Diversidad genética de bananos y bananitos con microsatélites fluorescentes

Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collecti...

Full description

Autores:
Gutierrez Salamanca, Madeleine Lieset
Tipo de recurso:
Informe
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/78310
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/78310
Palabra clave:
Diversidad genética
marcadores moleculares
Musáceas
simple sequence repeats
SSR
Genetic diversity
molecular markers
Musaceas
simple sequence repeats
SSR
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fb9e0926b94e980cec384c76836bd96c
oai_identifier_str oai:repositorio.unal.edu.co:unal/78310
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diversidad genética de bananos y bananitos con microsatélites fluorescentes
title Diversidad genética de bananos y bananitos con microsatélites fluorescentes
spellingShingle Diversidad genética de bananos y bananitos con microsatélites fluorescentes
Diversidad genética
marcadores moleculares
Musáceas
simple sequence repeats
SSR
Genetic diversity
molecular markers
Musaceas
simple sequence repeats
SSR
title_short Diversidad genética de bananos y bananitos con microsatélites fluorescentes
title_full Diversidad genética de bananos y bananitos con microsatélites fluorescentes
title_fullStr Diversidad genética de bananos y bananitos con microsatélites fluorescentes
title_full_unstemmed Diversidad genética de bananos y bananitos con microsatélites fluorescentes
title_sort Diversidad genética de bananos y bananitos con microsatélites fluorescentes
dc.creator.fl_str_mv Gutierrez Salamanca, Madeleine Lieset
dc.contributor.advisor.spa.fl_str_mv Muñoz Florez, Jaime Eduardo
Caicedo Arana, Alvaro
dc.contributor.author.spa.fl_str_mv Gutierrez Salamanca, Madeleine Lieset
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional sede palmira
dc.subject.proposal.spa.fl_str_mv Diversidad genética
marcadores moleculares
Musáceas
simple sequence repeats
SSR
topic Diversidad genética
marcadores moleculares
Musáceas
simple sequence repeats
SSR
Genetic diversity
molecular markers
Musaceas
simple sequence repeats
SSR
dc.subject.proposal.eng.fl_str_mv Genetic diversity
molecular markers
Musaceas
simple sequence repeats
SSR
description Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collection of Musa spp. that are part of the germplasm bank of the Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), were evaluated by twelve fluorescent microsatellite molecular markers (SSR). A total of 206 alleles were identified, with a polymorphic information content (PIC) average of 0.106 and a marker index (IM) average of 1.377, indicating the presence of polymorphic and informative markers. The expected heterozygocity and number of alleles were superior in banana and ornamentals (He=0.836–Na=14.1 y He=0.848–Na=8.5, respectively), while bananitos presented inferior values (He=0.569–Na=6.25). The dissimilarity analysis allowed to identify possible duplicate accessions, given its identical genetic profile as: NATU08, NATU09, SABO03 y SABO01. Cluster and structure analysis identified three highly differentiated population groups, one formatted by bananitos, and the other two by banana of commercial cultivars and banana with wild characteristics plus ornamental ones. In conclusion, the collection presents a high genetic diversity mainly in the banana and ornamentals and in smaller amounts in bananitos; likewise, it is divided into discrete populations with high identity and low gene flow.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-05-16
dc.date.accessioned.spa.fl_str_mv 2020-08-28T16:09:42Z
dc.date.available.spa.fl_str_mv 2020-08-28T16:09:42Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_93fc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020.
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/78310
identifier_str_mv Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020.
url https://repositorio.unal.edu.co/handle/unal/78310
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alcántara, M. R. (2007). Breve revisión de los marcadores moleculares. Ecología Molecular, 541–566.
Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2004). La economía mundial del banano: 1985-2002. Fao. Retrieved from https://books.google.es/books?id=vaNJC7-F5WIC
Arteaga, F. (2015). Origen y evolución del banano.
Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers, 11(26), 6769–6775. https://doi.org/10.5897/AJB10.1319
Becerra, V., & Paredes, M. (2000). Use of biochemical and molecular markers in genetic diversity studies. Retrieved from https://dx.doi.org/10.4067/S0365-28072000000300007
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6247908
Bregård, A., Vu, P., Geitvik, G., & Børresen-Dale, A. L. (2000). Promising method for DNA extraction from paraffin embedded archive material. In Breast Cancer Research (Vol. 2, pp. P8-01). Springer.
Caicedo, A. (2015). Caracterización y evaluación morfológica, física y química de introducciones del banco de germoplasma de musáceas en el Centro de Investigación Corpoica Palmira.
Castillo, Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa ’saba’(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1), 202–207.
Creste, S., Benatti, T., Orsi, M., Risterucci, A., & Figueira, A. (2006). Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata, 303–306. https://doi.org/10.1111/j.1471-8286.2005.01209.x
Cruz, C. D., Salgado, C. C., & Bhering, L. L. (2014). Chapter 3 - Biometrics Applied to Molecular Analysis in Genetic Diversity BT - Biotechnology and Plant Breeding (pp. 47–81). San Diego: Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-418672-9.00003-9
Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.” BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-683
Fundacion Hondureña de Investigacion Agricola. (n.d.). No Title. Retrieved December 13, 2019, from http://fhia.org.hn/
Fundacion Hondureña de Investigacion Agricola. (1990). Banano fhia-01, (504), 1–4.
Giraldo, D., & Montoya, N. (2012). Manual para el cultivo de banano en la zona cafetera. Rionegro.
Gonzalez, E. (2008). Análisis de la diversidad genética en poblaciones naturales de especies vegetales amenzadas : Ilex perado ssp. lopezlilloi (Aquifoliaceae), Silene nocteolens (Caryophyllaceae) y Sorbus aria (Rosaceae). Resultados Preliminares.
Gonzalez, L. (2008). Evaluación de la diversidad genética en una colección de germoplasma de fríjol común (Phaseolus vulgaris L.) de ruanda (áfrica) de germoplasma de fríjol común (Phaseolus vulgaris L.).
Hippolyte, I., Jenny, C., Gardes, L., Bakry, F., Rivallan, R., Pomies, V., Perrier, X. (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 109(5), 937–951. https://doi.org/10.1093/aob/mcs010
Hopp, H. E., & Hopp, E. (2014). Curso Fitopatología Molecular 2012 Marcadores Moleculares.
Infoagronomo. (2018). Partes de la planta de banano. Retrieved from https://www.facebook.com/infoagronomo/photos/partes-de-la-planta-de-banano/1408548909277227/
IPGRI, Cornell University, De Vicente, C., Lopez, C., & Fulton, T. (2004). Análisis de la Diversidad Genética Utilizando Datos de Marcadores Moleculares.
Irish, B. M., Cuevas, H. E., Simpson, S. A., Scheffler, B. E., Sardos, J., Ploetz, R., & Goenaga, R. (2014). Musa spp . Germplasm Management : Microsatellite Fingerprinting of USDA – ARS National Plant Germplasm System Collection, (october). https://doi.org/10.2135/cropsci2014.02.0101
Isneider, G. (2016). El plátano , una alternativa de diversificación de cultivos y generación de nuevos ingresos en pro del aporte a la seguridad alimentaria del municipio de Planadas Tolima.
Jain, S. M., & Priyadarshan, P. M. (2009). Breeding plantation tree crops: Tropical species. Breeding Plantation Tree Crops: Tropical Species. https://doi.org/10.1007/978-0-387-71201-7
Kaemmer, D., Fischer, D., Jarret, R. L., Baurens, F. C., Grapin, A., Dambier, D., Lagoda, P. J. L. (1997). Molecular breeding in the genus Musa: A strong case for STMS marker technology. Euphytica, 96(1), 49–63. https://doi.org/10.1023/A:1002922016294
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kopelman, N. M., Mayzel, J., Jakobsson, Mattias Rosenberg, N. A., & Mayrose, I. (2009). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K.
Lacuna-Richman, C. (2002). The role of abaca (Musa textilis) in the household economy of a forest village. Small-scale Forest Economics, Management and Policy (Vol. 1). Springer.
Langhe, E. De, Hr, E., & Christelova, P. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity, 801–824. https://doi.org/10.1007/s10531-016-1273-9
Langhe, E. De, Vrydaghs, L., De, P., Perrier, X., & Denham, T. (2009). Why Bananas Matter : An introduction to the history of banana domestication, 7, 165–177.
Madesis, P., Ganopoulos, I., & Tsaftaris, A. (2013). Microsatellites: Evolution and Contribution. In K. S. Kantartzi (Ed.), Microsatellites: Methods and Protocols (pp. 1–13). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-389-3_1
Manzo, G., Buenrostro, M. T., Guzmán, S., Orozco, M., Youssef, M., Escobedo, R. M., & Medrano, G. (2015). Genetic Diversity in Bananas and Plantains (Musa spp.). Molecular Approaches to Genetic Diversity. https://doi.org/10.5772/59421
Messmer, M. M., Melchinger, A. E., Boppenmaier, J., Herrmann, R. G., & Brunklaus-Jung, E. (1992). RFLP analyses of early-maturing European maize germ plasm.
Ministerio de Agricultura. (2017). No Title. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspx
Moens, J., J.A., S., J.V, E., & Waele, D. De. (1997). Evaluation of the progeny from a cross between ‘Pisang Berlin’ and M. acuminata spp. burmannicoides ‘Calcutta 4’ for evidence of segregation with respect to resistance to black leaf streak disease and nematodes. Distribution, 11.
Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.
Nunes de Jesus, O., Oliveira, S. De, Amorim, E. P., Ferreira, C. F., Marcello, J., Campos, S. De, Figueira, A. (2013). Genetic diversity and population structure of Musa accessions in ex situ conservation.
Núñez, C., & Escobedo, D. (2011). Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agronomía Mesoamericana, 22(2), 415–427.
Organización para las naciones unidas para la alimentacion y la agricultura. (2018). Estadisticas sobre alimentación y agricultura. Retrieved from http://www.fao.org/statistics/es/
Ospina, A., Marco, H., & Calvo, T. (2018). Elaboró : Alejandra Ospina Hoyos Marco Tulio Calvo Sánchez.
Perrier, X., & Jacquemoud-Collet, J. P. (2006). DARwin Software.
Pritchard, J. K., Stephens, M., & Donnelly, P. (2016). Pritchard, Stephens, and Donnelly on Population Structure, 204, 391–393. https://doi.org/10.1534/genetics.116.195164
ProMusa. (2016). Mobilizing banana science for sustainable livelihoods. Retrieved from http://www.promusa.org/Morfología+de+la+planta+del+banano
Rajeev K. Varshney, Kamel Chabane, Prasad S. Hendre, Ramesh K. Aggarwal, Andreas Graner. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. 638-649.
Ray Rowe, P. (2002). (19) United States (12) Plant Patent Application Publication (10) Pub . No.: US 2002 / 0002717 P1, 1(1).
Rocha, P. J. (2003). Marcadores moleculares, una herramienta útil para la selección genética de palma de aceite Molecular Markers, an Useful Tool for Cenetic Selection in Oil Palm Palabras Claves. Palmas, 24(42), 11–25.
Romero, R. A., & Sutton, T. B. (1997). Reaction of four Musa genotypes at three temperatures to isolates of Mycosphaerella fijiensis from different geographical regions. Plant Disease, 81(10), 1139–1142. https://doi.org/10.1094/PDIS.1997.81.10.1139
Saitou N, Nei M. "The neighbor-joining method: a new method for reconstructing phylogenetic trees."Molecular Biology and Evolution, volumen 4, expedición 4, pp. 406-425, 1987.
Singh, N., Wu, S., Raupp, W. J., Sehgal, S., Arora, S., Tiwari, V., Poland, J. (2019). Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37269-0
Smith, M. K., Langdon, P. W., Pegg, K. G., & Daniells, J. W. (2014). Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics. Scientia Horticulturae, 170, 176–181. https://doi.org/10.1016/j.scienta.2014.02.029
Smouse, P. E., & Peakall, R. (2006). Appendix 1 – Methods and Statistics in GenAlEx 6 . 5, 502, 1–26.
Suganthagunthalam, D., Elsen, A., & Waele, D. De. (2010). Identification of combined resistance to Radopholus similis and Meloidogyne incognita in Musa germplasm. Journal of Nematology, 20(1), 19–26.
Trochez Solarte, J. D., Ruiz Erazo, X., Almanza Pinzon, M., & Zambrano Gonzalez, G. (2019). Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Research, 8, 1424. https://doi.org/10.12688/f1000research.20052.1
Ude, G., Pillay, M., Nwakanma, D., & Tenkouano, A. (2002). Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theoretical and Applied Genetics, 104(8), 1239–1245. https://doi.org/10.1007/s00122-001-0802-3
Uma, S., Mustaffa, M. M., Saraswathi, M. S., & Durai, P. (2011). Exploitation of diploids in Indian banana breeding programmes. Acta Horticulturae, 897, 215–224.
Villardon, L. V. (n.d.). Introduccion al analisis de cluster, 1–22.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Maestría en Ciencias Biológicas
dc.publisher.department.spa.fl_str_mv Maestría en Ciencias Biológicas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/78310/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/78310/1/TESIS%2026-08-2020%20UV.pdf
https://repositorio.unal.edu.co/bitstream/unal/78310/3/TESIS%2026-08-2020%20UV.pdf.jpg
bitstream.checksum.fl_str_mv e2f63a891b6ceb28c3078128251851bf
1ca750c46a59fe31e3a21ed425fd7160
2a0babde09e19f3716a452208a79ee22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089214402232320
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Florez, Jaime Eduardo0d0f912e-5d4a-4351-b5b1-348a4ab59ff4-1Caicedo Arana, Alvaro406696e8-235a-4d6f-b485-62e8df63a226-1Gutierrez Salamanca, Madeleine Lieset4808aab8-1415-427f-ab7e-bd3b649f26bbUniversidad Nacional sede palmira2020-08-28T16:09:42Z2020-08-28T16:09:42Z2017-05-16Gutierrez, M. Diversidad genética de bananos y bananitos con microsatélites fluorescentes. Palmira, Colombia, 2020.https://repositorio.unal.edu.co/handle/unal/78310Banana (Musa spp.) its fundamental to the economy of developing countries, including our country. Because of this reasons, the characterization of musaceas genetic diversity is essential to the management and exploitation of its genetic resources. In the current study 99 accessions from the collection of Musa spp. that are part of the germplasm bank of the Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), were evaluated by twelve fluorescent microsatellite molecular markers (SSR). A total of 206 alleles were identified, with a polymorphic information content (PIC) average of 0.106 and a marker index (IM) average of 1.377, indicating the presence of polymorphic and informative markers. The expected heterozygocity and number of alleles were superior in banana and ornamentals (He=0.836–Na=14.1 y He=0.848–Na=8.5, respectively), while bananitos presented inferior values (He=0.569–Na=6.25). The dissimilarity analysis allowed to identify possible duplicate accessions, given its identical genetic profile as: NATU08, NATU09, SABO03 y SABO01. Cluster and structure analysis identified three highly differentiated population groups, one formatted by bananitos, and the other two by banana of commercial cultivars and banana with wild characteristics plus ornamental ones. In conclusion, the collection presents a high genetic diversity mainly in the banana and ornamentals and in smaller amounts in bananitos; likewise, it is divided into discrete populations with high identity and low gene flow.El banano (Musa spp.) es fundamental para la economía de países en desarrollo. Por estas razones, la caracterización de la diversidad genética de Musáceas es esencial para el manejo y aprovechamiento de los recursos genéticos. En el presente estudio se evaluaron 99 accesiones de la colección de Musa spp., que hacen parte del banco de germoplasma de la Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA, Palmira, Valle del Cauca), por medio de doce microsatélites fluorescentes (SSR). Un total de 206 alelos fueron identificados, con un contenido de información polimórfica (PIC) promedio de 0.106 y un índice de marcador (IM) promedio de 1.377, indicando la presencia de marcadores polimórficos e informativos. La heterocigosidad esperada y número de alelos fue superior en los bananos y ornamentales (He=0.836 – Na= 14.1 y He=0.848 – Na= 8.5, respectivamente), mientras que los bananitos presentaron valores inferiores (He=0.569 – Na= 6.25). El análisis de disimilaridad permitió identificar posibles accesiones duplicadas, dado su perfil genético idéntico como: NATU08, NATU09, SABO03 y SABO01. El análisis de conglomerados y de estructura identificó tres grupos poblacionales altamente diferenciados, uno conformado por bananitos, y los otros dos por bananos de cultivares comerciales y bananos con características silvestres más las ornamentales. En conclusión, la colección presenta una alta diversidad genética distribuida principalmente en los bananos y ornamentales, y en menor medida en los bananitos; igualmente, se encuentra dividida en poblaciones discretas con una alta pertenencia y un escaso flujo genético.Maestríaapplication/pdfspaDiversidad genética de bananos y bananitos con microsatélites fluorescentesDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPPalmira - Ciencias Agropecuarias - Maestría en Ciencias BiológicasMaestría en Ciencias BiológicasUniversidad Nacional de Colombia - Sede PalmiraAlcántara, M. R. (2007). Breve revisión de los marcadores moleculares. Ecología Molecular, 541–566.Arias, P., Dankers, C., Liu, P., & Pilkauskas, P. (2004). La economía mundial del banano: 1985-2002. Fao. Retrieved from https://books.google.es/books?id=vaNJC7-F5WICArteaga, F. (2015). Origen y evolución del banano.Ashikin, N., Abdullah, P., Saleh, G. Bin, Tarwaca, E., Putra, S., & Wahab, Z. Bin. (2012). Genetic relationship among Musa genotypes revealed by microsatellite markers, 11(26), 6769–6775. https://doi.org/10.5897/AJB10.1319Becerra, V., & Paredes, M. (2000). Use of biochemical and molecular markers in genetic diversity studies. Retrieved from https://dx.doi.org/10.4067/S0365-28072000000300007Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/6247908Bregård, A., Vu, P., Geitvik, G., & Børresen-Dale, A. L. (2000). Promising method for DNA extraction from paraffin embedded archive material. In Breast Cancer Research (Vol. 2, pp. P8-01). Springer.Caicedo, A. (2015). Caracterización y evaluación morfológica, física y química de introducciones del banco de germoplasma de musáceas en el Centro de Investigación Corpoica Palmira.Castillo, Israel, K. A. T., Baguio, S. F., Diasanta, M. D. B., Lizardo, R. C. M., Dizon, E. I., & Mejico, M. I. F. (2015). Extraction and characterization of pectin from Saba banana [Musa ’saba’(Musa acuminata x Musa balbisiana)] peel wastes: A preliminary study. International Food Research Journal, 22(1), 202–207.Creste, S., Benatti, T., Orsi, M., Risterucci, A., & Figueira, A. (2006). Isolation and characterization of microsatellite loci from a commercial cultivar of Musa acuminata, 303–306. https://doi.org/10.1111/j.1471-8286.2005.01209.xCruz, C. D., Salgado, C. C., & Bhering, L. L. (2014). Chapter 3 - Biometrics Applied to Molecular Analysis in Genetic Diversity BT - Biotechnology and Plant Breeding (pp. 47–81). San Diego: Academic Press. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-418672-9.00003-9Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). “A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids.” BMC Genomics, 14(1). https://doi.org/10.1186/1471-2164-14-683Fundacion Hondureña de Investigacion Agricola. (n.d.). No Title. Retrieved December 13, 2019, from http://fhia.org.hn/Fundacion Hondureña de Investigacion Agricola. (1990). Banano fhia-01, (504), 1–4.Giraldo, D., & Montoya, N. (2012). Manual para el cultivo de banano en la zona cafetera. Rionegro.Gonzalez, E. (2008). Análisis de la diversidad genética en poblaciones naturales de especies vegetales amenzadas : Ilex perado ssp. lopezlilloi (Aquifoliaceae), Silene nocteolens (Caryophyllaceae) y Sorbus aria (Rosaceae). Resultados Preliminares.Gonzalez, L. (2008). Evaluación de la diversidad genética en una colección de germoplasma de fríjol común (Phaseolus vulgaris L.) de ruanda (áfrica) de germoplasma de fríjol común (Phaseolus vulgaris L.).Hippolyte, I., Jenny, C., Gardes, L., Bakry, F., Rivallan, R., Pomies, V., Perrier, X. (2012). Foundation characteristics of edible Musa triploids revealed from allelic distribution of SSR markers. Annals of Botany, 109(5), 937–951. https://doi.org/10.1093/aob/mcs010Hopp, H. E., & Hopp, E. (2014). Curso Fitopatología Molecular 2012 Marcadores Moleculares.Infoagronomo. (2018). Partes de la planta de banano. Retrieved from https://www.facebook.com/infoagronomo/photos/partes-de-la-planta-de-banano/1408548909277227/IPGRI, Cornell University, De Vicente, C., Lopez, C., & Fulton, T. (2004). Análisis de la Diversidad Genética Utilizando Datos de Marcadores Moleculares.Irish, B. M., Cuevas, H. E., Simpson, S. A., Scheffler, B. E., Sardos, J., Ploetz, R., & Goenaga, R. (2014). Musa spp . Germplasm Management : Microsatellite Fingerprinting of USDA – ARS National Plant Germplasm System Collection, (october). https://doi.org/10.2135/cropsci2014.02.0101Isneider, G. (2016). El plátano , una alternativa de diversificación de cultivos y generación de nuevos ingresos en pro del aporte a la seguridad alimentaria del municipio de Planadas Tolima.Jain, S. M., & Priyadarshan, P. M. (2009). Breeding plantation tree crops: Tropical species. Breeding Plantation Tree Crops: Tropical Species. https://doi.org/10.1007/978-0-387-71201-7Kaemmer, D., Fischer, D., Jarret, R. L., Baurens, F. C., Grapin, A., Dambier, D., Lagoda, P. J. L. (1997). Molecular breeding in the genus Musa: A strong case for STMS marker technology. Euphytica, 96(1), 49–63. https://doi.org/10.1023/A:1002922016294Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199Kopelman, N. M., Mayzel, J., Jakobsson, Mattias Rosenberg, N. A., & Mayrose, I. (2009). CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K.Lacuna-Richman, C. (2002). The role of abaca (Musa textilis) in the household economy of a forest village. Small-scale Forest Economics, Management and Policy (Vol. 1). Springer.Langhe, E. De, Hr, E., & Christelova, P. (2017). Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity, 801–824. https://doi.org/10.1007/s10531-016-1273-9Langhe, E. De, Vrydaghs, L., De, P., Perrier, X., & Denham, T. (2009). Why Bananas Matter : An introduction to the history of banana domestication, 7, 165–177.Madesis, P., Ganopoulos, I., & Tsaftaris, A. (2013). Microsatellites: Evolution and Contribution. In K. S. Kantartzi (Ed.), Microsatellites: Methods and Protocols (pp. 1–13). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-62703-389-3_1Manzo, G., Buenrostro, M. T., Guzmán, S., Orozco, M., Youssef, M., Escobedo, R. M., & Medrano, G. (2015). Genetic Diversity in Bananas and Plantains (Musa spp.). Molecular Approaches to Genetic Diversity. https://doi.org/10.5772/59421Messmer, M. M., Melchinger, A. E., Boppenmaier, J., Herrmann, R. G., & Brunklaus-Jung, E. (1992). RFLP analyses of early-maturing European maize germ plasm.Ministerio de Agricultura. (2017). No Title. Retrieved from https://www.agronet.gov.co/Paginas/inicio.aspxMoens, J., J.A., S., J.V, E., & Waele, D. De. (1997). Evaluation of the progeny from a cross between ‘Pisang Berlin’ and M. acuminata spp. burmannicoides ‘Calcutta 4’ for evidence of segregation with respect to resistance to black leaf streak disease and nematodes. Distribution, 11.Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70(12), 3321–3323.Nunes de Jesus, O., Oliveira, S. De, Amorim, E. P., Ferreira, C. F., Marcello, J., Campos, S. De, Figueira, A. (2013). Genetic diversity and population structure of Musa accessions in ex situ conservation.Núñez, C., & Escobedo, D. (2011). Uso correcto del análisis clúster en la caracterización de germoplasma vegetal. Agronomía Mesoamericana, 22(2), 415–427.Organización para las naciones unidas para la alimentacion y la agricultura. (2018). Estadisticas sobre alimentación y agricultura. Retrieved from http://www.fao.org/statistics/es/Ospina, A., Marco, H., & Calvo, T. (2018). Elaboró : Alejandra Ospina Hoyos Marco Tulio Calvo Sánchez.Perrier, X., & Jacquemoud-Collet, J. P. (2006). DARwin Software.Pritchard, J. K., Stephens, M., & Donnelly, P. (2016). Pritchard, Stephens, and Donnelly on Population Structure, 204, 391–393. https://doi.org/10.1534/genetics.116.195164ProMusa. (2016). Mobilizing banana science for sustainable livelihoods. Retrieved from http://www.promusa.org/Morfología+de+la+planta+del+bananoRajeev K. Varshney, Kamel Chabane, Prasad S. Hendre, Ramesh K. Aggarwal, Andreas Graner. (2007). Comparative assessment of EST-SSR, EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild, cultivated and elite barleys. 638-649.Ray Rowe, P. (2002). (19) United States (12) Plant Patent Application Publication (10) Pub . No.: US 2002 / 0002717 P1, 1(1).Rocha, P. J. (2003). Marcadores moleculares, una herramienta útil para la selección genética de palma de aceite Molecular Markers, an Useful Tool for Cenetic Selection in Oil Palm Palabras Claves. Palmas, 24(42), 11–25.Romero, R. A., & Sutton, T. B. (1997). Reaction of four Musa genotypes at three temperatures to isolates of Mycosphaerella fijiensis from different geographical regions. Plant Disease, 81(10), 1139–1142. https://doi.org/10.1094/PDIS.1997.81.10.1139Saitou N, Nei M. "The neighbor-joining method: a new method for reconstructing phylogenetic trees."Molecular Biology and Evolution, volumen 4, expedición 4, pp. 406-425, 1987.Singh, N., Wu, S., Raupp, W. J., Sehgal, S., Arora, S., Tiwari, V., Poland, J. (2019). Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-37269-0Smith, M. K., Langdon, P. W., Pegg, K. G., & Daniells, J. W. (2014). Growth, yield and Fusarium wilt resistance of six FHIA tetraploid bananas (Musa spp.) grown in the Australian subtropics. Scientia Horticulturae, 170, 176–181. https://doi.org/10.1016/j.scienta.2014.02.029Smouse, P. E., & Peakall, R. (2006). Appendix 1 – Methods and Statistics in GenAlEx 6 . 5, 502, 1–26.Suganthagunthalam, D., Elsen, A., & Waele, D. De. (2010). Identification of combined resistance to Radopholus similis and Meloidogyne incognita in Musa germplasm. Journal of Nematology, 20(1), 19–26.Trochez Solarte, J. D., Ruiz Erazo, X., Almanza Pinzon, M., & Zambrano Gonzalez, G. (2019). Role of microsatellites in genetic analysis of Bombyx mori silkworm: a review. F1000Research, 8, 1424. https://doi.org/10.12688/f1000research.20052.1Ude, G., Pillay, M., Nwakanma, D., & Tenkouano, A. (2002). Analysis of genetic diversity and sectional relationships in Musa using AFLP markers. Theoretical and Applied Genetics, 104(8), 1239–1245. https://doi.org/10.1007/s00122-001-0802-3Uma, S., Mustaffa, M. M., Saraswathi, M. S., & Durai, P. (2011). Exploitation of diploids in Indian banana breeding programmes. Acta Horticulturae, 897, 215–224.Villardon, L. V. (n.d.). Introduccion al analisis de cluster, 1–22.Diversidad genéticamarcadores molecularesMusáceassimple sequence repeatsSSRGenetic diversitymolecular markersMusaceassimple sequence repeatsSSRLICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/78310/2/license.txte2f63a891b6ceb28c3078128251851bfMD52ORIGINALTESIS 26-08-2020 UV.pdfTESIS 26-08-2020 UV.pdfapplication/pdf2239042https://repositorio.unal.edu.co/bitstream/unal/78310/1/TESIS%2026-08-2020%20UV.pdf1ca750c46a59fe31e3a21ed425fd7160MD51THUMBNAILTESIS 26-08-2020 UV.pdf.jpgTESIS 26-08-2020 UV.pdf.jpgGenerated Thumbnailimage/jpeg4514https://repositorio.unal.edu.co/bitstream/unal/78310/3/TESIS%2026-08-2020%20UV.pdf.jpg2a0babde09e19f3716a452208a79ee22MD53unal/78310oai:repositorio.unal.edu.co:unal/783102024-07-09 23:21:07.081Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==