Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad

ilustraciones, diagramas, figuras fotografías, mapas

Autores:
Picón Rentería, Rubén Patricio
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85370
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85370
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
590 - Animales::595 - Artrópodos
Biodiversidad
Biogeografía
Insectos -- Sociedades
Himenópteros
Biodiversity
Phylogenetic diversity
Biogeography
Insect societies
Hymenoptera
Animales y plantas-Distribución geográfica
Filogenia
Fenómenos genéticos
Diversidad biológica
Geographical distribution of animals and plants
Phylogeny
Genetic Phenomena
Biological diversity
Biogeografía
Teoría de islas
Avispas
Parasitoides
Complejidad topográfica
Diversidad Filogenética
Biogeography
Island theory
Wasps
Parasitoids
Topographic complexity
Phylogenetic diversity
Diversidad filogenética
Biogeografía insular
Insular biogeography
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_fb8f2e9ba2a9ef6c4bbf8be94a2a6609
oai_identifier_str oai:repositorio.unal.edu.co:unal/85370
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
dc.title.translated.eng.fl_str_mv Parasitoids (Hymenoptera) of the Galapagos archipelago, factors associated with their diversity.
title Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
spellingShingle Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
590 - Animales::595 - Artrópodos
Biodiversidad
Biogeografía
Insectos -- Sociedades
Himenópteros
Biodiversity
Phylogenetic diversity
Biogeography
Insect societies
Hymenoptera
Animales y plantas-Distribución geográfica
Filogenia
Fenómenos genéticos
Diversidad biológica
Geographical distribution of animals and plants
Phylogeny
Genetic Phenomena
Biological diversity
Biogeografía
Teoría de islas
Avispas
Parasitoides
Complejidad topográfica
Diversidad Filogenética
Biogeography
Island theory
Wasps
Parasitoids
Topographic complexity
Phylogenetic diversity
Diversidad filogenética
Biogeografía insular
Insular biogeography
title_short Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
title_full Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
title_fullStr Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
title_full_unstemmed Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
title_sort Parasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidad
dc.creator.fl_str_mv Picón Rentería, Rubén Patricio
dc.contributor.advisor.none.fl_str_mv Sarmiento Monroy, Carlos Eduardo
Herrera Moreno, Henri William
dc.contributor.author.none.fl_str_mv Picón Rentería, Rubén Patricio
dc.contributor.researchgroup.spa.fl_str_mv Insectos de Colombia. Laboratorio de Sistemática y Biología Comparada de Insectos
dc.contributor.orcid.spa.fl_str_mv Picón Rentería, Rubén Patricio [0009000853414094]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
590 - Animales::595 - Artrópodos
topic 570 - Biología::577 - Ecología
570 - Biología::576 - Genética y evolución
590 - Animales::595 - Artrópodos
Biodiversidad
Biogeografía
Insectos -- Sociedades
Himenópteros
Biodiversity
Phylogenetic diversity
Biogeography
Insect societies
Hymenoptera
Animales y plantas-Distribución geográfica
Filogenia
Fenómenos genéticos
Diversidad biológica
Geographical distribution of animals and plants
Phylogeny
Genetic Phenomena
Biological diversity
Biogeografía
Teoría de islas
Avispas
Parasitoides
Complejidad topográfica
Diversidad Filogenética
Biogeography
Island theory
Wasps
Parasitoids
Topographic complexity
Phylogenetic diversity
Diversidad filogenética
Biogeografía insular
Insular biogeography
dc.subject.lcc.spa.fl_str_mv Biodiversidad
Biogeografía
Insectos -- Sociedades
Himenópteros
dc.subject.lcc.eng.fl_str_mv Biodiversity
Phylogenetic diversity
Biogeography
Insect societies
Hymenoptera
dc.subject.lemb.spa.fl_str_mv Animales y plantas-Distribución geográfica
Filogenia
Fenómenos genéticos
Diversidad biológica
dc.subject.lemb.eng.fl_str_mv Geographical distribution of animals and plants
Phylogeny
Genetic Phenomena
Biological diversity
dc.subject.proposal.spa.fl_str_mv Biogeografía
Teoría de islas
Avispas
Parasitoides
Complejidad topográfica
Diversidad Filogenética
dc.subject.proposal.eng.fl_str_mv Biogeography
Island theory
Wasps
Parasitoids
Topographic complexity
Phylogenetic diversity
dc.subject.wikidata.spa.fl_str_mv Diversidad filogenética
Biogeografía insular
dc.subject.wikidata.eng.fl_str_mv Insular biogeography
description ilustraciones, diagramas, figuras fotografías, mapas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-18T20:10:48Z
dc.date.available.none.fl_str_mv 2024-01-18T20:10:48Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85370
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85370
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abzhanov, A., Protas, M., Grant, B., Grant, P., & Tabin, C. (2004). Bmp4 and morphological variation of beaks in Darwin's finches. Science, 305(5689), 1462-1465.
Ali, J., & Fritz, U. (2021). Origins of Galápagos land-locked vertebrates: what, whence, when, how? Biological Journal of the Linnean Society. 134(2), 261-284.
Amador, E., Cayot, L., Cifuentes, M., Cruz, E., Cruz, F., & Ayora, P. (1996). Determinación de la capacidad de carga turística en los sitios de visita del Parque Nacional Galápagos. Servicio Parque Nacional Galápagos, Ecuador. 42p.
Anderson, A., McCormack, S., Helden, A., Sheridan, H., Kinsella, A., & Purvis, G. (2011). The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. Journal of Applied Ecology, 48(2), 382-390.
Armstrong, R. A., & McGehee, R. (1980). Competitive exclusion. The American Naturalist, 115(2), 151-170.
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., & Yanites, B. J. (2017). Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends in Ecology and Evolution, 32(3), 211–226.
Badirli, S., Picard, C. J., Mohler, G., Richert, F., Akata, Z., & Dundar, M. (2023). Classifying the unknown: Insect identification with deep hierarchical Bayesian learning. Methods in Ecology and Evolution, 14(6), 1515-1530.
Baldwin, B. G., Crawford, D. J., Francisco-Ortega, J., Kim, S. C., Sang, T., & Stuessy, T. F. (1998). Molecular phylogenetic insights on the origin and evolution of oceanic island plants. In Molecular systematics of plants II (pp. 410-441). Springer, Boston, MA.
Barajas‐Barbosa, M. P., Weigelt, P., Borregaard, M. K., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.
Barajas‐Barbosa, M., Weigelt, P., Borregaard, M., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.
Barrett, S. C. H. (1996). The reproductive biology and genetics of island plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 725-733.
Beals, E. W. (1984). Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. In Advances in ecological research (Vol. 14, pp. 1-55). Academic Press.
Beatriz, R., Zaragoza-Caballero, S., & Rodríguez, J. (2009). Diversidad de Encyrtidae (Hymenoptera: Chalcidoidea) y otras familias de Hymenoptera obtenidas con trampas Malaise en el bosque tropical caducifolio de la región de Huatulco, Oaxaca, México. Revista Mexicana de Biodiversidad, 80(3), 709-719.
Berry, R. J. (1996). Small mammal differentiation on islands. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 753-764.
Bittinger, K. (2020). abdiv: alpha and beta diversity measures. R Package Version 0.2. 0.
Blaimer, B. B., Santos, B. F., Cruaud, A., Gates, M. W., Kula, R. R., Mikó, I., Rasplus J-Y, Smith DR, Talamas EJ, Brady SG & Buffington, M. L. (2023). Key innovations and the diversification of Hymenoptera. Nature Communications, 14(1), 1212.
Blondel, J. (2000). Evolution and ecology of birds on islands: trends and prospects. Vie et Milieu/Life & Environment, 205-220.
Boag, P. T., & Grant, P. R. (1984). Darwin's finches (Geospiza) on Isla Daphne Major, Galapagos: breeding and feeding ecology in a climatically variable environment. Ecological Monographs, 54(4), 463-489.
Borges, P. A., & Hortal, J. (2009). Time, area and isolation: factors driving the diversification of Azorean arthropods. Journal of Biogeography, 36(1), 178-191.
Boyer, A., & Jetz, W. (2010). Biogeography of body size in Pacific Island birds. Ecography, 33(2), 369-379.
Braaker, S., Ghazoul, J., Obrist, M. K., & Moretti, M. (2014). Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology, 95(4), 1010-1021.
Brockmann, H. J. (2008). Alternative reproductive tactics in insects. Alternative reproductive tactics: an integrative approach, 177-223.
Brown, B., Mitchell, R., & Graham, S. (2002). Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology, 83(8), 2328-2336.
Bulgarella, M., Quiroga, M., Boulton, R., Ramírez, I., Moon, R., Causton, C., & Heimpel, G. (2017). Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos Islands. Annals of the Entomological Society of America, 110(3), 317-328.
Bungartz, F., Herrera, H., Jaramillo, P., Tirado, N., Jimenez-Uzcategui, G., Ruiz, D., & Ziemmeck, F. (2009). Charles Darwin Foundation Galápagos species checklist. Charles Darwin Foundation.
Burbidge, A. A., & Manly, B. F. (2002). Mammal extinctions on Australian islands: causes and conservation implications. Journal of biogeography, 29(4), 465-473.
Burks, R., Mitroiu, M. D., Fusu, L., Heraty, J. M., Janšta, P., Heydon, S., Papilloud, N. D.S., Peters, R. S., Tselikh, E. V., Woolley, J. B., Noort, S., Baur, H., Cruaud, A., Darling, C., Haas, M., Hanson, P., Krogmann, L., & Rasplus, J. Y. (2022). From hell’s heart I stab at thee! A determined approach towards a monophyletic Pteromalidae and reclassification of Chalcidoidea (Hymenoptera). Journal of Hymenoptera Research, 94, 13-88.
Cabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.
Cabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.
Caccone, A., Gibbs, J., Ketmaier, V., Suatoni, E., & Powell, J. (1999). Origin and evolutionary relationships of giant Galápagos tortoises. Proceedings of the National Academy of Sciences, 96(23), 13223-13228.
Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of applied ecology, 48(5), 1079-1087.
Cadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.
Cadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.
Cadotte, M. W., Dinnage, R., & Tilman, D. (2012). Phylogenetic diversity promotes ecosystem stability. Ecology, 93(sp8), S223-S233.
Cadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., & Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology letters, 13(1), 96-105.
Capinha, C., Seebens, H., Cassey, P., García‐Díaz, P., Lenzner, B., Mang, T., & Essl, F. (2017). Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 23(11), 1313-1322.
Case, T., & Bolger, D. (1991). The role of introduced species in shaping the distribution and abundance of island reptiles. Evolutionary Ecology, 5(3), 272-290.
Causton, C. E., & Sevilla, C. (2006). Latest Records of Introduced Invertebrates in Galapagos and Measures to control them. Galapagos report, 2007, 142-145.
Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J., & Landry, B. (2006). Alien insects: threats and implications for conservation of Galápagos Islands. Annals of the Entomological Society of America, 99(1), 121-143.
Causton, C. E., Sevilla, C. R., & Porter, S. D. (2005). Eradication of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), from Marchena Island, Galapagos: on the edge of success? Florida Entomologist, 88(2), 159-168.
Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), 693-715.
Cebolla, R., Vanaclocha, P., Urbaneja, A., & Tena, A. (2018). Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. Journal of Pest Science, 91(1), 327-339.
Chan-Canché, R., Ballina-Gómez, H., Leirana-Alcocer, J., Bordera, S., y González-Moreno, A. (2020). Muestreo de himenópteros parasitoides: influencia de la altura al suelo. Revista de investigación de himenópteros, 78, 19.
Chao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125-1133.
Chen, H., Lahey, Z., Talamas, E. J., Valerio, A. A., Popovici, O. A., Musetti, L., Klompen, H., Polaszek, A., Masner, L., Austin, A. D., & Johnson, N. F. (2021). An integrated phylogenetic reassessment of the parasitoid superfamily Platygastroidea (Hymenoptera: Proctotrupomorpha) results in a revised familial classification. Systematic Entomology, 46(4), 1088-1113.
Chen, X., Jiao, J., & Tong, X. (2011). A generalized model of island biogeography. Science China Life Sciences, 54(11), 1055-1061.
Chong, C. W., Dunn, M. J., Convey, P., Tan, G. A., Wong, R. C., & Tan, I. K. (2009). Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biology, 32(11), 1571-1582.
Christian, K., Tracy, C. R., & Porter, W. P. (1983). Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology, 64(3), 463-468.
Colwell, R. K. (2009). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2.
Conway, M., & Olsen, B. J. (2019). Contrasting drivers of diversification rates on islands and continents across three passerine families. Proceedings of the Royal Society B, 286(1915), 20191757.
Cooney, P. B., & Kwak, T. J. (2013). Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages. BioScience, 63(3), 176-190.
Core, R. (2015). Team. R: a language and environment for statistical computing.
Cowie, R. H., & Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography.
Darling, D. C., & Packer, L. (1988). Effectiveness of Malaise traps in collecting Hymenoptera: the influence of trap design, mesh size, and location. The Canadian Entomologist, 120(8-9), 787-796.
Davis, R. B., Baldauf, S. L., & Mayhew, P. J. (2010). The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC evolutionary biology, 10, 1-16.
De Groot, R. S. (1983). Tourism and conservation in the Galapagos Islands. Biological Conservation, 26(4), 291-300.
Del Toro, I., Ribbons, R. R., y Pelini, S. L. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133-146.
Delfín H. & Burgos D. 2000: Los Bracónidos (Hymenoptera: Braconidae) como grupo parámetro de biodiversidad en las selvas deciduas del trópico: una discusión acerca de su posible uso. Acta Zool. Mex. 79: 43–56.
Delgado, J. D., Arévalo, J. R., & Fernández-Palacios, J. M. (2008). Bird communities in two oceanic island forests fragmented by roads on Tenerife, Canary Islands. Ostrich-Journal of African Ornithology, 79(2), 219-226.
Denslow, J. S., Space, J. C., & Thomas, P. A. (2009). Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica, 41(2), 162-170.
Derraik, J. G., Early, J. W., Closs, G. P., & Dickinson, K. J. (2010). Morphospecies and taxonomic species comparison for Hymenoptera. Journal of Insect Science, 10(1), 108.
Ding, T. S., Yuan, H. W., Geng, S., Koh, C. N., & Lee, P. F. (2006). Macro‐scale bird species richness patterns of the East Asian mainland and islands: Energy, area and isolation. Journal of Biogeography, 33(4), 683-693.
Dupont, Y. L., Hansen, D. M., Valido, A., & Olesen, J. M. (2004). Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biological Conservation, 118(3), 301-311.
Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 165-187.
Eliasson, U. (1995). Patterns of diversity in island plants. In Islands (pp. 35-50). Springer, Berlin, Heidelberg.
Emerson, R. W. (2015). Causation and Pearson's correlation coefficient. Journal of visual impairment & blindness, 109(3), 242-244.
Esri. (2014). ArcGIS desktop: Release 10.3.1. Environmental Systems Research Institute.
Fabian, Y., Sandau, N., Bruggisser, O. T., Aebi, A., Kehrli, P., Rohr, R. P., y Bersier, L. F. (2013). The importance of landscape and spatial structure for hymenopteran‐based food webs in an agro‐ecosystem. Journal of Animal Ecology, 82(6), 1203-1214.
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10.
Faith, D. P. (2016). The PD phylogenetic diversity framework: linking evolutionary history to feature diversity for biodiversity conservation. Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis, 39-56.
Faith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conservation Biology, 18(1), 255-261.
Fattorini, S. (2002). Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29(1), 49-67.
Fernández, F., Sarmiento, C. E., & Herrera, H. W. (2018). First record of the Sclerogibbidae (Hymenoptera) from the Galapagos Islands, Ecuador. The Pan-Pacific Entomologist, 94(1), 27-31.
Fernández, F., y M. J. Sharkey (eds.). (2006). Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología y Universidad Nacional de Colombia, Bogotá D. C., 174-894.
Fernández-Mazuecos, M., Vargas, P., McCauley, R. A., Monjas, D., Otero, A., Chaves, J. A., Guevara, J. E., & Rivas-Torres, G. (2020). The radiation of Darwin’s giant daisies in the Galápagos Islands. Current Biology, 30(24), 4989-4998.
Ferrer, M., Bildstein, K., Penteriani, V., Casado, E., & De Lucas, M. (2011). Why birds with deferred sexual maturity are sedentary on islands: a systematic review. PloS one, 6(7), e22056.
Finston, T. L., & Peck, S. B. (1995). Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands. Heredity, 75(4), 390-397.
Flynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology, 92(8), 1573-1581.
Fox, B. J., & Fox, M. D. (2000). Factors determining mammal species richness on habitat islands and isolates: habitat diversity, disturbance, species interactions and guild assembly rules. Global Ecology and Biogeography, 9(1), 19-37.
Fritts, T. H. (1984). Evolutionary divergence of giant tortoises in Galápagos. Biological Journal of the Linnean Society, 21(1-2), 165-176.
Garpe, K. C., & Öhman, M. C. (2003). Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia, 498(1), 191-211.
Gauld, I. D., & Carter, J. M. (1983). The Ophioninae of the Galápagos Islands (Hymenoptera: Ichneumonidae). Journal of Natural History, 17(2), 145-155.
Geist, D. J. (1996). On the emergence and submergence of the Galápagos Islands. Noticias De Galápagos, 56, 5–9
Geist, D. J., Snell, H., Snell, H., Goddard, C., & Kurz, M. D. (2014). A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. The Galápagos: a natural laboratory for the earth sciences, 204, 145-166.
Gentile, G., Fabiani, A., Marquez, C., Snell, H. L., Snell, H. M., Tapia, W., & Sbordoni, V. (2009). An overlooked pink species of land iguana in the Galápagos. Proceedings of the National Academy of Sciences, 106(2), 507-511.
Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032(1), 1-38.
Gil‐Tapetado, D., Durán‐Montes, P., García‐París, M., López‐Estrada, E. K., Sánchez‐Vialas, A., Jiménez‐Ruiz, Y., Gómez, J. F., & Nieves‐Aldrey, J. L. (2022). Host specialization is ancestral in Torymus (Hymenoptera, Chalcidoidea) cynipid gall parasitoids. Zoologica Scripta, 51(1), 91-118.
González-Pérez, F., & Cubero-Pardo, P. (2010). Short-term effects of tourism activities on the behavior of representative fauna on the Galapagos Islands, Ecuador. Latin American Journal of Aquatic Research, 38(3), 493-500.
Grant, B. R., & Grant, P. R. (1996a). High survival of Darwin's finch hybrids: effects of beak morphology and diets. Ecology, 77(2), 500-509.
Grant, P. R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Systematic Biology, 17(3), 319-333.
Grant, P. R. (2017). Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). In Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). Princeton University Press.
Grant, P. R., & Grant, B. R. (1996b). Speciation and hybridization in island birds. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 765-772.
Grant, P. R., Grant, B. R., Keller, L. F., & Petren, K. (2000). Effects of El Niño events on Darwin's finch productivity. Ecology, 81(9), 2442-2457.
Gumbs, R., Chaudhary, A., Daru, B. H., Faith, D. P., Forest, F., Gray, C. L., & Owen, N. R. (2021). The Post-2020 Global Biodiversity Framework must safeguard the Tree of Life. bioRxiv.
Guo, Q. (2015). Island biogeography theory: emerging patterns and human effects. Earth Systems and Environmental Sciences 5 p., 32(1), 1-5.
Hackett, T. D., Sauve, A. M., Davies, N., Montoya, D., Tylianakis, J. M., & Memmott, J. (2019). Reshaping our understanding of species’ roles in landscape‐scale networks. Ecology Letters, 22(9), 1367-1377.
Hamann, O. (1993). Sobre recuperación de vegetación, cabras y tortugas gigantes en Isla Pinta, Galápagos, Ecuador. Biodiversidad y conservación, 2 (2), 138-151.
Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.
Hardin, J. W., & Hilbe, J. M. (2007). Generalized linear models and extensions. Stata press.
Heaney, L. R. (2000). Dynamic disequilibrium: a long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology and Biogeography, 9(1), 59-74.
Mazerolle, M. J., & Mazerolle, M. M. J. (2017). Package ‘AICcmodavg’. R package, 281.
Meijaard, E. (2003). Mammals of south‐east Asian islands and their Late Pleistocene environments. Journal of Biogeography, 30(8), 1245-1257.
Melo, M., Warren, B. H., & Jones, P. J. (2011). Rapid parallel evolution of aberrant traits in the diversification of the Gulf of Guinea white‐eyes (Aves, Zosteropidae). Molecular Ecology, 20(23), 4953-4967.
Mendel, Z., Protasov, A., Fisher, N., y La Salle, J. (2004). Taxonomy and biology of Leptocybe invasa gen. y sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Australian Journal of Entomology, 43(2), 101-113.
Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., & Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20(6), 893-903.
Miller, J. T., Jolley‐Rogers, G., Mishler, B. D., & Thornhill, A. H. (2018). Phylogenetic diversity is a better measure of biodiversity than taxon counting. Journal of Systematics and Evolution, 56(6), 663-667.
Miller, R. G. (1974). The jackknife-a review. Biometrika, 61(1), 1-15.
Misra, V. (2023). El Niño and the Southern Oscillation. In An Introduction to Large-Scale Tropical Meteorology (pp. 157-195). Cham: Springer International Publishing.
Montgomery, S. L. (1983). Carnivorous caterpillars: the behavior, biogeography and conservation of Eupithecia (Lepidoptera: Geometridae) in the Hawaiian Islands. GeoJournal, 7(6), 549-556.
Moreira, E., Santos, R., Penna, U., Angel-Coca, C., de Oliveira, F., & Viana, B. (2016). Are pan traps colors complementary to sample community of potential pollinator insects?. Journal of Insect Conservation, 20, 583-596.
Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological reviews, 88(2), 349-364.
Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology letters, 17(4), 508-525.
Mugrabi, D., & Azevedo, C. (2010). Insecta, Hymenoptera, Bethylidae: Range extension and filling gaps in Madagascar. Check List, 6(1), 62-63.
Mühlenberg, M., Leipold, D., Mader, H. J., & Steinhauer, B. (1977). Island ecology of arthropods: I. Diversity, niches, and resources on some Seychelles islands. Oecologia, 29, 117-134.
Mulya, H., Santosa, Y., & Hilwan, I. (2021). Comparison of four species diversity indices in mangrove community. Biodiversitas Journal of Biological Diversity, 22(9).
Nali, R. C., Becker, C. G., Zamudio, K. R., & Prado, C. P. (2020). Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Diversity and Distributions, 26(12), 1798-1812.
NASA. (2013). NASA shuttle radar topography mission global 1 arc second. NASA LP DAAC, https://gdex.cr.usgs.gov/gdex/
Nieves-Aldrey, J. L., Fontal-Cazalla, F., & Fernández, F. (2006). Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia.
Nilsson, S. G., Bengtsson, J., & As, S. (1988). Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. The Journal of Animal Ecology, 685-704.
Noss, R. F., & Harris, L. D. (1986). Nodes, networks, and MUMs: preserving diversity at all scales. Environmental management, 10, 299-309.
Noyes, J. S. (2000). Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), 1. The subfamily Tetracneminae, parasitoids of mealybugs (Homoptera: Pseudococcidae). Memoirs of the American Entomological Institute, 62, 1-355.
Nyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. The Science of nature, 104(3), 1-12.
Opedal, Ø. H., Armbruster, W. S., & Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8(3), 305-315.
Orellana‐Rovirosa, F., & Richards, M. (2018). Emergence/subsidence histories along the Carnegie and Cocos Ridges and their bearing upon biological speciation in the Galápagos. Geochemistry, Geophysics, Geosystems, 19(11), 4099-4129.
Oromí, P., Zurita, N., Morales, E., & López, H. (2015). Diversidad de artrópodos terrestres en las Islas Canarias. Revista IDE@, Ibero Diversidad Entomológica @ccesible, 4, 1-14.
Ozdemir, I., Mert, A., Ozkan, U. Y., Aksan, S., & Unal, Y. (2018). Predicting bird species richness and micro-habitat diversity using satellite data. Forest ecology and management, 424, 483-493.
Palomino, D., & Carrascal, L. M. (2005). Birds on novel island environments. A case study with the urban avifauna of Tenerife (Canary Islands). Ecological Research, 20(5), 611-617.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290.
Parent, C. E., & Crespi, B. J. (2006). Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution, 60(11), 2311-2328.
Parent, C. E., Caccone, A., & Petren, K. (2008). Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3347-3361.
Park, D. S., & Razafindratsima, O. H. (2019). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148-161.
Peck, S. B. (1994). Aerial dispersal of insects between and to islands in the Galapagos Archipelago, Ecuador. Annals of the Entomological Society of America, 87(2), 218-224
Peck, S. B. (1996). Diversity and distribution of the orthopteroid insects of the Galápagos Islands, Ecuador. Canadian Journal of Zoology, 74(8), 1497-1510.
Peck, S. B. (2001). Smaller orders of insects of the Galápagos Islands, Ecuador: evolution, ecology and diversity. NRC Research Press.
Peck, S. B. (2006). The beetles of the Galápagos Islands, Ecuador: evolution, ecology, and diversity (Insecta: Coleoptera). NRC Research Press.
Pennacchio, F., y Strand, M. R. (2006). Evolution of developmental strategies in parasitic Hymenoptera. Annual Review of Entomology. 51, 233-258.
Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., & Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology, 27(7), 1013-1018.
Peters, R. S., Niehuis, O., Gunkel, S., Bläser, M., Mayer, C., Podsiadlowski, L., Kozlov, A., Donath, A., Noort, S. V., Liu, S., Zhou, X., Misof, B., Heraty, J., & Krogmann, L. (2018). Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular phylogenetics and evolution, 120, 286-296.
Phillips, J. G., Linscott, T. M., Rankin, A. M., Kraemer, A. C., Shoobs, N. F., & Parent, C. E. (2020). Archipelago-wide patterns of colonization and speciation among an endemic radiation of Galápagos Land Snails. Journal of Heredity, 111(1), 92-102.
Pilgrim, E. M., Von Dohlen, C. D., & Pitts, J. P. (2008). Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta, 37(5), 539-560.
Pizzitutti, F., Walsh, S. J., Rindfuss, R. R., Gunter, R., Quiroga, D., Tippett, R., & Mena, C. F. (2017). Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. Journal of Sustainable Tourism, 25(8), 1117-1137.
Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409(6817), 185-188.
Polaszek, A., & Vilhemsen, L. (2023). Biodiversity of hymenopteran parasitoids. Current Opinion in Insect Science, 101026.
Portillo, J. T. D. M., Ouchi‐Melo, L. S., Crivellari, L. B., de Oliveira, T. A. L., Sawaya, R. J., & Duarte, L. D. S. (2019). Area and distance from mainland affect in different ways richness and phylogenetic diversity of snakes in Atlantic Forest coastal islands. Ecology and evolution, 9(7), 3909-3917.
Poulakakis, N., Miller, J. M., Jensen, E. L., Beheregaray, L. B., Russello, M. A., Glaberman, S., & Caccone, A. (2020). Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. Journal of Zoological Systematics and Evolutionary Research, 58(4), 1262-1275.
Power, D. M. (1972). Numbers of bird species on the California Islands. Evolution, 451-463.
QGIS Development Team. 2016. QGIS geographic information system. Gossau ZH (Switzeland): Open Source Geospatial Foundation Project.
QGIS.org, 2022. QGIS 3.22. Geographic Information System API Documentation. QGIS Association. Electronic document: https://qgis.org/pyqgis/3.22/index.html
Quicke, D. L. (2014). The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology. John Wiley & Sons.
Quimbayo, J. P., Dias, M. S., Kulbicki, M., Mendes, T. C., Lamb, R. W., Johnson, A. F., & Floeter, S. R. (2019). Determinants of reef fish assemblages in tropical Oceanic islands. Ecography, 42(1), 77-87.
Quintero, I., & Landis, M. J. (2020). Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Systematic biology, 69(4), 739-755.
Razowski, J., Landry, B., & Roque-Albelo, L. (2008). The Tortricidae (Lepidoptera) of the Galápagos Islands, Ecuador. Revue suisse de zoologie, 115(1), 185.
Recher, H. F. (1969). Bird species diversity and habitat diversity in Australia and North America. The American Naturalist, 103(929), 75-80.
Rentería, J. L., & Buddenhagen, C. (2006). Invasive plants in the Scalesia pedunculata forest at los Gemelos, Santa Cruz, Galapagos.
Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution, (2), 217-223.
Reyes-Novelo, E., Meléndez, V., Delfín, H., y Ayala, R. (2008). Wild bees (hymenoptera: apoidea) as bioindicators in the neotropics. Tropical and Subtropical Agroecosystems, 10(1), 1-13.
Ricciardi, A. (2012). Invasive species. In Ecological systems: selected entries from the Encyclopedia of sustainability science and technology (pp. 161-178). New York, NY: Springer New York.
Richman, A. D., Case, T. J., & Schwaner, T. D. (1988). Natural and unnatural extinction rates of reptiles on islands. The American Naturalist, 131(5), 611-630.
Ricklefs, R. E. (1977). Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111(978), 376-381.
Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of sciences, 5(1-4), 23-27.
Rincón, A., Gómez, V., & García, C. (2021). Test of the island biogeography theory on boulders in a seagrass bed/Test de la teoria de biogeografia de islas con piedras en una pradera de pastos marinos. Revista Acta Biologica Colombiana, 26(1), 131-135.
Rodrigues, A.S.L., Brooks, T.M. & Gaston, K.J. (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny and conservation (ed. by A. Purvis, J.L. Gittleman and T.M. Brooks), pp. 101–116. Cambridge University Press, Cambridge.
Roell, Y. E., Phillips, J. G., & Parent, C. E. (2021). Effect of topographic complexity on species richness in the Galápagos Islands. Journal of Biogeography.
Ronquist, F. (1995). Phylogeny and early evolution of the Cynipoidea (Hymenoptera). Systematic Entomology, 20(4), 309-335.
Roque–Albelo, L. & B. Landry. (2016). CDF checklist of Galapagos butterfl ies and moths - FCD lista de especies de mariposas y polillas de Galápagos. In: F. Bungartz, H. W. Herrera, P. Jaramillo, N. Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou & F. Ziemmeck (Eds.). 59 Charles Darwin Foundation Galapagos Species Checklist–Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation / Fundación Charles Darwin, Puerto Ayora, Galápagos. Available from http://darwinfoundation.org/datazone/checklists/terrestrial–invertebrates/ lepidoptera/ (accessed 15 November 2017)
Roque-Albelo, L., Causton, C. E., & Mieles, A. (2003). Population Decline of Galapagos endemic Lepidoptera on Volcán Alcedo (Isabela Island, Galapagos Islands, Ecuador): An effect of the introduction of the cottony cushion scale. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique, 73, 177-180.
Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 2, 117-119.
RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.
Russell, J. C., Meyer, J. Y., Holmes, N. D., & Pagad, S. (2017). Invasive alien species on islands: impacts, distribution, interactions and management. Environmental Conservation, 44(4), 359-370.
Rutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: an information theory viewpoint. Journal of Theoretical Biology, 57(2), 355-371.
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., MacCauley, D. E., O´Neil, P., Parker, I. M., Thompson, J. N., & Weller, S. G. (2001). The population biology of invasive species. Annual review of ecology and systematics, 32(1), 305-332.
Salcedo-Andrade, R. A. (2008). Galápagos: conflictos en el paraíso. Universidad Andina Simón Bolívar, Sede Ecuador; Corporación Editora Nacional; Ediciones Abya Yala.
Sallarés, V., Charvis, P., y Calahorrano, A. (2009). Naturaleza y formación de la Provincia Volcánica de Galápagos. Geología y geofísica marina y terrestre del Ecuador. Comisión Nacional del Derecho del Mar (CNDM).
Sanchez, J. A., Carrasco‐Ortiz, A., López‐Gallego, E., & La‐Spina, M. (2020). Ants (Hymenoptera: Formicidae) reduce the density of Cacopsylla pyri (Linnaeus, 1761) in Mediterranean pear orchards. Myrmecological News, 30.
Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891-904.
Sarnat, E. M., & Moreau, C. S. (2011). Biogeography and morphological evolution in a Pacific island ant radiation. Molecular ecology, 20(1), 114-130.
Schofield, E. K. (1989). Effects of introduced plants and animals on island vegetation: examples from Galápagos Archipelago. Conservation Biology, 3(3), 227-239.
Schweiger, O., Klotz, S., Durka, W., & Kühn, I. (2008). A comparative test of phylogenetic diversity indices. Oecologia, 157(3), 485-495.
Sequeira, A. S., Sijapati, M., Lanteri, A. A., & Roque Albelo, L. (2008). Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3439-3451.
Sharanowski, B. J., Ridenbaugh, R. D., Piekarski, P. K., Broad, G. R., Burke, G. R., Deans, A. R., Lemmon, A. R., Lemmon, E. C. M., Diehl, G. J., Whitfield, J. B., & Hines, H. M. (2021). Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 156, 107023.
Sharkey, M. J., Carpenter, J. M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A. P., Schulmeister, S., Murray, D., Decanos, A. R., Ronquist, F., Krogmann, L., & Wheeler, W. C. (2012). Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28(1), 80-112.
Sheikh, A. H., Thomas, M., Bhandari, R., & Meshram, H. (2016). Malaise trap and insect sampling: Mini Review. Bio Bulletin, 2(2), 35-40.
Sheikh, S. I. (2021). Cryptic diversity and evolution in a genus of oak-gall-associated parasitoid wasps (Doctoral dissertation, The University of Iowa).
Sherwin, W., & Prat, N. (2019). The introduction of entropy and information methods to ecology by Ramon Margalef. Entropy, 21(8), 794.
Simberloff, D. S., & Wilson, E. O. (1969). Experimental zoogeography of islands: the colonization of empty islands. Ecology, 50(2), 278-296.
Simkin, T. (1984). Geología de Galápagos. Revista biológica de la Linnean Society, 21(1-2), 61-75.
Sinclair, B. J. (2023). An annotated checklist of the Diptera of the Galápagos Archipelago (Ecuador). Zootaxa, 5283(1), 1-102.
Smith, S. D., Ané, C., y Baum, D. A. (2008). The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae). Evolution: International Journal of Organic Evolution. 62(4), 793-806.
St Lars & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272.
Stange, E. E., & Ayres, M. P. (2010). Climate change impacts: Insects. eLS.
Steadman, D. W., Stafford, T. W., Donahue, D. J., & Jull, A. J. (1991). Chronology of Holocene vertebrate extinction in the Galápagos Islands. Quaternary research, 36(1), 126-133.
Stireman III, J. O., & Shaw, S. R. (2022). Natural History and Ecology of Caterpillar Parasitoids. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World (pp. 225-272). Cham: Springer International Publishing.
Stoldt, M., Macit, M. N., Collin, E., & Foitzik, S. (2022). Molecular (co) evolution of hymenopteran social parasites and their hosts. Current Opinion in Insect Science, 50, 100889.
Stuessy, T. F., Jakubowsky, G., Gómez, R. S., Pfosser, M., Schlüter, P. M., Fer, T., & Kato, H. (2006). Anagenetic evolution in island plants. Journal of Biogeography, 33(7), 1259-1265.
Talavera, J. A., Cunha, L., Arévalo, J. R., Talavera, I. P., Kille, P., & Novo, M. (2020). Anthropogenic disturbance and environmental factors drive the diversity and distribution of earthworms in São Miguel Island (Azores, Portugal). Applied Soil Ecology, 145, 103301.
Toft, C. A., & Schoener, T. W. (1983). Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos, 411-426.
Tojo, K., Sekiné, K., Takenaka, M., Isaka, Y., Komaki, S., Suzuki, T., & Schoville, S. D. (2017). Species diversity of insects in Japan: their origins and diversification processes. Entomological Science, 20(1), 357-381.
Toral-Granda, M. V., Causton, C. E., Jäger, H., Trueman, M., Izurieta, J. C., Araujo, E., Cruz, M., Zander, K. K., Izurieta, A., & Garnett, S. T. (2017). Alien species pathways to the Galapagos Islands, Ecuador. PLoS One, 12(9), e0184379.
Torres‐Carvajal, O., Barnes, C. W., Pozo‐Andrade, M. J., Tapia, W., & Nicholls, G. (2014). Older than the islands: origin and diversification of Galápagos leaf‐toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. Journal of Biogeography, 41(10), 1883-1894.
Trøjelsgaard, K., Báez, M., Espadaler, X., Nogales, M., Oromí, P., Roche, F. L., & Olesen, J. M. (2013). Island biogeography of mutualistic interaction networks. Journal of Biogeography, 40(11), 2020-2031.
Tucker, C. M., Davies, T. J., Cadotte, M. W., & Pearse, W. D. (2018). On the relationship between phylogenetic diversity and trait diversity. Ecology, 99(6), 1473-1479.
Tuell, J. K., & Isaacs, R. (2009). Elevated pan traps to monitor bees in flowering crop canopies. Entomologia experimentalis et applicata, 131(1), 93-98.
Tylianakis, J. M., Tscharntke, T., y Klein, A. M. (2006). Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology, 87(12), 3047-3057.
Ugland, K. I., Gray, J. S., & Ellingsen, K. E. (2003). The species–accumulation curve and estimation of species richness. Journal of animal ecology, 72(5), 888-897.
Valente, L. M., Phillimore, A. B., & Etienne, R. S. (2015). Equilibrium and non‐equilibrium dynamics simultaneously operate in the Galápagos islands. Ecology letters, 18(8), 844-852.
van der Werff, H. (1983). Species number, area and habitat diversity in the Galapagos Islands. Vegetatio, 54(3), 167-175.
Vasconcelos, R., Brito, J. C., Carvalho, S. B., Carranza, S., & Harris, D. J. (2012). Identifying priority areas for island endemics using genetic versus specific diversity–the case of terrestrial reptiles of the Cape Verde Islands. Biological Conservation, 153, 276-286.
Vasconcelos, R., Carranza, S., & James Harris, D. (2010). Insight into an island radiation: the Tarentola geckos of the Cape Verde archipelago. Journal of Biogeography, 37(6), 1047-1060.
Villareal, H. M., Álvarez, M., Córdoba-Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Panamericana Formas e Impresos S.A.
Vinson, S. B. (1976). Host selection by insect parasitoids. Annual review of entomology, 21(1), 109-133.
Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology letters, 9(7), 870-886.
Wardle, D. A., Zackrisson, O., Hornberg, G., & Gallet, C. (1997). The influence of island area on ecosystem properties. Science, 277(5330), 1296-1299.
Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., & Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty years after MacArthur‐Wilson. Ecology Letters, 18(2), 200-217.
Weigelt, P., & Kreft, H. (2013). Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography, 36(4), 417-429.
Werner, R., Hoernle, K., van den Bogaard, P., Ranero, C., von Huene, R., & Korich, D. (1999). Drowned 14-my-old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology, 27(6), 499-502.
Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, evolution, and conservation. Oxford University Press.
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature’s laboratories. Science, 357(6354).
Whittaker, R. J., Rigal, F., Borges, P. A., Cardoso, P., Terzopoulou, S., Casanoves, F., & Triantis, K. A. (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences, 111(38), 13709-13714.
Whittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35(6), 977-994.
Whittaker, R. J., Willis, K. J., & Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of biogeography, 28(4), 453-470.
Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour?. Journal of animal ecology, 75(5), 1182-1189.
Wickham, H. (2007). Reshaping data with the reshape package. Journal of statistical software, 21, 1-20.
Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.
Winter, M., Devictor, V., & Schweiger, O. (2013). Phylogenetic diversity and nature conservation: where are we? Trends in ecology & evolution, 28(4), 199-204.
Wohlwend, M. R., Craven, D., Weigelt, P., Seebens, H., Winter, M., Kreft, H., & Knight, T. M. (2021). Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions.
Yang, X., Yang, Y., Wan, Y., Wu, R., Feng, D., & Li, K. (2021). Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment, 786, 147436.
Yeakley, J. A., & Weishampel, J. F. (2000). Multiple source pools and dispersal barriers for Galapagos plant species distribution. Ecology, 81(4), 893-898.
Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S., & Axmacher, J. C. (2012). A comparison of terrestrial arthropod sampling methods. Journal of Resources and Ecology, 3(2), 174-182.
Zambrano, C. D. A., y León, L. R. (2016). Una mirada. Republica de Ecuador. Dominio de las Ciencias, 2(3), 55-66.
Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12(1), 47-56.
Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617-628.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 80 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Archipiélago de Galápagos, Ecuador
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85370/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85370/2/0150408599.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85370/3/0150408599.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
6031ee819cb8cd8a06acdabad0319fa8
c554eb3ba53155fb8616501d3c96f6b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090104479678464
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sarmiento Monroy, Carlos Eduardoe870f4b28290a160e9942b829c66a511Herrera Moreno, Henri Williamfaa1da8b2f82129af55f821f71f958fdPicón Rentería, Rubén Patricio7281fb528e94f57d2b61544549a214b0Insectos de Colombia. Laboratorio de Sistemática y Biología Comparada de InsectosPicón Rentería, Rubén Patricio [0009000853414094]2024-01-18T20:10:48Z2024-01-18T20:10:48Z2023https://repositorio.unal.edu.co/handle/unal/85370Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figuras fotografías, mapasLa comprensión de los factores que impulsan la diversidad de un grupo en una región es fundamental para entender sus características. Los archipiélagos ofrecen oportunidades excepcionales para investigar estos fenómenos ya que cada isla puede considerarse una repetición de estos procesos. A pesar de la importancia del archipiélago de las Galápagos en la biología, aún existe poco conocimiento sobre un orden tan importante como Hymenoptera. Se analizó la relación entre la diversidad de los himenópteros parasitoides de las islas Galápagos con los factores: edad y área de las islas, aislamiento, la complejidad topográfica, perturbación, diversidad de hábitats y la riqueza de sus potenciales hospederos. Se recolectaron himenópteros en diez de trece islas principales de Galápagos mediante el primer muestreo estructurado para este grupo, usando jameo, bandejas amarillas y Malaise. Se calcularon riqueza de especies, el índice de Margalef y la diversidad filogenética de los himenópteros parasitoides de Galápagos. Se analizaron estas variables de respuesta con los distintos factores, mediante el índice de correlación de Pearson y se elaboraron modelos explicativos mediante GLM. Se capturaron 4994 especímenes. Estos especímenes se clasificaron en 328 morfoespecies. No hubo relación entre la edad, área, distancia entre islas, perturbación y diversidad de hábitats, sin embargo, si una relación positiva entre el área, la complejidad topográfica y la riqueza de sus potenciales hospederos. Estos tres factores mostraron ser los más importantes en los modelos GLM para explicar la diversidad de los himenópteros parasitoides, a excepción de la diversidad filogenética, la cual no fue influenciada por el área de las islas. La diversidad filogenética mostró diferencias con la riqueza, destacando el valor de esta variable, al proporcionar una perspectiva más completa en el análisis de la biodiversidad y en los criterios de conservación de este grupo. La relación de estos factores sugiere que la diversidad del grupo surge de procesos ecológicos recientes propios de la teoría de biogeografía de islas y sin una estructuración taxonómica, más que de la influencia de la historia geológica del archipiélago relacionada con el tamaño de cada isla, y ligada fuertemente a sus hospederos en estas islas. Además de impulsar la implementación de variables de respuesta como la complejidad topográfica y medidores de la biodiversidad como la diversidad filogenética en análisis de diversidad biológica en general. El estudio destaca la importancia de Isabela, Santa Cruz, Floreana, Fernandina y Santiago tanto por su riqueza como por su diversidad. (Texto tomado de la fuente)Understanding the factors that drive the diversity of a group in a region is fundamental to understanding its characteristics. Archipelagos offer exceptional opportunities to investigate these phenomena since each island can be considered a replicate of these processes. Despite the importance of the Galapagos archipelago in biology, there is still little knowledge about an important order such as Hymenoptera. We analyzed the relationship between the diversity of parasitoid Hymenoptera of the Galapagos Islands and the following factors: age and area of the islands, isolation, topographic complexity, disturbance, habitat diversity, and the richness of their potential hosts. Hymenoptera was collected on ten of thirteen main Galapagos islands through the first structured sampling for this group using net sweeping, pan traps, and Malaise traps. Species richness, Margalef index, and phylogenetic diversity of Galapagos parasitoid hymenopterans were calculated. These response variables were related to the different factors using Pearson's correlation index and explanatory models were developed using GLM. A total of 4994 specimens were captured. These specimens were classified into 328 morphospecies. There was no relationship between dependent variables and age, area, the distance between islands, disturbance, and habitat diversity, however, there was a positive relationship between area, topographic complexity, and richness of potential hosts. These three factors were shown to be the most important in the GLM models to explain the diversity of parasitoid hymenopterans. Phylogenetic diversity was not influenced by the island area. Phylogenetic diversity showed differences with richness, highlighting the value of this variable in providing a more complete perspective on biodiversity analysis and conservation criteria for this group. The relationship of these factors suggests that the diversity of the group arises from recent ecological processes proper to the theory of island biogeography and without a taxonomic structuring, rather than from the influence of the geological history of the archipelago related to the size of each island. The diversity of hymenopterans was strongly linked to that of their hosts on these islands. In addition to promoting the implementation of response variables such as topographic complexity and biodiversity measures such as phylogenetic diversity in biodiversity analyses in general, the study highlights the importance of Isabela, Santa Cruz, Floreana, Fernandina, and Santiago for their richness and diversity.Escuela Superior Politécnica de Chimborazo (ESPOCH)Fundación Charles DarwinUniversidad Nacional de ColombiaEsta publicación tiene el número de contribución 2591 de la Fundación Charles Darwin para las Islas GalápagosMaestríaMagíster en Ciencias - BiologíaBiogeografíaxii, 80 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::577 - Ecología570 - Biología::576 - Genética y evolución590 - Animales::595 - ArtrópodosBiodiversidadBiogeografíaInsectos -- SociedadesHimenópterosBiodiversityPhylogenetic diversityBiogeographyInsect societiesHymenopteraAnimales y plantas-Distribución geográficaFilogeniaFenómenos genéticosDiversidad biológicaGeographical distribution of animals and plantsPhylogenyGenetic PhenomenaBiological diversityBiogeografíaTeoría de islasAvispasParasitoidesComplejidad topográficaDiversidad FilogenéticaBiogeographyIsland theoryWaspsParasitoidsTopographic complexityPhylogenetic diversityDiversidad filogenéticaBiogeografía insularInsular biogeographyParasitoides (Hymenoptera) del archipiélago de Galápagos, factores asociados a su diversidadParasitoids (Hymenoptera) of the Galapagos archipelago, factors associated with their diversity.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMArchipiélago de Galápagos, EcuadorAbzhanov, A., Protas, M., Grant, B., Grant, P., & Tabin, C. (2004). Bmp4 and morphological variation of beaks in Darwin's finches. Science, 305(5689), 1462-1465.Ali, J., & Fritz, U. (2021). Origins of Galápagos land-locked vertebrates: what, whence, when, how? Biological Journal of the Linnean Society. 134(2), 261-284.Amador, E., Cayot, L., Cifuentes, M., Cruz, E., Cruz, F., & Ayora, P. (1996). Determinación de la capacidad de carga turística en los sitios de visita del Parque Nacional Galápagos. Servicio Parque Nacional Galápagos, Ecuador. 42p.Anderson, A., McCormack, S., Helden, A., Sheridan, H., Kinsella, A., & Purvis, G. (2011). The potential of parasitoid Hymenoptera as bioindicators of arthropod diversity in agricultural grasslands. Journal of Applied Ecology, 48(2), 382-390.Armstrong, R. A., & McGehee, R. (1980). Competitive exclusion. The American Naturalist, 115(2), 151-170.Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., & Yanites, B. J. (2017). Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends in Ecology and Evolution, 32(3), 211–226.Badirli, S., Picard, C. J., Mohler, G., Richert, F., Akata, Z., & Dundar, M. (2023). Classifying the unknown: Insect identification with deep hierarchical Bayesian learning. Methods in Ecology and Evolution, 14(6), 1515-1530.Baldwin, B. G., Crawford, D. J., Francisco-Ortega, J., Kim, S. C., Sang, T., & Stuessy, T. F. (1998). Molecular phylogenetic insights on the origin and evolution of oceanic island plants. In Molecular systematics of plants II (pp. 410-441). Springer, Boston, MA.Barajas‐Barbosa, M. P., Weigelt, P., Borregaard, M. K., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.Barajas‐Barbosa, M., Weigelt, P., Borregaard, M., Keppel, G., & Kreft, H. (2020). Environmental heterogeneity dynamics drive plant diversity on oceanic islands. Journal of Biogeography, 47(10), 2248-2260.Barrett, S. C. H. (1996). The reproductive biology and genetics of island plants. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 725-733.Beals, E. W. (1984). Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. In Advances in ecological research (Vol. 14, pp. 1-55). Academic Press.Beatriz, R., Zaragoza-Caballero, S., & Rodríguez, J. (2009). Diversidad de Encyrtidae (Hymenoptera: Chalcidoidea) y otras familias de Hymenoptera obtenidas con trampas Malaise en el bosque tropical caducifolio de la región de Huatulco, Oaxaca, México. Revista Mexicana de Biodiversidad, 80(3), 709-719.Berry, R. J. (1996). Small mammal differentiation on islands. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 753-764.Bittinger, K. (2020). abdiv: alpha and beta diversity measures. R Package Version 0.2. 0.Blaimer, B. B., Santos, B. F., Cruaud, A., Gates, M. W., Kula, R. R., Mikó, I., Rasplus J-Y, Smith DR, Talamas EJ, Brady SG & Buffington, M. L. (2023). Key innovations and the diversification of Hymenoptera. Nature Communications, 14(1), 1212.Blondel, J. (2000). Evolution and ecology of birds on islands: trends and prospects. Vie et Milieu/Life & Environment, 205-220.Boag, P. T., & Grant, P. R. (1984). Darwin's finches (Geospiza) on Isla Daphne Major, Galapagos: breeding and feeding ecology in a climatically variable environment. Ecological Monographs, 54(4), 463-489.Borges, P. A., & Hortal, J. (2009). Time, area and isolation: factors driving the diversification of Azorean arthropods. Journal of Biogeography, 36(1), 178-191.Boyer, A., & Jetz, W. (2010). Biogeography of body size in Pacific Island birds. Ecography, 33(2), 369-379.Braaker, S., Ghazoul, J., Obrist, M. K., & Moretti, M. (2014). Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology, 95(4), 1010-1021.Brockmann, H. J. (2008). Alternative reproductive tactics in insects. Alternative reproductive tactics: an integrative approach, 177-223.Brown, B., Mitchell, R., & Graham, S. (2002). Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology, 83(8), 2328-2336.Bulgarella, M., Quiroga, M., Boulton, R., Ramírez, I., Moon, R., Causton, C., & Heimpel, G. (2017). Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos Islands. Annals of the Entomological Society of America, 110(3), 317-328.Bungartz, F., Herrera, H., Jaramillo, P., Tirado, N., Jimenez-Uzcategui, G., Ruiz, D., & Ziemmeck, F. (2009). Charles Darwin Foundation Galápagos species checklist. Charles Darwin Foundation.Burbidge, A. A., & Manly, B. F. (2002). Mammal extinctions on Australian islands: causes and conservation implications. Journal of biogeography, 29(4), 465-473.Burks, R., Mitroiu, M. D., Fusu, L., Heraty, J. M., Janšta, P., Heydon, S., Papilloud, N. D.S., Peters, R. S., Tselikh, E. V., Woolley, J. B., Noort, S., Baur, H., Cruaud, A., Darling, C., Haas, M., Hanson, P., Krogmann, L., & Rasplus, J. Y. (2022). From hell’s heart I stab at thee! A determined approach towards a monophyletic Pteromalidae and reclassification of Chalcidoidea (Hymenoptera). Journal of Hymenoptera Research, 94, 13-88.Cabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.Cabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing predicted isolation effects from the general dynamic model of island biogeography with an eco‐evolutionary model for plants. Journal of Biogeography, 46(7), 1569-1581.Caccone, A., Gibbs, J., Ketmaier, V., Suatoni, E., & Powell, J. (1999). Origin and evolutionary relationships of giant Galápagos tortoises. Proceedings of the National Academy of Sciences, 96(23), 13223-13228.Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of applied ecology, 48(5), 1079-1087.Cadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.Cadotte, M. W., Davies, T. J., & Peres‐Neto, P. R. (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87(4), 535-551.Cadotte, M. W., Dinnage, R., & Tilman, D. (2012). Phylogenetic diversity promotes ecosystem stability. Ecology, 93(sp8), S223-S233.Cadotte, M. W., Jonathan Davies, T., Regetz, J., Kembel, S. W., Cleland, E., & Oakley, T. H. (2010). Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology letters, 13(1), 96-105.Capinha, C., Seebens, H., Cassey, P., García‐Díaz, P., Lenzner, B., Mang, T., & Essl, F. (2017). Diversity, biogeography and the global flows of alien amphibians and reptiles. Diversity and Distributions, 23(11), 1313-1322.Case, T., & Bolger, D. (1991). The role of introduced species in shaping the distribution and abundance of island reptiles. Evolutionary Ecology, 5(3), 272-290.Causton, C. E., & Sevilla, C. (2006). Latest Records of Introduced Invertebrates in Galapagos and Measures to control them. Galapagos report, 2007, 142-145.Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J., & Landry, B. (2006). Alien insects: threats and implications for conservation of Galápagos Islands. Annals of the Entomological Society of America, 99(1), 121-143.Causton, C. E., Sevilla, C. R., & Porter, S. D. (2005). Eradication of the little fire ant, Wasmannia auropunctata (Hymenoptera: Formicidae), from Marchena Island, Galapagos: on the edge of success? Florida Entomologist, 88(2), 159-168.Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), 693-715.Cebolla, R., Vanaclocha, P., Urbaneja, A., & Tena, A. (2018). Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. Journal of Pest Science, 91(1), 327-339.Chan-Canché, R., Ballina-Gómez, H., Leirana-Alcocer, J., Bordera, S., y González-Moreno, A. (2020). Muestreo de himenópteros parasitoides: influencia de la altura al suelo. Revista de investigación de himenópteros, 78, 19.Chao, A., Colwell, R. K., Lin, C. W., & Gotelli, N. J. (2009). Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90(4), 1125-1133.Chen, H., Lahey, Z., Talamas, E. J., Valerio, A. A., Popovici, O. A., Musetti, L., Klompen, H., Polaszek, A., Masner, L., Austin, A. D., & Johnson, N. F. (2021). An integrated phylogenetic reassessment of the parasitoid superfamily Platygastroidea (Hymenoptera: Proctotrupomorpha) results in a revised familial classification. Systematic Entomology, 46(4), 1088-1113.Chen, X., Jiao, J., & Tong, X. (2011). A generalized model of island biogeography. Science China Life Sciences, 54(11), 1055-1061.Chong, C. W., Dunn, M. J., Convey, P., Tan, G. A., Wong, R. C., & Tan, I. K. (2009). Environmental influences on bacterial diversity of soils on Signy Island, maritime Antarctic. Polar Biology, 32(11), 1571-1582.Christian, K., Tracy, C. R., & Porter, W. P. (1983). Seasonal shifts in body temperature and use of microhabitats by Galapagos land iguanas (Conolophus pallidus). Ecology, 64(3), 463-468.Colwell, R. K. (2009). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2.Conway, M., & Olsen, B. J. (2019). Contrasting drivers of diversification rates on islands and continents across three passerine families. Proceedings of the Royal Society B, 286(1915), 20191757.Cooney, P. B., & Kwak, T. J. (2013). Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages. BioScience, 63(3), 176-190.Core, R. (2015). Team. R: a language and environment for statistical computing.Cowie, R. H., & Holland, B. S. (2006). Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. Journal of Biogeography.Darling, D. C., & Packer, L. (1988). Effectiveness of Malaise traps in collecting Hymenoptera: the influence of trap design, mesh size, and location. The Canadian Entomologist, 120(8-9), 787-796.Davis, R. B., Baldauf, S. L., & Mayhew, P. J. (2010). The origins of species richness in the Hymenoptera: insights from a family-level supertree. BMC evolutionary biology, 10, 1-16.De Groot, R. S. (1983). Tourism and conservation in the Galapagos Islands. Biological Conservation, 26(4), 291-300.Del Toro, I., Ribbons, R. R., y Pelini, S. L. (2012). The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News, 17, 133-146.Delfín H. & Burgos D. 2000: Los Bracónidos (Hymenoptera: Braconidae) como grupo parámetro de biodiversidad en las selvas deciduas del trópico: una discusión acerca de su posible uso. Acta Zool. Mex. 79: 43–56.Delgado, J. D., Arévalo, J. R., & Fernández-Palacios, J. M. (2008). Bird communities in two oceanic island forests fragmented by roads on Tenerife, Canary Islands. Ostrich-Journal of African Ornithology, 79(2), 219-226.Denslow, J. S., Space, J. C., & Thomas, P. A. (2009). Invasive exotic plants in the tropical Pacific islands: patterns of diversity. Biotropica, 41(2), 162-170.Derraik, J. G., Early, J. W., Closs, G. P., & Dickinson, K. J. (2010). Morphospecies and taxonomic species comparison for Hymenoptera. Journal of Insect Science, 10(1), 108.Ding, T. S., Yuan, H. W., Geng, S., Koh, C. N., & Lee, P. F. (2006). Macro‐scale bird species richness patterns of the East Asian mainland and islands: Energy, area and isolation. Journal of Biogeography, 33(4), 683-693.Dupont, Y. L., Hansen, D. M., Valido, A., & Olesen, J. M. (2004). Impact of introduced honey bees on native pollination interactions of the endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands. Biological Conservation, 118(3), 301-311.Eberly, L. E. (2007). Multiple linear regression. Topics in Biostatistics, 165-187.Eliasson, U. (1995). Patterns of diversity in island plants. In Islands (pp. 35-50). Springer, Berlin, Heidelberg.Emerson, R. W. (2015). Causation and Pearson's correlation coefficient. Journal of visual impairment & blindness, 109(3), 242-244.Esri. (2014). ArcGIS desktop: Release 10.3.1. Environmental Systems Research Institute.Fabian, Y., Sandau, N., Bruggisser, O. T., Aebi, A., Kehrli, P., Rohr, R. P., y Bersier, L. F. (2013). The importance of landscape and spatial structure for hymenopteran‐based food webs in an agro‐ecosystem. Journal of Animal Ecology, 82(6), 1203-1214.Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological conservation, 61(1), 1-10.Faith, D. P. (2016). The PD phylogenetic diversity framework: linking evolutionary history to feature diversity for biodiversity conservation. Biodiversity conservation and phylogenetic systematics: preserving our evolutionary heritage in an extinction crisis, 39-56.Faith, D. P., Reid, C. A. M., & Hunter, J. (2004). Integrating phylogenetic diversity, complementarity, and endemism for conservation assessment. Conservation Biology, 18(1), 255-261.Fattorini, S. (2002). Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 29(1), 49-67.Fernández, F., Sarmiento, C. E., & Herrera, H. W. (2018). First record of the Sclerogibbidae (Hymenoptera) from the Galapagos Islands, Ecuador. The Pan-Pacific Entomologist, 94(1), 27-31.Fernández, F., y M. J. Sharkey (eds.). (2006). Introducción a los Hymenoptera de la Región Neotropical. Sociedad Colombiana de Entomología y Universidad Nacional de Colombia, Bogotá D. C., 174-894.Fernández-Mazuecos, M., Vargas, P., McCauley, R. A., Monjas, D., Otero, A., Chaves, J. A., Guevara, J. E., & Rivas-Torres, G. (2020). The radiation of Darwin’s giant daisies in the Galápagos Islands. Current Biology, 30(24), 4989-4998.Ferrer, M., Bildstein, K., Penteriani, V., Casado, E., & De Lucas, M. (2011). Why birds with deferred sexual maturity are sedentary on islands: a systematic review. PloS one, 6(7), e22056.Finston, T. L., & Peck, S. B. (1995). Population structure and gene flow in Stomion: a species swarm of flightless beetles of the Galápagos Islands. Heredity, 75(4), 390-397.Flynn, D. F., Mirotchnick, N., Jain, M., Palmer, M. I., & Naeem, S. (2011). Functional and phylogenetic diversity as predictors of biodiversity–ecosystem‐function relationships. Ecology, 92(8), 1573-1581.Fox, B. J., & Fox, M. D. (2000). Factors determining mammal species richness on habitat islands and isolates: habitat diversity, disturbance, species interactions and guild assembly rules. Global Ecology and Biogeography, 9(1), 19-37.Fritts, T. H. (1984). Evolutionary divergence of giant tortoises in Galápagos. Biological Journal of the Linnean Society, 21(1-2), 165-176.Garpe, K. C., & Öhman, M. C. (2003). Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia, 498(1), 191-211.Gauld, I. D., & Carter, J. M. (1983). The Ophioninae of the Galápagos Islands (Hymenoptera: Ichneumonidae). Journal of Natural History, 17(2), 145-155.Geist, D. J. (1996). On the emergence and submergence of the Galápagos Islands. Noticias De Galápagos, 56, 5–9Geist, D. J., Snell, H., Snell, H., Goddard, C., & Kurz, M. D. (2014). A paleogeographic model of the Galápagos Islands and biogeographical and evolutionary implications. The Galápagos: a natural laboratory for the earth sciences, 204, 145-166.Gentile, G., Fabiani, A., Marquez, C., Snell, H. L., Snell, H. M., Tapia, W., & Sbordoni, V. (2009). An overlooked pink species of land iguana in the Galápagos. Proceedings of the National Academy of Sciences, 106(2), 507-511.Gibbs, J. (2009). Integrative taxonomy identifies new (and old) species in the Lasioglossum (Dialictus) tegulare (Robertson) species group (Hymenoptera, Halictidae). Zootaxa, 2032(1), 1-38.Gil‐Tapetado, D., Durán‐Montes, P., García‐París, M., López‐Estrada, E. K., Sánchez‐Vialas, A., Jiménez‐Ruiz, Y., Gómez, J. F., & Nieves‐Aldrey, J. L. (2022). Host specialization is ancestral in Torymus (Hymenoptera, Chalcidoidea) cynipid gall parasitoids. Zoologica Scripta, 51(1), 91-118.González-Pérez, F., & Cubero-Pardo, P. (2010). Short-term effects of tourism activities on the behavior of representative fauna on the Galapagos Islands, Ecuador. Latin American Journal of Aquatic Research, 38(3), 493-500.Grant, B. R., & Grant, P. R. (1996a). High survival of Darwin's finch hybrids: effects of beak morphology and diets. Ecology, 77(2), 500-509.Grant, P. R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Systematic Biology, 17(3), 319-333.Grant, P. R. (2017). Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). In Ecology and Evolution of Darwin's Finches (Princeton Science Library Edition). Princeton University Press.Grant, P. R., & Grant, B. R. (1996b). Speciation and hybridization in island birds. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1341), 765-772.Grant, P. R., Grant, B. R., Keller, L. F., & Petren, K. (2000). Effects of El Niño events on Darwin's finch productivity. Ecology, 81(9), 2442-2457.Gumbs, R., Chaudhary, A., Daru, B. H., Faith, D. P., Forest, F., Gray, C. L., & Owen, N. R. (2021). The Post-2020 Global Biodiversity Framework must safeguard the Tree of Life. bioRxiv.Guo, Q. (2015). Island biogeography theory: emerging patterns and human effects. Earth Systems and Environmental Sciences 5 p., 32(1), 1-5.Hackett, T. D., Sauve, A. M., Davies, N., Montoya, D., Tylianakis, J. M., & Memmott, J. (2019). Reshaping our understanding of species’ roles in landscape‐scale networks. Ecology Letters, 22(9), 1367-1377.Hamann, O. (1993). Sobre recuperación de vegetación, cabras y tortugas gigantes en Isla Pinta, Galápagos, Ecuador. Biodiversidad y conservación, 2 (2), 138-151.Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.Hardin, J. W., & Hilbe, J. M. (2007). Generalized linear models and extensions. Stata press.Heaney, L. R. (2000). Dynamic disequilibrium: a long‐term, large‐scale perspective on the equilibrium model of island biogeography. Global Ecology and Biogeography, 9(1), 59-74.Mazerolle, M. J., & Mazerolle, M. M. J. (2017). Package ‘AICcmodavg’. R package, 281.Meijaard, E. (2003). Mammals of south‐east Asian islands and their Late Pleistocene environments. Journal of Biogeography, 30(8), 1245-1257.Melo, M., Warren, B. H., & Jones, P. J. (2011). Rapid parallel evolution of aberrant traits in the diversification of the Gulf of Guinea white‐eyes (Aves, Zosteropidae). Molecular Ecology, 20(23), 4953-4967.Mendel, Z., Protasov, A., Fisher, N., y La Salle, J. (2004). Taxonomy and biology of Leptocybe invasa gen. y sp. n. (Hymenoptera: Eulophidae), an invasive gall inducer on Eucalyptus. Australian Journal of Entomology, 43(2), 101-113.Meynard, C. N., Devictor, V., Mouillot, D., Thuiller, W., Jiguet, F., & Mouquet, N. (2011). Beyond taxonomic diversity patterns: how do α, β and γ components of bird functional and phylogenetic diversity respond to environmental gradients across France? Global Ecology and Biogeography, 20(6), 893-903.Miller, J. T., Jolley‐Rogers, G., Mishler, B. D., & Thornhill, A. H. (2018). Phylogenetic diversity is a better measure of biodiversity than taxon counting. Journal of Systematics and Evolution, 56(6), 663-667.Miller, R. G. (1974). The jackknife-a review. Biometrika, 61(1), 1-15.Misra, V. (2023). El Niño and the Southern Oscillation. In An Introduction to Large-Scale Tropical Meteorology (pp. 157-195). Cham: Springer International Publishing.Montgomery, S. L. (1983). Carnivorous caterpillars: the behavior, biogeography and conservation of Eupithecia (Lepidoptera: Geometridae) in the Hawaiian Islands. GeoJournal, 7(6), 549-556.Moreira, E., Santos, R., Penna, U., Angel-Coca, C., de Oliveira, F., & Viana, B. (2016). Are pan traps colors complementary to sample community of potential pollinator insects?. Journal of Insect Conservation, 20, 583-596.Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological reviews, 88(2), 349-364.Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology letters, 17(4), 508-525.Mugrabi, D., & Azevedo, C. (2010). Insecta, Hymenoptera, Bethylidae: Range extension and filling gaps in Madagascar. Check List, 6(1), 62-63.Mühlenberg, M., Leipold, D., Mader, H. J., & Steinhauer, B. (1977). Island ecology of arthropods: I. Diversity, niches, and resources on some Seychelles islands. Oecologia, 29, 117-134.Mulya, H., Santosa, Y., & Hilwan, I. (2021). Comparison of four species diversity indices in mangrove community. Biodiversitas Journal of Biological Diversity, 22(9).Nali, R. C., Becker, C. G., Zamudio, K. R., & Prado, C. P. (2020). Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Diversity and Distributions, 26(12), 1798-1812.NASA. (2013). NASA shuttle radar topography mission global 1 arc second. NASA LP DAAC, https://gdex.cr.usgs.gov/gdex/Nieves-Aldrey, J. L., Fontal-Cazalla, F., & Fernández, F. (2006). Introducción a los Hymenoptera de la Región Neotropical. Universidad Nacional de Colombia.Nilsson, S. G., Bengtsson, J., & As, S. (1988). Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. The Journal of Animal Ecology, 685-704.Noss, R. F., & Harris, L. D. (1986). Nodes, networks, and MUMs: preserving diversity at all scales. Environmental management, 10, 299-309.Noyes, J. S. (2000). Encyrtidae of Costa Rica (Hymenoptera: Chalcidoidea), 1. The subfamily Tetracneminae, parasitoids of mealybugs (Homoptera: Pseudococcidae). Memoirs of the American Entomological Institute, 62, 1-355.Nyffeler, M., & Birkhofer, K. (2017). An estimated 400–800 million tons of prey are annually killed by the global spider community. The Science of nature, 104(3), 1-12.Opedal, Ø. H., Armbruster, W. S., & Graae, B. J. (2015). Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity, 8(3), 305-315.Orellana‐Rovirosa, F., & Richards, M. (2018). Emergence/subsidence histories along the Carnegie and Cocos Ridges and their bearing upon biological speciation in the Galápagos. Geochemistry, Geophysics, Geosystems, 19(11), 4099-4129.Oromí, P., Zurita, N., Morales, E., & López, H. (2015). Diversidad de artrópodos terrestres en las Islas Canarias. Revista IDE@, Ibero Diversidad Entomológica @ccesible, 4, 1-14.Ozdemir, I., Mert, A., Ozkan, U. Y., Aksan, S., & Unal, Y. (2018). Predicting bird species richness and micro-habitat diversity using satellite data. Forest ecology and management, 424, 483-493.Palomino, D., & Carrascal, L. M. (2005). Birds on novel island environments. A case study with the urban avifauna of Tenerife (Canary Islands). Ecological Research, 20(5), 611-617.Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290.Parent, C. E., & Crespi, B. J. (2006). Sequential colonization and diversification of Galapagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution, 60(11), 2311-2328.Parent, C. E., Caccone, A., & Petren, K. (2008). Colonization and diversification of Galápagos terrestrial fauna: a phylogenetic and biogeographical synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3347-3361.Park, D. S., & Razafindratsima, O. H. (2019). Anthropogenic threats can have cascading homogenizing effects on the phylogenetic and functional diversity of tropical ecosystems. Ecography, 42(1), 148-161.Peck, S. B. (1994). Aerial dispersal of insects between and to islands in the Galapagos Archipelago, Ecuador. Annals of the Entomological Society of America, 87(2), 218-224Peck, S. B. (1996). Diversity and distribution of the orthopteroid insects of the Galápagos Islands, Ecuador. Canadian Journal of Zoology, 74(8), 1497-1510.Peck, S. B. (2001). Smaller orders of insects of the Galápagos Islands, Ecuador: evolution, ecology and diversity. NRC Research Press.Peck, S. B. (2006). The beetles of the Galápagos Islands, Ecuador: evolution, ecology, and diversity (Insecta: Coleoptera). NRC Research Press.Pennacchio, F., y Strand, M. R. (2006). Evolution of developmental strategies in parasitic Hymenoptera. Annual Review of Entomology. 51, 233-258.Peters, R. S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P. A., Heraty, J., Kjer, K. M., Klopfstein, S., Meier, R., Polidori, C., Schmitt T., Liu, S., Zhou, X., Wappler, T., Rust, J., Misof, B., & Niehuis, O. (2017). Evolutionary history of the Hymenoptera. Current Biology, 27(7), 1013-1018.Peters, R. S., Niehuis, O., Gunkel, S., Bläser, M., Mayer, C., Podsiadlowski, L., Kozlov, A., Donath, A., Noort, S. V., Liu, S., Zhou, X., Misof, B., Heraty, J., & Krogmann, L. (2018). Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Molecular phylogenetics and evolution, 120, 286-296.Phillips, J. G., Linscott, T. M., Rankin, A. M., Kraemer, A. C., Shoobs, N. F., & Parent, C. E. (2020). Archipelago-wide patterns of colonization and speciation among an endemic radiation of Galápagos Land Snails. Journal of Heredity, 111(1), 92-102.Pilgrim, E. M., Von Dohlen, C. D., & Pitts, J. P. (2008). Molecular phylogenetics of Vespoidea indicate paraphyly of the superfamily and novel relationships of its component families and subfamilies. Zoologica Scripta, 37(5), 539-560.Pizzitutti, F., Walsh, S. J., Rindfuss, R. R., Gunter, R., Quiroga, D., Tippett, R., & Mena, C. F. (2017). Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. Journal of Sustainable Tourism, 25(8), 1117-1137.Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature, 409(6817), 185-188.Polaszek, A., & Vilhemsen, L. (2023). Biodiversity of hymenopteran parasitoids. Current Opinion in Insect Science, 101026.Portillo, J. T. D. M., Ouchi‐Melo, L. S., Crivellari, L. B., de Oliveira, T. A. L., Sawaya, R. J., & Duarte, L. D. S. (2019). Area and distance from mainland affect in different ways richness and phylogenetic diversity of snakes in Atlantic Forest coastal islands. Ecology and evolution, 9(7), 3909-3917.Poulakakis, N., Miller, J. M., Jensen, E. L., Beheregaray, L. B., Russello, M. A., Glaberman, S., & Caccone, A. (2020). Colonization history of Galapagos giant tortoises: Insights from mitogenomes support the progression rule. Journal of Zoological Systematics and Evolutionary Research, 58(4), 1262-1275.Power, D. M. (1972). Numbers of bird species on the California Islands. Evolution, 451-463.QGIS Development Team. 2016. QGIS geographic information system. Gossau ZH (Switzeland): Open Source Geospatial Foundation Project.QGIS.org, 2022. QGIS 3.22. Geographic Information System API Documentation. QGIS Association. Electronic document: https://qgis.org/pyqgis/3.22/index.htmlQuicke, D. L. (2014). The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology. John Wiley & Sons.Quimbayo, J. P., Dias, M. S., Kulbicki, M., Mendes, T. C., Lamb, R. W., Johnson, A. F., & Floeter, S. R. (2019). Determinants of reef fish assemblages in tropical Oceanic islands. Ecography, 42(1), 77-87.Quintero, I., & Landis, M. J. (2020). Interdependent phenotypic and biogeographic evolution driven by biotic interactions. Systematic biology, 69(4), 739-755.Razowski, J., Landry, B., & Roque-Albelo, L. (2008). The Tortricidae (Lepidoptera) of the Galápagos Islands, Ecuador. Revue suisse de zoologie, 115(1), 185.Recher, H. F. (1969). Bird species diversity and habitat diversity in Australia and North America. The American Naturalist, 103(929), 75-80.Rentería, J. L., & Buddenhagen, C. (2006). Invasive plants in the Scalesia pedunculata forest at los Gemelos, Santa Cruz, Galapagos.Revell, L. J. (2012). Phytools: an R package for phylogenetic comparative biology (and other things). Methods in ecology and evolution, (2), 217-223.Reyes-Novelo, E., Meléndez, V., Delfín, H., y Ayala, R. (2008). Wild bees (hymenoptera: apoidea) as bioindicators in the neotropics. Tropical and Subtropical Agroecosystems, 10(1), 1-13.Ricciardi, A. (2012). Invasive species. In Ecological systems: selected entries from the Encyclopedia of sustainability science and technology (pp. 161-178). New York, NY: Springer New York.Richman, A. D., Case, T. J., & Schwaner, T. D. (1988). Natural and unnatural extinction rates of reptiles on islands. The American Naturalist, 131(5), 611-630.Ricklefs, R. E. (1977). Environmental heterogeneity and plant species diversity: a hypothesis. The American Naturalist, 111(978), 376-381.Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of sciences, 5(1-4), 23-27.Rincón, A., Gómez, V., & García, C. (2021). Test of the island biogeography theory on boulders in a seagrass bed/Test de la teoria de biogeografia de islas con piedras en una pradera de pastos marinos. Revista Acta Biologica Colombiana, 26(1), 131-135.Rodrigues, A.S.L., Brooks, T.M. & Gaston, K.J. (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: does it make a difference. Phylogeny and conservation (ed. by A. Purvis, J.L. Gittleman and T.M. Brooks), pp. 101–116. Cambridge University Press, Cambridge.Roell, Y. E., Phillips, J. G., & Parent, C. E. (2021). Effect of topographic complexity on species richness in the Galápagos Islands. Journal of Biogeography.Ronquist, F. (1995). Phylogeny and early evolution of the Cynipoidea (Hymenoptera). Systematic Entomology, 20(4), 309-335.Roque–Albelo, L. & B. Landry. (2016). CDF checklist of Galapagos butterfl ies and moths - FCD lista de especies de mariposas y polillas de Galápagos. In: F. Bungartz, H. W. Herrera, P. Jaramillo, N. Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou & F. Ziemmeck (Eds.). 59 Charles Darwin Foundation Galapagos Species Checklist–Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation / Fundación Charles Darwin, Puerto Ayora, Galápagos. Available from http://darwinfoundation.org/datazone/checklists/terrestrial–invertebrates/ lepidoptera/ (accessed 15 November 2017)Roque-Albelo, L., Causton, C. E., & Mieles, A. (2003). Population Decline of Galapagos endemic Lepidoptera on Volcán Alcedo (Isabela Island, Galapagos Islands, Ecuador): An effect of the introduction of the cottony cushion scale. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique, 73, 177-180.Royston, P. (1992). Approximating the Shapiro-Wilk W-test for non-normality. Statistics and computing, 2, 117-119.RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.Russell, J. C., Meyer, J. Y., Holmes, N. D., & Pagad, S. (2017). Invasive alien species on islands: impacts, distribution, interactions and management. Environmental Conservation, 44(4), 359-370.Rutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: an information theory viewpoint. Journal of Theoretical Biology, 57(2), 355-371.Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., MacCauley, D. E., O´Neil, P., Parker, I. M., Thompson, J. N., & Weller, S. G. (2001). The population biology of invasive species. Annual review of ecology and systematics, 32(1), 305-332.Salcedo-Andrade, R. A. (2008). Galápagos: conflictos en el paraíso. Universidad Andina Simón Bolívar, Sede Ecuador; Corporación Editora Nacional; Ediciones Abya Yala.Sallarés, V., Charvis, P., y Calahorrano, A. (2009). Naturaleza y formación de la Provincia Volcánica de Galápagos. Geología y geofísica marina y terrestre del Ecuador. Comisión Nacional del Derecho del Mar (CNDM).Sanchez, J. A., Carrasco‐Ortiz, A., López‐Gallego, E., & La‐Spina, M. (2020). Ants (Hymenoptera: Formicidae) reduce the density of Cacopsylla pyri (Linnaeus, 1761) in Mediterranean pear orchards. Myrmecological News, 30.Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience, 52(10), 891-904.Sarnat, E. M., & Moreau, C. S. (2011). Biogeography and morphological evolution in a Pacific island ant radiation. Molecular ecology, 20(1), 114-130.Schofield, E. K. (1989). Effects of introduced plants and animals on island vegetation: examples from Galápagos Archipelago. Conservation Biology, 3(3), 227-239.Schweiger, O., Klotz, S., Durka, W., & Kühn, I. (2008). A comparative test of phylogenetic diversity indices. Oecologia, 157(3), 485-495.Sequeira, A. S., Sijapati, M., Lanteri, A. A., & Roque Albelo, L. (2008). Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1508), 3439-3451.Sharanowski, B. J., Ridenbaugh, R. D., Piekarski, P. K., Broad, G. R., Burke, G. R., Deans, A. R., Lemmon, A. R., Lemmon, E. C. M., Diehl, G. J., Whitfield, J. B., & Hines, H. M. (2021). Phylogenomics of Ichneumonoidea (Hymenoptera) and implications for evolution of mode of parasitism and viral endogenization. Molecular Phylogenetics and Evolution, 156, 107023.Sharkey, M. J., Carpenter, J. M., Vilhelmsen, L., Heraty, J., Liljeblad, J., Dowling, A. P., Schulmeister, S., Murray, D., Decanos, A. R., Ronquist, F., Krogmann, L., & Wheeler, W. C. (2012). Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics, 28(1), 80-112.Sheikh, A. H., Thomas, M., Bhandari, R., & Meshram, H. (2016). Malaise trap and insect sampling: Mini Review. Bio Bulletin, 2(2), 35-40.Sheikh, S. I. (2021). Cryptic diversity and evolution in a genus of oak-gall-associated parasitoid wasps (Doctoral dissertation, The University of Iowa).Sherwin, W., & Prat, N. (2019). The introduction of entropy and information methods to ecology by Ramon Margalef. Entropy, 21(8), 794.Simberloff, D. S., & Wilson, E. O. (1969). Experimental zoogeography of islands: the colonization of empty islands. Ecology, 50(2), 278-296.Simkin, T. (1984). Geología de Galápagos. Revista biológica de la Linnean Society, 21(1-2), 61-75.Sinclair, B. J. (2023). An annotated checklist of the Diptera of the Galápagos Archipelago (Ecuador). Zootaxa, 5283(1), 1-102.Smith, S. D., Ané, C., y Baum, D. A. (2008). The role of pollinator shifts in the floral diversification of Iochroma (Solanaceae). Evolution: International Journal of Organic Evolution. 62(4), 793-806.St Lars & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems, 6(4), 259-272.Stange, E. E., & Ayres, M. P. (2010). Climate change impacts: Insects. eLS.Steadman, D. W., Stafford, T. W., Donahue, D. J., & Jull, A. J. (1991). Chronology of Holocene vertebrate extinction in the Galápagos Islands. Quaternary research, 36(1), 126-133.Stireman III, J. O., & Shaw, S. R. (2022). Natural History and Ecology of Caterpillar Parasitoids. In Caterpillars in the Middle: Tritrophic Interactions in a Changing World (pp. 225-272). Cham: Springer International Publishing.Stoldt, M., Macit, M. N., Collin, E., & Foitzik, S. (2022). Molecular (co) evolution of hymenopteran social parasites and their hosts. Current Opinion in Insect Science, 50, 100889.Stuessy, T. F., Jakubowsky, G., Gómez, R. S., Pfosser, M., Schlüter, P. M., Fer, T., & Kato, H. (2006). Anagenetic evolution in island plants. Journal of Biogeography, 33(7), 1259-1265.Talavera, J. A., Cunha, L., Arévalo, J. R., Talavera, I. P., Kille, P., & Novo, M. (2020). Anthropogenic disturbance and environmental factors drive the diversity and distribution of earthworms in São Miguel Island (Azores, Portugal). Applied Soil Ecology, 145, 103301.Toft, C. A., & Schoener, T. W. (1983). Abundance and diversity of orb spiders on 106 Bahamian islands: biogeography at an intermediate trophic level. Oikos, 411-426.Tojo, K., Sekiné, K., Takenaka, M., Isaka, Y., Komaki, S., Suzuki, T., & Schoville, S. D. (2017). Species diversity of insects in Japan: their origins and diversification processes. Entomological Science, 20(1), 357-381.Toral-Granda, M. V., Causton, C. E., Jäger, H., Trueman, M., Izurieta, J. C., Araujo, E., Cruz, M., Zander, K. K., Izurieta, A., & Garnett, S. T. (2017). Alien species pathways to the Galapagos Islands, Ecuador. PLoS One, 12(9), e0184379.Torres‐Carvajal, O., Barnes, C. W., Pozo‐Andrade, M. J., Tapia, W., & Nicholls, G. (2014). Older than the islands: origin and diversification of Galápagos leaf‐toed geckos (Phyllodactylidae: Phyllodactylus) by multiple colonizations. Journal of Biogeography, 41(10), 1883-1894.Trøjelsgaard, K., Báez, M., Espadaler, X., Nogales, M., Oromí, P., Roche, F. L., & Olesen, J. M. (2013). Island biogeography of mutualistic interaction networks. Journal of Biogeography, 40(11), 2020-2031.Tucker, C. M., Davies, T. J., Cadotte, M. W., & Pearse, W. D. (2018). On the relationship between phylogenetic diversity and trait diversity. Ecology, 99(6), 1473-1479.Tuell, J. K., & Isaacs, R. (2009). Elevated pan traps to monitor bees in flowering crop canopies. Entomologia experimentalis et applicata, 131(1), 93-98.Tylianakis, J. M., Tscharntke, T., y Klein, A. M. (2006). Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology, 87(12), 3047-3057.Ugland, K. I., Gray, J. S., & Ellingsen, K. E. (2003). The species–accumulation curve and estimation of species richness. Journal of animal ecology, 72(5), 888-897.Valente, L. M., Phillimore, A. B., & Etienne, R. S. (2015). Equilibrium and non‐equilibrium dynamics simultaneously operate in the Galápagos islands. Ecology letters, 18(8), 844-852.van der Werff, H. (1983). Species number, area and habitat diversity in the Galapagos Islands. Vegetatio, 54(3), 167-175.Vasconcelos, R., Brito, J. C., Carvalho, S. B., Carranza, S., & Harris, D. J. (2012). Identifying priority areas for island endemics using genetic versus specific diversity–the case of terrestrial reptiles of the Cape Verde Islands. Biological Conservation, 153, 276-286.Vasconcelos, R., Carranza, S., & James Harris, D. (2010). Insight into an island radiation: the Tarentola geckos of the Cape Verde archipelago. Journal of Biogeography, 37(6), 1047-1060.Villareal, H. M., Álvarez, M., Córdoba-Córdoba, S., Escobar, F., Fagua, G., Gast, F., Mendoza, H., Ospina, M., & Umaña, A. M. (2004). Manual de métodos para el desarrollo de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Panamericana Formas e Impresos S.A.Vinson, S. B. (1976). Host selection by insect parasitoids. Annual review of entomology, 21(1), 109-133.Wardle, D. A. (2006). The influence of biotic interactions on soil biodiversity. Ecology letters, 9(7), 870-886.Wardle, D. A., Zackrisson, O., Hornberg, G., & Gallet, C. (1997). The influence of island area on ecosystem properties. Science, 277(5330), 1296-1299.Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., & Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty years after MacArthur‐Wilson. Ecology Letters, 18(2), 200-217.Weigelt, P., & Kreft, H. (2013). Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography, 36(4), 417-429.Werner, R., Hoernle, K., van den Bogaard, P., Ranero, C., von Huene, R., & Korich, D. (1999). Drowned 14-my-old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology, 27(6), 499-502.Whittaker, R. J., & Fernández-Palacios, J. M. (2007). Island biogeography: ecology, evolution, and conservation. Oxford University Press.Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K., & Triantis, K. A. (2017). Island biogeography: Taking the long view of nature’s laboratories. Science, 357(6354).Whittaker, R. J., Rigal, F., Borges, P. A., Cardoso, P., Terzopoulou, S., Casanoves, F., & Triantis, K. A. (2014). Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences, 111(38), 13709-13714.Whittaker, R. J., Triantis, K. A., & Ladle, R. J. (2008). A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35(6), 977-994.Whittaker, R. J., Willis, K. J., & Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of biogeography, 28(4), 453-470.Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we still use stepwise modelling in ecology and behaviour?. Journal of animal ecology, 75(5), 1182-1189.Wickham, H. (2007). Reshaping data with the reshape package. Journal of statistical software, 21, 1-20.Wickham, H., Chang, W., & Wickham, M. H. (2016). Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version, 2(1), 1-189.Winter, M., Devictor, V., & Schweiger, O. (2013). Phylogenetic diversity and nature conservation: where are we? Trends in ecology & evolution, 28(4), 199-204.Wohlwend, M. R., Craven, D., Weigelt, P., Seebens, H., Winter, M., Kreft, H., & Knight, T. M. (2021). Anthropogenic and environmental drivers shape diversity of naturalized plants across the Pacific. Diversity and Distributions.Yang, X., Yang, Y., Wan, Y., Wu, R., Feng, D., & Li, K. (2021). Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Science of the Total Environment, 786, 147436.Yeakley, J. A., & Weishampel, J. F. (2000). Multiple source pools and dispersal barriers for Galapagos plant species distribution. Ecology, 81(4), 893-898.Yi, Z., Jinchao, F., Dayuan, X., Weiguo, S., & Axmacher, J. C. (2012). A comparison of terrestrial arthropod sampling methods. Journal of Resources and Ecology, 3(2), 174-182.Zambrano, C. D. A., y León, L. R. (2016). Una mirada. Republica de Ecuador. Dominio de las Ciencias, 2(3), 55-66.Zevenbergen, L. W., & Thorne, C. R. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12(1), 47-56.Zou, K. H., Tuncali, K., & Silverman, S. G. (2003). Correlation and simple linear regression. Radiology, 227(3), 617-628.Estudio de especies invasoras y diversidad de invertebrados terrestres en las islas Galápagos, en el marco del convenio entre la Escuela Superior Politécnica de Chimborazo y la Fundación Charles Darwin (ID: IDIPI-104)EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85370/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL0150408599.2023.pdf0150408599.2023.pdfTesis de Maestría en Ciencias Biologíaapplication/pdf3157626https://repositorio.unal.edu.co/bitstream/unal/85370/2/0150408599.2023.pdf6031ee819cb8cd8a06acdabad0319fa8MD52THUMBNAIL0150408599.2023.pdf.jpg0150408599.2023.pdf.jpgGenerated Thumbnailimage/jpeg3616https://repositorio.unal.edu.co/bitstream/unal/85370/3/0150408599.2023.pdf.jpgc554eb3ba53155fb8616501d3c96f6b9MD53unal/85370oai:repositorio.unal.edu.co:unal/853702024-01-19 15:08:20.049Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=