano en la zona cafetera. Rionegro. Gonzalez, E. (2008). Análisis de la diversidad genética en poblaciones naturales de especies vegetales amenzadas : Ilex perado ssp. lopezlilloi (Aquifoliaceae), Silene nocteolens (Caryophyllaceae) y Sorbus aria (Rosaceae). Resultados Preliminares. Gonzalez, L. (2008). Evaluación de la diversidad genética en una colección de germoplasma de fríjol común (Phaseolus vulgaris L.) de ruanda (áfrica) de germoplasma de fríjol común (Phaseolus vulgaris L.). Hippolyte, I., Jenny, C., Gardes, L., Bakry, F., Rivallan, R., Pomies, V., Perrier, X. (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 109(5), 937–951. https://doi.org/10.1093/aob/mcs010 Hopp, H. E., & Hopp, E. (2014). Curso Fitopatología Molecular 2012 Marcadores Moleculares. Infoagronomo. (2018). Partes de la planta de banano. Retrieved from https://www.facebook.com/infoagronomo/photos/partes-de-la-planta-de-banano/1408548909277227/ IPGRI, Cornell University, De Vicente, C., Lopez, C., & Fulton, T. (2004). Análisis de la Diversidad Genética Utilizando Datos de Marcadores Moleculares. Irish, B. M., Cuevas, H. E., Simpson, S. A., Scheffler, B. E., Sardos, J., Ploetz, R., & Goenaga, R. (2014). Musa spp . Germplasm Management : Microsatellite Fingerprinting of USDA – ARS National Plant Germplasm System Collection, (october). https://doi.org/10.2135/cropsci2014.02.0101 Isneider, G. (2016). El plátano , una alternativa de diversificación de cultivos y generación de nuevos ingresos en pro del aporte a la seguridad alimentaria del municipio de Planadas Tolima. Jain, S. M., & Priyadarshan, P. M. (2009). Breeding plantation tree crops: Tropical species. Breeding Plantation Tree Crops: Tropical Species. https://doi.org/10.1007/978-0-387-71201-7 Kaemmer, D., Fischer, D., Jarret, R. L., Baurens, F. C., Grapin, A., Dambier, D., Lagoda, P. J. L. (1997). Molecular breeding in the genus Musa: A strong case for STMS marker technology. Euphytica, 96(1), 49–63. https://doi.org/10.1023/A:1002922016294 Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 Kopelman, N. M., Mayzel, J., Jakobsson, Mattias Rosenberg, N. A., & Mayrose, I. (2009). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Lacuna-Richman, C. (2002). The role of abaca (Musa textilis) in the household economy of a forest village. Small-scale Forest Economics, Management and Policy (Vol. 1). Springer. Langhe, E. De, Hr, E., & Christelova, P. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity, 801–824. https://doi.org/10.1007/s10531-016-1273-9 Langhe, E. De, Vrydaghs, L., De, P., Perrier, X., & Denham, T. (2009). Why Bananas Matter : An introduction to the history of banana domestication, 7, 165–177. Madesis, P., Ganopoulos, I., & Tsaftaris, A. (2013). Microsatellites: Evolution and Contribution. In K. S. Kantartzi (Ed.), Microsatellites: Methods and Protocols (pp. 1–13). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-389-3_1 Manzo, G., Buenrostro, M. T., Guzmán, S., Orozco, M., Youssef, M., Escobedo, R. M., & Medrano, G. (2015). Genetic Diversity in Bananas and Plantains (Musa spp.). Molecular Approaches to Genetic Diversity. https://doi.org/10.5772/59421 Messmer, M. M., Melchinger, A. E., Boppenmaier, J., Herrmann, R. G., & Brunklaus-Jung, E. (1992). RFLP analyses of early-maturing European maize germ plasm. Ministerio de Agricultura. (2017). No Title. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspx Moens, J., J.A., S., J.V, E., & Waele, D. De. (1997). Evaluation of the progeny from a cross between ‘Pisang Berlin’ and M. acuminata spp. burmannicoides ‘Calcutta 4’ for evidence of segregation with respect to resistance to black leaf streak disease and nematodes. Distribution, 11. Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323. Nunes de Jesus, O., Oliveira, S. De, Amorim, E. P., Ferreira, C. F., Marcello, J., Campos, S. De, Figueira, A. (2013). Genetic diversity and population structure of Musa accessions in ex situ conservation. Núñez, C., & Escobedo, D. (2011). Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agronomía Mesoamericana, 22(2), 415–427. Organización para las naciones unidas para la alimentacion y la agricultura. (2018). Estadisticas sobre alimentación y agricultura. Retrieved from http://www.fao.org/statistics/es/ Ospina, A., Marco, H., & Calvo, T. (2018). Elaboró : Alejandra Ospina Hoyos Marco Tulio Calvo Sánchez. Perrier, X., & Jacquemoud-Collet, J. P. (2006). DARwin Software. Pritchard, J. K., Stephens, M., & Donnelly, P. (2016). Pritchard, Stephens, and Donnelly on Population Structure, 204, 391–393. https://doi.org/10.1534/genetics.116.195164 ProMusa. (2016). Mobilizing banana science for sustainable livelihoods. Retrieved from http://www.promusa.org/Morfología+de+la+planta+del+banano Rajeev K. Varshney, Kamel Chabane, Prasad S. Hendre, Ramesh K. Aggarwal, Andreas Graner. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. 638-649. Ray Rowe, P. (2002). (19) United States (12) Plant Patent Application Publication (10) Pub . No.: US 2002 / 0002717 P1, 1(1). Rocha, P. J. (2003). Marcadores moleculares, una herramienta útil para la selección genética de palma de aceite Molecular Markers, an Useful Tool for Cenetic Selection in Oil Palm Palabras Claves. Palmas, 24(42), 11–25. Romero, R. A., & Sutton, T. B. (1997). Reaction of four Musa genotypes at three temperatures to isolates of Mycosphaerella fijiensis from different geographical regions. Plant Disease, 81(10), 1139–1142. https://doi.org/10.1094/PDIS.1997.81.10.1139 Saitou N, Nei M. "The neighbor-joining method: a new method for reconstructing phylogenetic trees."Molecular Biology and Evolution, volumen 4, expedición 4, pp. 406-425, 1987. Singh, N., Wu, S., Raupp, W. J., Sehgal, S., Arora, S., Tiwari, V., Poland, J. (2019). Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37269-0 Smith, M. K., Langdon, P. W., Pegg, K. G., & Daniells, J. W. (2014). Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics. Scientia Horticulturae, 170, 176–181. https://doi.org/10.1016/j.scienta.2014.02.029 Smouse, P. E., & Peakall, R. (2006). Appendix 1 – Methods and Statistics in GenAlEx 6 . 5, 502, 1–26. Suganthagunthalam, D., Elsen, A., & Waele, D. De. (2010). Identification of combined resistance to Radopholus similis and Meloidogyne incognita in Musa germplasm. Journal of Nematology, 20(1), 19–26. Trochez Solarte, J. D., Ruiz Erazo, X., Almanza Pinzon, M., & Zambrano Gonzalez, G. (2019). Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Research, 8, 1424. https://doi.org/10.12688/f1000research.20052.1 Ude, G., Pillay, M., Nwakanma, D., & Tenkouano, A. (2002). Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theoretical and Applied Genetics, 104(8), 1239–1245. https://doi.org/10.1007/s00122-001-0802-3 Uma, S., Mustaffa, M. M., Saraswathi, M. S., & Durai, P. (2011). Exploitation of diploids in Indian banana breeding programmes. Acta Horticulturae, 897, 215–224. Villardon, L. V. (n.d.). Introduccion al analisis de cluster, 1–22. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas |
dc.publisher.department.spa.fl_str_mv |
Maestría en Ciencias Biológicas |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/78310/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/78310/1/TESIS%2026-08-2020%20UV.pdf https://repositorio.unal.edu.co/bitstream/unal/78310/3/TESIS%2026-08-2020%20UV.pdf.jpg |
bitstream.checksum.fl_str_mv |
e2f63a891b6ceb28c3078128251851bf 1ca750c46a59fe31e3a21ed425fd7160 2a0babde09e19f3716a452208a79ee22 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089214402232320 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Florez, Jaime Eduardo0d0f912e-5d4a-4351-b5b1-348a4ab59ff4-1Caicedo Arana, Alvaro406696e8-235a-4d6f-b485-62e8df63a226-1Gutierrez Salamanca, Madeleine Lieset4808aab8-1415-427f-ab7e-bd3b649f26bbUniversidad Nacional sede palmira2020-08-28T16:09:42Z2020-08-28T16:09:42Z2017-05-16Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020.https://repositorio.unal.edu.co/handle/unal/78310Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collection of Musa spp. that are part of the germplasm bank of the Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), were evaluated by twelve fluorescent microsatellite molecular markers (SSR). A total of 206 alleles were identified, with a polymorphic information content (PIC) average of 0.106 and a marker index (IM) average of 1.377, indicating the presence of polymorphic and informative markers. The expected heterozygocity and number of alleles were superior in banana and ornamentals (He=0.836–Na=14.1 y He=0.848–Na=8.5, respectively), while bananitos presented inferior values (He=0.569–Na=6.25). The dissimilarity analysis allowed to identify possible duplicate accessions, given its identical genetic profile as: NATU08, NATU09, SABO03 y SABO01. Cluster and structure analysis identified three highly differentiated population groups, one formatted by bananitos, and the other two by banana of commercial cultivars and banana with wild characteristics plus ornamental ones. In conclusion, the collection presents a high genetic diversity mainly in the banana and ornamentals and in smaller amounts in bananitos; likewise, it is divided into discrete populations with high identity and low gene flow.El banano (Musa spp.) es fundamental para la economía de países en desarrollo. Por estas razones, la caracterización de la diversidad genética de Musáceas es esencial para el manejo y aprovechamiento de los recursos genéticos. En el presente estudio se evaluaron 99 accesiones de la colección de Musa spp., que hacen parte del banco de germoplasma de la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), por medio de doce microsatélites fluorescentes (SSR). Un total de 206 alelos fueron identificados, con un contenido de información polimórfica (PIC) promedio de 0.106 y un índice de marcador (IM) promedio de 1.377, indicando la presencia de marcadores polimórficos e informativos. La heterocigosidad esperada y número de alelos fue superior en los bananos y ornamentales (He=0.836 – Na= 14.1 y He=0.848 – Na= 8.5, respectivamente), mientras que los bananitos presentaron valores inferiores (He=0.569 – Na= 6.25). El análisis de disimilaridad permitió identificar posibles accesiones duplicadas, dado su perfil genético idéntico como: NATU08, NATU09, SABO03 y SABO01. El análisis de conglomerados y de estructura identificó tres grupos poblacionales altamente diferenciados, uno conformado por bananitos, y los otros dos por bananos de cultivares comerciales y bananos con características silvestres más las ornamentales. En conclusión, la colección presenta una alta diversidad genética distribuida principalmente en los bananos y ornamentales, y en menor medida en los bananitos; igualmente, se encuentra dividida en poblaciones discretas con una alta pertenencia y un escaso flujo genético.Maestríaapplication/pdfspaDiversidad genética de bananos y bananitos con microsatélites fluorescentesDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPPalmira - Ciencias Agropecuarias - Maestría en Ciencias BiológicasMaestría en Ciencias BiológicasUniversidad Nacional de Colombia - Sede PalmiraAlcántara, M. R. (2007). Breve revisión de los marcadores moleculares. Ecología Molecular, 541–566.Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2004). La economía mundial del banano: 1985-2002. Fao. Retrieved from https://books.google.es/books?id=vaNJC7-F5WICArteaga, F. (2015). Origen y evolución del banano.Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers, 11(26), 6769–6775. https://doi.org/10.5897/AJB10.1319Becerra, V., & Paredes, M. (2000). Use of biochemical and molecular markers in genetic diversity studies. Retrieved from https://dx.doi.org/10.4067/S0365-28072000000300007Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6247908Bregård, A., Vu, P., Geitvik, G., & Børresen-Dale, A. L. (2000). Promising method for DNA extraction from paraffin embedded archive material. In Breast Cancer Research (Vol. 2, pp. P8-01). Springer.Caicedo, A. (2015). Caracterización y evaluación morfológica, física y química de introducciones del banco de germoplasma de musáceas en el Centro de Investigación Corpoica Palmira.Castillo, Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa ’saba’(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1), 202–207.Creste, S., Benatti, T., Orsi, M., Risterucci, A., & Figueira, A. (2006). Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata, 303–306. https://doi.org/10.1111/j.1471-8286.2005.01209.xCruz, C. D., Salgado, C. C., & Bhering, L. L. (2014). Chapter 3 - Biometrics Applied to Molecular Analysis in Genetic Diversity BT - Biotechnology and Plant Breeding (pp. 47–81). San Diego: Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-418672-9.00003-9Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.” BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-683Fundacion Hondureña de Investigacion Agricola. (n.d.). No Title. Retrieved December 13, 2019, from http://fhia.org.hn/Fundacion Hondureña de Investigacion Agricola. (1990). Banano fhia-01, (504), 1–4.Giraldo, D., & Montoya, N. (2012). Manual para el cultivo de banano en la zona cafetera. Rionegro.Gonzalez, E. (2008). Análisis de la diversidad genética en poblaciones naturales de especies vegetales amenzadas : Ilex perado ssp. lopezlilloi (Aquifoliaceae), Silene nocteolens (Caryophyllaceae) y Sorbus aria (Rosaceae). Resultados Preliminares.Gonzalez, L. (2008). Evaluación de la diversidad genética en una colección de germoplasma de fríjol común (Phaseolus vulgaris L.) de ruanda (áfrica) de germoplasma de fríjol común (Phaseolus vulgaris L.).Hippolyte, I., Jenny, C., Gardes, L., Bakry, F., Rivallan, R., Pomies, V., Perrier, X. (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 109(5), 937–951. https://doi.org/10.1093/aob/mcs010Hopp, H. E., & Hopp, E. (2014). Curso Fitopatología Molecular 2012 Marcadores Moleculares.Infoagronomo. (2018). Partes de la planta de banano. Retrieved from https://www.facebook.com/infoagronomo/photos/partes-de-la-planta-de-banano/1408548909277227/IPGRI, Cornell University, De Vicente, C., Lopez, C., & Fulton, T. (2004). Análisis de la Diversidad Genética Utilizando Datos de Marcadores Moleculares.Irish, B. M., Cuevas, H. E., Simpson, S. A., Scheffler, B. E., Sardos, J., Ploetz, R., & Goenaga, R. (2014). Musa spp . Germplasm Management : Microsatellite Fingerprinting of USDA – ARS National Plant Germplasm System Collection, (october). https://doi.org/10.2135/cropsci2014.02.0101Isneider, G. (2016). El plátano , una alternativa de diversificación de cultivos y generación de nuevos ingresos en pro del aporte a la seguridad alimentaria del municipio de Planadas Tolima.Jain, S. M., & Priyadarshan, P. M. (2009). Breeding plantation tree crops: Tropical species. Breeding Plantation Tree Crops: Tropical Species. https://doi.org/10.1007/978-0-387-71201-7Kaemmer, D., Fischer, D., Jarret, R. L., Baurens, F. C., Grapin, A., Dambier, D., Lagoda, P. J. L. (1997). Molecular breeding in the genus Musa: A strong case for STMS marker technology. Euphytica, 96(1), 49–63. https://doi.org/10.1023/A:1002922016294Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199Kopelman, N. M., Mayzel, J., Jakobsson, Mattias Rosenberg, N. A., & Mayrose, I. (2009). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K.Lacuna-Richman, C. (2002). The role of abaca (Musa textilis) in the household economy of a forest village. Small-scale Forest Economics, Management and Policy (Vol. 1). Springer.Langhe, E. De, Hr, E., & Christelova, P. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity, 801–824. https://doi.org/10.1007/s10531-016-1273-9Langhe, E. De, Vrydaghs, L., De, P., Perrier, X., & Denham, T. (2009). Why Bananas Matter : An introduction to the history of banana domestication, 7, 165–177.Madesis, P., Ganopoulos, I., & Tsaftaris, A. (2013). Microsatellites: Evolution and Contribution. In K. S. Kantartzi (Ed.), Microsatellites: Methods and Protocols (pp. 1–13). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-389-3_1Manzo, G., Buenrostro, M. T., Guzmán, S., Orozco, M., Youssef, M., Escobedo, R. M., & Medrano, G. (2015). Genetic Diversity in Bananas and Plantains (Musa spp.). Molecular Approaches to Genetic Diversity. https://doi.org/10.5772/59421Messmer, M. M., Melchinger, A. E., Boppenmaier, J., Herrmann, R. G., & Brunklaus-Jung, E. (1992). RFLP analyses of early-maturing European maize germ plasm.Ministerio de Agricultura. (2017). No Title. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspxMoens, J., J.A., S., J.V, E., & Waele, D. De. (1997). Evaluation of the progeny from a cross between ‘Pisang Berlin’ and M. acuminata spp. burmannicoides ‘Calcutta 4’ for evidence of segregation with respect to resistance to black leaf streak disease and nematodes. Distribution, 11.Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.Nunes de Jesus, O., Oliveira, S. De, Amorim, E. P., Ferreira, C. F., Marcello, J., Campos, S. De, Figueira, A. (2013). Genetic diversity and population structure of Musa accessions in ex situ conservation.Núñez, C., & Escobedo, D. (2011). Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agronomía Mesoamericana, 22(2), 415–427.Organización para las naciones unidas para la alimentacion y la agricultura. (2018). Estadisticas sobre alimentación y agricultura. Retrieved from http://www.fao.org/statistics/es/Ospina, A., Marco, H., & Calvo, T. (2018). Elaboró : Alejandra Ospina Hoyos Marco Tulio Calvo Sánchez.Perrier, X., & Jacquemoud-Collet, J. P. (2006). DARwin Software.Pritchard, J. K., Stephens, M., & Donnelly, P. (2016). Pritchard, Stephens, and Donnelly on Population Structure, 204, 391–393. https://doi.org/10.1534/genetics.116.195164ProMusa. (2016). Mobilizing banana science for sustainable livelihoods. Retrieved from http://www.promusa.org/Morfología+de+la+planta+del+bananoRajeev K. Varshney, Kamel Chabane, Prasad S. Hendre, Ramesh K. Aggarwal, Andreas Graner. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. 638-649.Ray Rowe, P. (2002). (19) United States (12) Plant Patent Application Publication (10) Pub . No.: US 2002 / 0002717 P1, 1(1).Rocha, P. J. (2003). Marcadores moleculares, una herramienta útil para la selección genética de palma de aceite Molecular Markers, an Useful Tool for Cenetic Selection in Oil Palm Palabras Claves. Palmas, 24(42), 11–25.Romero, R. A., & Sutton, T. B. (1997). Reaction of four Musa genotypes at three temperatures to isolates of Mycosphaerella fijiensis from different geographical regions. Plant Disease, 81(10), 1139–1142. https://doi.org/10.1094/PDIS.1997.81.10.1139Saitou N, Nei M. "The neighbor-joining method: a new method for reconstructing phylogenetic trees."Molecular Biology and Evolution, volumen 4, expedición 4, pp. 406-425, 1987.Singh, N., Wu, S., Raupp, W. J., Sehgal, S., Arora, S., Tiwari, V., Poland, J. (2019). Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37269-0Smith, M. K., Langdon, P. W., Pegg, K. G., & Daniells, J. W. (2014). Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics. Scientia Horticulturae, 170, 176–181. https://doi.org/10.1016/j.scienta.2014.02.029Smouse, P. E., & Peakall, R. (2006). Appendix 1 – Methods and Statistics in GenAlEx 6 . 5, 502, 1–26.Suganthagunthalam, D., Elsen, A., & Waele, D. De. (2010). Identification of combined resistance to Radopholus similis and Meloidogyne incognita in Musa germplasm. Journal of Nematology, 20(1), 19–26.Trochez Solarte, J. D., Ruiz Erazo, X., Almanza Pinzon, M., & Zambrano Gonzalez, G. (2019). Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Research, 8, 1424. https://doi.org/10.12688/f1000research.20052.1Ude, G., Pillay, M., Nwakanma, D., & Tenkouano, A. (2002). Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theoretical and Applied Genetics, 104(8), 1239–1245. https://doi.org/10.1007/s00122-001-0802-3Uma, S., Mustaffa, M. M., Saraswathi, M. S., & Durai, P. (2011). Exploitation of diploids in Indian banana breeding programmes. Acta Horticulturae, 897, 215–224.Villardon, L. V. (n.d.). Introduccion al analisis de cluster, 1–22.Diversidad genéticamarcadores molecularesMusáceassimple sequence repeatsSSRGenetic diversitymolecular markersMusaceassimple sequence repeatsSSRLICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78310/2/license.txte2f63a891b6ceb28c3078128251851bfMD52ORIGINALTESIS 26-08-2020 UV.pdfTESIS 26-08-2020 UV.pdfapplication/pdf2239042https://repositorio.unal.edu.co/bitstream/unal/78310/1/TESIS%2026-08-2020%20UV.pdf1ca750c46a59fe31e3a21ed425fd7160MD51THUMBNAILTESIS 26-08-2020 UV.pdf.jpgTESIS 26-08-2020 UV.pdf.jpgGenerated Thumbnailimage/jpeg4514https://repositorio.unal.edu.co/bitstream/unal/78310/3/TESIS%2026-08-2020%20UV.pdf.jpg2a0babde09e19f3716a452208a79ee22MD53unal/78310oai:repositorio.unal.edu.co:unal/783102024-07-09 23:21:07.081Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |