Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia

Ilustraciones

Autores:
Santos Morales, Amilcar
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82287
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82287
https://repositorio.unal.edu.co/
Palabra clave:
590 - Animales
Dimorfismo sexual en animales
Reptiles - Crecimiento
Factores intrínsecos
Factores extrínsecos
Fecundidad
Crecimiento poblacional
Anolis auratus
Dimorfismo sexual
Intrinsic factors
Extrinsic factors
Survival
Fertility
Population growth
Sexual dimorphism
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_fb134878daeb57052c503f8fa7b135d7
oai_identifier_str oai:repositorio.unal.edu.co:unal/82287
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
dc.title.translated.eng.fl_str_mv Effects of population density and rainfall of Anolis auratus (Sauria: Dactyloidae) on their vital rates in the department of Córdoba-Colombia
title Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
spellingShingle Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
590 - Animales
Dimorfismo sexual en animales
Reptiles - Crecimiento
Factores intrínsecos
Factores extrínsecos
Fecundidad
Crecimiento poblacional
Anolis auratus
Dimorfismo sexual
Intrinsic factors
Extrinsic factors
Survival
Fertility
Population growth
Sexual dimorphism
title_short Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
title_full Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
title_fullStr Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
title_full_unstemmed Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
title_sort Efectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-Colombia
dc.creator.fl_str_mv Santos Morales, Amilcar
dc.contributor.advisor.none.fl_str_mv Ortega León, Ángela María
Zamora Abrego, Joan Gastón
dc.contributor.author.none.fl_str_mv Santos Morales, Amilcar
dc.contributor.researchgroup.spa.fl_str_mv Ecología y Conservación de Fauna Silvestre
dc.subject.ddc.spa.fl_str_mv 590 - Animales
topic 590 - Animales
Dimorfismo sexual en animales
Reptiles - Crecimiento
Factores intrínsecos
Factores extrínsecos
Fecundidad
Crecimiento poblacional
Anolis auratus
Dimorfismo sexual
Intrinsic factors
Extrinsic factors
Survival
Fertility
Population growth
Sexual dimorphism
dc.subject.lemb.none.fl_str_mv Dimorfismo sexual en animales
Reptiles - Crecimiento
dc.subject.proposal.spa.fl_str_mv Factores intrínsecos
Factores extrínsecos
Fecundidad
Crecimiento poblacional
Anolis auratus
Dimorfismo sexual
dc.subject.proposal.eng.fl_str_mv Intrinsic factors
Extrinsic factors
Survival
Fertility
Population growth
Sexual dimorphism
description Ilustraciones
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2022-09-13T20:20:19Z
dc.date.available.none.fl_str_mv 2022-09-13T20:20:19Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82287
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82287
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Armstrong, D. P., Davidson, R. S., Perrott, J. K., Roygard, J., & Buchanan, L. (2005). Density‐dependent population growth in a reintroduced population of North Island saddlebacks. Journal of Animal Ecology, 74(1), 160-170.
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research, 33(2), 261-304.
Avila-Pires, T. C. (1995). Lizards of brazilian amazonia (Reptilia: Squamata). Zoologische verhandelingen, 299(1), 1-706.
Cappuccino, N., & Price, P. W. (Eds.). (1995). Population dynamics: new approaches and synthesis. Elsevier.
Cox, R. M., Stenquist, D. S., Henningsen, J. P., & Calsbeek, R. (2009). Manipulating testosterone to assess links between behavior, morphology, and performance in the brown anole Anolis sagrei. Physiological and Biochemical Zoology, 82(6), 686-698.
Cox, R. M., & Calsbeek, R. (2010). Severe costs of reproduction persist in Anolis lizards despite the evolution of a single‐egg clutch. Evolution, 64(5), 1321-1330
Díaz, J. A., Iraeta, P., Verdú-Ricoy, J., Siliceo, I., & Salvador, A. (2012). Intraspecific variation of reproductive traits in a Mediterranean lizard: clutch, population, and lineage effects. Evolutionary Biology, 39(1), 106-115.
Downes, S. J. (2002). Does responsiveness to predator scents affect lizard survivorship? Behavioral Ecology and Sociobiology, 52(1), 38-42.
Du, W. G., Warner, D. A., Langkilde, T., Robbins, T. R., & Shine, R. (2012). The roles of pre-and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biological Journal of the Linnean Society, 106(1), 202-209.
Edeline, E., Haugen, T. O., Weltzien, F. A., Claessen, D., Winfield, I. J., Stenseth, N. C., & Vøllestad, L. A. (2009). Body downsizing caused by non-consumptive social stress severely depresses population growth rate. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 843-851.
Fabens, A. J. (1965). Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265-289.
Katsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: multi‐model inference as a better alternative to a priori using von Bertalanffy equation. Fish and fisheries, 9(2), 178-187.
Le Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short‐lived lizard. Journal of Animal Ecology, 79(6), 1296-1307.
Lewis, S. M. (1986). The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs, 56(3), 183-200.
Lorenzen, K. (1996). The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of fish biology, 49(4), 627-642.
Lorenzon, P., Clobert, J., & Massot, M. (2001). The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution, 55(2), 392-404.
Losos, J. B. (2011). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles (Vol. 10). Univ of California Press.
Lu, H. L., Xu, C. X., Zeng, Z. G., & Du, W. G. (2018). Environmental causes of between-population difference in growth rate of a high-altitude lizard. BMC ecology, 18(1), 37.
Marquis, O., Massot, M., & Le Galliard, J. F. (2008). Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology, 89(9), 2575-2583.
Massot, M., Clobert, J., Pilorge, T., Lecomte, J., & Barbault, R. (1992). Density dependence in the common lizard: demographic consequences of a density manipulation. Ecology, 73(5), 1742-1756.
Mugabo, M., Perret, S., Legendre, S., & Le Galliard, J. F. (2013). Density‐dependent life history and the dynamics of small populations. Journal of Animal Ecology, 82(6), 1227-1239.
Nelder, J. A., & Baker, R. J. (1972). Generalized linear models. Encyclopedia of statistical sciences.
Niewiarowski, P. H. (2001). Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation. The American Naturalist, 157(4), 421-433.
Novosolov, M., & Meiri, S. (2013). The effect of island type on lizard reproductive traits. Journal of Biogeography, 40(12), 2385-2395.
Ortega, J., López, P., & Martín, J. (2015). Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates. Oecologia, 177(2), 357-366.
Ortega, J., López, P., & Martín, J. (2017). Environmental drivers of growth rates in Guadarrama wall lizards: a reciprocal transplant experiment. Biological Journal of the Linnean Society, 122(2), 340-350.
Pérez-Mendoza, H. A., Zúñiga-Vega, J. J., Zurita-Gutiérrez, Y. H., Fornoni, J., Solano-Zavaleta, I., Hernández-Rosas, A. L., & Molina-Moctezuma, A. (2013). Demographic importance of the life-cycle components in Sceloporus grammicus. Herpetologica, 69(4), 411-435.
Pincheira‐Donoso, D., & Hunt, J. (2017). Fecundity selection theory: concepts and evidence. Biological Reviews, 92(1), 341-356.
Pinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus, 3-56.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2013). nlme: Linear and nonlinear mixed effects models. R package version, 3(1), 111
Renjifo, J. M., & Lundberg, M. (1999). Guía de campo anfibios y reptiles de Urrá. Editorial Colina. Medellín, Colombia.
Rotger, A., Igual, J. M., Smith, J. J., & Tavecchia, G. (2016). Relative role of population density and climatic factors in shaping the body growth rate of Lilford’s Wall Lizard (Podarcis lilfordi). Canadian Journal of Zoology, 94(3), 207-215.
Samhouri, J. F., Levin, P. S., & Harvey, C. J. (2009). Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems, 12(8), 1283-1298.
Sánchez, H. Castaño, O. & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. Colombia diversidad biótica I. Bogotá: Universidad Nacional de Colombia, Inderena, Fundación FES, 277-325.
Schlaepfer, M. A. (2006). Growth Rates and Body Condition in Norops polylepis (Polychrotidae) Vary with Respect to Sex but not Mite Load 1. Biotropica: The Journal of Biology and Conservation, 38(3), 414-418.
Schoener, T. W., & Schoener, A. (1978). Estimating and interpreting body-size growth in some Anolis lizards. Copeia, 390-405.
Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9), 1128-1140.
Shine, R., & Charnov, E. L. (1992). Patterns of survival, growth, and maturation in snakes and lizards. The American Naturalist, 139(6), 1257-1269.
Siliceo-Cantero, H. H., & Garcia, A. (2014). Differences in growth rate, body condition, habitat use and food availability between island and mainland lizard populations of Anolis nebulosus in Jalisco, Mexico. Journal of Tropical Ecology, 30(5), 493-501.
Stamps, J., & Tanaka, S. (1981). The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology, 62(1), 33-40.
Tinkle, D. W. (1969). The concept of reproductive effort and its relation to the evolution of life histories of lizards. The American Naturalist, 103(933), 501-516
Tsai, W. P., Sun, C. L., Punt, A. E., & Liu, K. M. (2014). Demographic analysis of the shortfin mako shark, Isurus oxyrinchus, in the Northwest Pacific using a two-sex stage-based matrix model. ICES Journal of Marine Science, 71(7), 1604-1618.
Van Sluys, M. (1998). Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. Journal of Herpetology, 359-365.
Von Bertalanffy, L. (1951). General system theory, a new approach to unity of science. 5. Conclusion. Human biology, 23(4), 337.
Zúñiga-Vega, J. J., Rojas-González, R. I., Lemos-Espinal, J. A., & Pérez-Trejo, M. E. (2005). Growth ecology of the lizard Xenosaurus grandis in Veracruz, México. Journal of Herpetology, 39(3), 433-444.
Zúñiga‐Vega, J., N. Reznick, D., & B. Johnson, J. (2007). Habitat predicts reproductive superfetation and body shape in the livebearing fish Poeciliopsis turrubarensis. Oikos, 116(6), 995-1005.
Andrews, R. M., and A. S. Rand. 1974. Reproductive effort in anoline lizards. Ecology 55:1317–1327
Angilletta Jr, M. J., Oufiero, C. E., y Leaché, A. D. (2006). Direct and indirect effects of environmental temperature on the evolution of reproductive strategies: an information-theoretic approach. The American Naturalist, 168(4), E123-E135.
Barbraud, C., y Weimerskirch, H. (2003). Climate and density shape population dynamics of a marine top predator. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2111-2116.
Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., y Travis, J. (2012). Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181(1), 25-38.
Bassar, R. D., Letcher, B. H., Nislow, K. H., y Whiteley, A. R. (2016). Changes in seasonal climate outpace compensatory density‐dependence in eastern brook trout. Global Change Biology, 22(2), 577-593.
Begon, M., Townsend, C. R., y Harper, J. L. (2006). Ecology: from individuals to ecosystems
Besbeas, P., Freeman, S. N., Morgan, B. J., y Catchpole, E. A. (2002). Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58(3), 540-547.
Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. The quarterly review of biology, 75(4), 385-407.
Brandt, R., y Navas, C. A. (2011). Life-history evolution on Tropidurinae lizards: influence of lineage, body size and climate. PLoS One, 6(5), e20040.
Calder, W. A. (1996). Size, function, and life history. Courier Corporation.
Calderón-Espinosa, M. L., y Barragán-Contreras, L. A. (2014). Geographic body size and shape variation in a mainland Anolis (Squamata: Dactyloidae) from Northwestern South America (Colombia). Acta Biológica Colombiana, 19(2), 167-174.
Caswell, H. 2001. Matrix populations models. Sinauer, Sunderland, MA.
Chung, Y. A., Miller, T. E., y Rudgers, J. A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology, 103(4), 967-977.
Clutton-Brock, T. H., Major, M., Albon, S. D., y Guinness, F. E. (1987). Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. The Journal of Animal Ecology, 53-67.
Coulson, T. (2012). Integral projections models, their construction and use in posing hypotheses in ecology. Oikos, 121(9), 1337-1350.
Coulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J., Pemberton, J. M., Clutton-Brock, T. H., ... y Grenfell, B. T. (2001). Age, sex, density, winter weather, and population crashes in Soay sheep. Science, 292(5521), 1528-1531.
Coulson, T., Tuljapurkar, S., y Childs, D. Z. (2010). Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 79(6), 1226-1240.
Delaney, D. M., y Warner, D. A. (2016). Age-and sex-specific variations in microhabitat and macrohabitat use in a territorial lizard. Behavioral ecology and sociobiology, 70(6), 981-991.
Easterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708.
Ellner, S. P., y Rees, M. (2006). Integral projection models for species with complex demography. The American Naturalist, 167(3), 410-428.
Fabian, D., y Flatt, T. (2012). Life history evolution. Nature Education Knowledge, 3.
Fowler, C. W., y Smith, T. D. (1981). Dynamics of large mammal populations (No. 599 F6).
Hixon, M. A., Pacala, S. W., y Sandin, S. A. (2002). Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology, 83(6), 1490-1508.
Jongejans E, de Vere N, de Kroon H (2008) Demographic vulnerability of the clonal and endangered meadow thistle. Plant Ecol 198(2):225–240.
Kohler, S. L., y Hoiland, W. K. (2001). Population regulation in an aquatic insect: the role of disease. Ecology, 82(8), 2294-2305.
Lagos PA, Herberstein ME. 2017. Are males more scared of predators? Differential change in metabolic rate between males and females under predation risk. Physiol Behav. 173:110–115
Laurie, W. A., y Brown, D. (1990). Changes in annual survival rates and the effects of size, sex, age and fecundity in a population crash. The Journal of Animal Ecology, 529-544.
Lecomte, J., Clobert, J., Massot, M., y Barbault, R. (1994). Spatial and behavioural consequences of a density manipulation in the common lizard1. Ecoscience, 1(4), 300-310.
Le Galliard, J. F., Ferriere, R., y Clobert, J. (2005). Juvenile growth and survival under dietary restriction: are males and females equal?. Oikos, 111(2), 368-376.
Losos, J. B., T. W. Schoener, and D. A. Spiller. 2004. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432:505–508.
Losos JB, Schoener TW, Langerhans RB, Spiller DA. 2006. Rapid temporal reversal in predator-driven natural selection. Science. 314:1111.
Merow, C., Dahlgren, J. P., Metcalf, C. J. E., Childs, D. Z., Evans, M. E., Jongejans, E., ... y McMahon, S. M. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99-110.
Metcalf, C. J. E., McMahon, S. M., Salguero‐Gómez, R., y Jongejans, E. (2013). IPM pack: an R package for integral projection models. Methods in Ecology and Evolution, 4(2), 195-200.
Moreno‐Arias, R. A., y Urbina‐Cardona, J. N. (2013). Population Dynamics of the Andean Lizard Anolis heterodermus: Fast‐slow Demographic Strategies in Fragmented Scrubland Landscapes. Biotropica, 45(2), 253-261.
Morris WF, Doak DF (2002) Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sinauer Associates, Sunderland, MA)
Mugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2010). Immediate and delayed life history effects caused by food deprivation early in life in a short‐lived lizard. Journal of evolutionary biology, 23(9), 1886-1898.
Mugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2011). Direct and socially-mediated effects of food availability late in life on life-history variation in a short-lived lizard. Oecologia, 166(4), 949-960.
Nichols, J. D., and J. E. Hines. 2002. Approaches for the direct estimation of k, and demographic contributions to k, using capture-recapture data. Journal of Applied Statistics 29:539–568
Peters, R. H., y Peters, R. H. (1986). The ecological implications of body size (Vol. 2). Cambridge University Press.
Paterson, J. E., y Blouin‐Demers, G. (2018). Tree lizard (Urosaurus ornatus) growth decreases with population density, but increases with habitat quality. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(10), 527-535.
Plard, F., Fay, R., Kéry, M., Cohas, A., y Schaub, M. (2019). Integrated population models: powerful methods to embed individual processes in population dynamics models. Ecology, e02715.
Rees, M., y Ellner, S. P. (2009). Integral projection models for populations in temporally varying environments. Ecological Monographs, 79(4), 575-594.
Rees, M., Childs, D. Z., y Ellner, S. P. (2014). Building integral projection models: a user's guide. Journal of Animal Ecology,83(3), 528-545.
Rose, K. E., Clutton‐Brock, T. H., y Guinness, F. E. (1998). Cohort variation in male survival and lifetime breeding success in red deer. Journal of Animal Ecology, 67(6), 979-986.
Sæther, B. E. (1997). Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology y Evolution, 12(4), 143-149.
Schaub, M., y Abadi, F. (2011). Integrated population models: a novel analysis framework for deeper insights into population dynamics. Journal of Ornithology, 152(1), 227-237.
Schoener, T. W. (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. science, 331(6016), 426-429.
Sibly, R. M., y Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1425), 1153-1170.
Smallegange, I. M., y Coulson, T. (2013). Towards a general, population-level understanding of eco-evolutionary change. Trends in ecology y evolution, 28(3), 143-148.
Sinervo, B., E. Svensson, and T. Comendant. 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–988.
Sorci, G., Clobert, J., y Belichon, S. (1996). Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. Journal of Animal ecology, 781-790.
Stamps, J. A., y Buechner, M. (1985). The territorial defense hypothesis and the ecology of insular vertebrates. The Quarterly Review of Biology, 60(2), 155-181.
Stapley, J., Garcia, M., y Andrews, R. M. (2015). Long-term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Niño years on population growth rate. PloS one, 10(2), e0115450
Stearns, S. C. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3:259– 268.
Stearns, S. C. 1992. The evolution of life histories. Oxford Univ. Press, Oxford
Svanbäck, R., y Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences, 274, 839e844.
Tuljapurkar, S. (1990). Delayed reproduction and fitness in variable environments. Proceedings of the National Academy of Sciences, 87(3), 1139-1143.
Wang, G., Hobbs, N. T., Twombly, S., Boone, R. B., Illius, A. W., Gordon, I. J., y Gross, J. E. (2009). Density dependence in northern ungulates: interactions with predation and resources. Population Ecology, 51(1), 123-132.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 68 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Ciencias Forestales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82287/7/1068661586.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/82287/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82287/9/Santos%20Morales%20Amilcar%20Hernan_licencia2.pdf
https://repositorio.unal.edu.co/bitstream/unal/82287/10/santos%20Morales%20Amilcar%20Hernan_licencia1.pdf
https://repositorio.unal.edu.co/bitstream/unal/82287/11/1068661586.2019.pdf.jpg
bitstream.checksum.fl_str_mv 694ede5290ada54188800ac3b3524b04
b577153cc0e11f0aeb5fc5005dc82d8a
63c149722c71a84e19b527792aba4488
4b5b6aeca4345032d24d178bc5505901
c16f4a3a3d16b44d38a52342f9a4f018
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089449257041920
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ortega León, Ángela María71d7d9c11a8522fc9f11a73e63508f6fZamora Abrego, Joan Gastón29093f096473bd27edf72391004c7d95600Santos Morales, Amilcar69bb5d1254df87daff29c57fff1c0a31600Ecología y Conservación de Fauna Silvestre2022-09-13T20:20:19Z2022-09-13T20:20:19Z2019https://repositorio.unal.edu.co/handle/unal/82287Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEn este estudio se evaluó el efecto de factores intrínsecos (tamaño corporal y densidad poblacional) y extrínsecos (precipitación) sobre las tasas de crecimiento corporal en dos localidades de Anolis auratus en el departamento de Córdoba. Para lograr este objetivo este estudio se separó en dos capítulos, en el primer capítulo se describen y analizan las variaciones en el crecimiento corporal entre las dos localidades, con la densidad poblacional, el tamaño corporal y la precipitación como predictores, encontrando que el crecimiento corporal presenta diferencias significativas entre localidades pero no entre sexos, y que el crecimiento corporal de las dos localidades es el resultado de un efecto aditivo entre la densidad poblacional y el tamaño corporal. En el segundo capítulo se evalúa a través de un modelo de proyección integral el papel de los factores intrínsecos y extrínsecos sobre la supervivencia, el crecimiento poblacional y la fecundidad, encontrando que tanto el crecimiento como la supervivencia son el resultado de un efecto aditivo entre el tamaño corporal y la densidad poblacional, y que los individuos de tamaños grandes son los que tienen un mayor aporte a la tasa finita de crecimiento poblacional (Texto tomado de la fuente)In this study, the effect of intrinsic factors (body size and population density) and extrinsic factors (precipitation) was evaluated in two localities of Anolis auratus in the department of Córdoba. To achieve this objective, this study was separated into two chapters. In the first chapter, variations in body growth between the two locations are described and analyzed, with population density, body size and precipitation as predictors, finding that body growth it presents significant differences between localities but not between sexes, and that the corporal growth of the two localities is the result of an additive effect between population density and body size. In the second chapter, the role of intrinsic and extrinsic factors on survival, population growth and fertility is assessed through an integral projection model, finding that both growth and survival are the result of an additive effect between the body size and population density, and that individuals of large sizes are those that have a greater contribution to the finite rate of population growthMaestríaMagíster en Bosques y Conservación AmbientalÁrea Curricular en Bosques y Conservación Ambientalix, 68 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalDepartamento de Ciencias ForestalesFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín590 - AnimalesDimorfismo sexual en animalesReptiles - CrecimientoFactores intrínsecosFactores extrínsecosFecundidadCrecimiento poblacionalAnolis auratusDimorfismo sexualIntrinsic factorsExtrinsic factorsSurvivalFertilityPopulation growthSexual dimorphismEfectos de la densidad poblacional y la precipitación de Anolis auratus (Sauria: Dactyloidae) sobre sus tasas vitales en el departamento de Córdoba-ColombiaEffects of population density and rainfall of Anolis auratus (Sauria: Dactyloidae) on their vital rates in the department of Córdoba-ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMArmstrong, D. P., Davidson, R. S., Perrott, J. K., Roygard, J., & Buchanan, L. (2005). Density‐dependent population growth in a reintroduced population of North Island saddlebacks. Journal of Animal Ecology, 74(1), 160-170.Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research, 33(2), 261-304.Avila-Pires, T. C. (1995). Lizards of brazilian amazonia (Reptilia: Squamata). Zoologische verhandelingen, 299(1), 1-706.Cappuccino, N., & Price, P. W. (Eds.). (1995). Population dynamics: new approaches and synthesis. Elsevier.Cox, R. M., Stenquist, D. S., Henningsen, J. P., & Calsbeek, R. (2009). Manipulating testosterone to assess links between behavior, morphology, and performance in the brown anole Anolis sagrei. Physiological and Biochemical Zoology, 82(6), 686-698.Cox, R. M., & Calsbeek, R. (2010). Severe costs of reproduction persist in Anolis lizards despite the evolution of a single‐egg clutch. Evolution, 64(5), 1321-1330Díaz, J. A., Iraeta, P., Verdú-Ricoy, J., Siliceo, I., & Salvador, A. (2012). Intraspecific variation of reproductive traits in a Mediterranean lizard: clutch, population, and lineage effects. Evolutionary Biology, 39(1), 106-115.Downes, S. J. (2002). Does responsiveness to predator scents affect lizard survivorship? Behavioral Ecology and Sociobiology, 52(1), 38-42.Du, W. G., Warner, D. A., Langkilde, T., Robbins, T. R., & Shine, R. (2012). The roles of pre-and post-hatching growth rates in generating a latitudinal cline of body size in the eastern fence lizard (Sceloporus undulatus). Biological Journal of the Linnean Society, 106(1), 202-209.Edeline, E., Haugen, T. O., Weltzien, F. A., Claessen, D., Winfield, I. J., Stenseth, N. C., & Vøllestad, L. A. (2009). Body downsizing caused by non-consumptive social stress severely depresses population growth rate. Proceedings of the Royal Society B: Biological Sciences, 277(1683), 843-851.Fabens, A. J. (1965). Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265-289.Katsanevakis, S., & Maravelias, C. D. (2008). Modelling fish growth: multi‐model inference as a better alternative to a priori using von Bertalanffy equation. Fish and fisheries, 9(2), 178-187.Le Galliard, J. F., Marquis, O., & Massot, M. (2010). Cohort variation, climate effects and population dynamics in a short‐lived lizard. Journal of Animal Ecology, 79(6), 1296-1307.Lewis, S. M. (1986). The role of herbivorous fishes in the organization of a Caribbean reef community. Ecological Monographs, 56(3), 183-200.Lorenzen, K. (1996). The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. Journal of fish biology, 49(4), 627-642.Lorenzon, P., Clobert, J., & Massot, M. (2001). The contribution of phenotypic plasticity to adaptation in Lacerta vivipara. Evolution, 55(2), 392-404.Losos, J. B. (2011). Lizards in an evolutionary tree: ecology and adaptive radiation of anoles (Vol. 10). Univ of California Press.Lu, H. L., Xu, C. X., Zeng, Z. G., & Du, W. G. (2018). Environmental causes of between-population difference in growth rate of a high-altitude lizard. BMC ecology, 18(1), 37.Marquis, O., Massot, M., & Le Galliard, J. F. (2008). Intergenerational effects of climate generate cohort variation in lizard reproductive performance. Ecology, 89(9), 2575-2583.Massot, M., Clobert, J., Pilorge, T., Lecomte, J., & Barbault, R. (1992). Density dependence in the common lizard: demographic consequences of a density manipulation. Ecology, 73(5), 1742-1756.Mugabo, M., Perret, S., Legendre, S., & Le Galliard, J. F. (2013). Density‐dependent life history and the dynamics of small populations. Journal of Animal Ecology, 82(6), 1227-1239.Nelder, J. A., & Baker, R. J. (1972). Generalized linear models. Encyclopedia of statistical sciences.Niewiarowski, P. H. (2001). Energy budgets, growth rates, and thermal constraints: toward an integrative approach to the study of life-history variation. The American Naturalist, 157(4), 421-433.Novosolov, M., & Meiri, S. (2013). The effect of island type on lizard reproductive traits. Journal of Biogeography, 40(12), 2385-2395.Ortega, J., López, P., & Martín, J. (2015). Altitudinally divergent adult phenotypes in Iberian wall lizards are not driven by egg differences or hatchling growth rates. Oecologia, 177(2), 357-366.Ortega, J., López, P., & Martín, J. (2017). Environmental drivers of growth rates in Guadarrama wall lizards: a reciprocal transplant experiment. Biological Journal of the Linnean Society, 122(2), 340-350.Pérez-Mendoza, H. A., Zúñiga-Vega, J. J., Zurita-Gutiérrez, Y. H., Fornoni, J., Solano-Zavaleta, I., Hernández-Rosas, A. L., & Molina-Moctezuma, A. (2013). Demographic importance of the life-cycle components in Sceloporus grammicus. Herpetologica, 69(4), 411-435.Pincheira‐Donoso, D., & Hunt, J. (2017). Fecundity selection theory: concepts and evidence. Biological Reviews, 92(1), 341-356.Pinheiro, J. C., & Bates, D. M. (2000). Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus, 3-56.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2013). nlme: Linear and nonlinear mixed effects models. R package version, 3(1), 111Renjifo, J. M., & Lundberg, M. (1999). Guía de campo anfibios y reptiles de Urrá. Editorial Colina. Medellín, Colombia.Rotger, A., Igual, J. M., Smith, J. J., & Tavecchia, G. (2016). Relative role of population density and climatic factors in shaping the body growth rate of Lilford’s Wall Lizard (Podarcis lilfordi). Canadian Journal of Zoology, 94(3), 207-215.Samhouri, J. F., Levin, P. S., & Harvey, C. J. (2009). Quantitative evaluation of marine ecosystem indicator performance using food web models. Ecosystems, 12(8), 1283-1298.Sánchez, H. Castaño, O. & Cárdenas, G. (1995). Diversidad de los Reptiles en Colombia. Colombia diversidad biótica I. Bogotá: Universidad Nacional de Colombia, Inderena, Fundación FES, 277-325.Schlaepfer, M. A. (2006). Growth Rates and Body Condition in Norops polylepis (Polychrotidae) Vary with Respect to Sex but not Mite Load 1. Biotropica: The Journal of Biology and Conservation, 38(3), 414-418.Schoener, T. W., & Schoener, A. (1978). Estimating and interpreting body-size growth in some Anolis lizards. Copeia, 390-405.Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38(9), 1128-1140.Shine, R., & Charnov, E. L. (1992). Patterns of survival, growth, and maturation in snakes and lizards. The American Naturalist, 139(6), 1257-1269.Siliceo-Cantero, H. H., & Garcia, A. (2014). Differences in growth rate, body condition, habitat use and food availability between island and mainland lizard populations of Anolis nebulosus in Jalisco, Mexico. Journal of Tropical Ecology, 30(5), 493-501.Stamps, J., & Tanaka, S. (1981). The influence of food and water on growth rates in a tropical lizard (Anolis aeneus). Ecology, 62(1), 33-40.Tinkle, D. W. (1969). The concept of reproductive effort and its relation to the evolution of life histories of lizards. The American Naturalist, 103(933), 501-516Tsai, W. P., Sun, C. L., Punt, A. E., & Liu, K. M. (2014). Demographic analysis of the shortfin mako shark, Isurus oxyrinchus, in the Northwest Pacific using a two-sex stage-based matrix model. ICES Journal of Marine Science, 71(7), 1604-1618.Van Sluys, M. (1998). Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. Journal of Herpetology, 359-365.Von Bertalanffy, L. (1951). General system theory, a new approach to unity of science. 5. Conclusion. Human biology, 23(4), 337.Zúñiga-Vega, J. J., Rojas-González, R. I., Lemos-Espinal, J. A., & Pérez-Trejo, M. E. (2005). Growth ecology of the lizard Xenosaurus grandis in Veracruz, México. Journal of Herpetology, 39(3), 433-444.Zúñiga‐Vega, J., N. Reznick, D., & B. Johnson, J. (2007). Habitat predicts reproductive superfetation and body shape in the livebearing fish Poeciliopsis turrubarensis. Oikos, 116(6), 995-1005.Andrews, R. M., and A. S. Rand. 1974. Reproductive effort in anoline lizards. Ecology 55:1317–1327Angilletta Jr, M. J., Oufiero, C. E., y Leaché, A. D. (2006). Direct and indirect effects of environmental temperature on the evolution of reproductive strategies: an information-theoretic approach. The American Naturalist, 168(4), E123-E135.Barbraud, C., y Weimerskirch, H. (2003). Climate and density shape population dynamics of a marine top predator. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1529), 2111-2116.Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., y Travis, J. (2012). Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. The American Naturalist, 181(1), 25-38.Bassar, R. D., Letcher, B. H., Nislow, K. H., y Whiteley, A. R. (2016). Changes in seasonal climate outpace compensatory density‐dependence in eastern brook trout. Global Change Biology, 22(2), 577-593.Begon, M., Townsend, C. R., y Harper, J. L. (2006). Ecology: from individuals to ecosystemsBesbeas, P., Freeman, S. N., Morgan, B. J., y Catchpole, E. A. (2002). Integrating mark–recapture–recovery and census data to estimate animal abundance and demographic parameters. Biometrics, 58(3), 540-547.Blanckenhorn, W. U. (2000). The evolution of body size: what keeps organisms small?. The quarterly review of biology, 75(4), 385-407.Brandt, R., y Navas, C. A. (2011). Life-history evolution on Tropidurinae lizards: influence of lineage, body size and climate. PLoS One, 6(5), e20040.Calder, W. A. (1996). Size, function, and life history. Courier Corporation.Calderón-Espinosa, M. L., y Barragán-Contreras, L. A. (2014). Geographic body size and shape variation in a mainland Anolis (Squamata: Dactyloidae) from Northwestern South America (Colombia). Acta Biológica Colombiana, 19(2), 167-174.Caswell, H. 2001. Matrix populations models. Sinauer, Sunderland, MA.Chung, Y. A., Miller, T. E., y Rudgers, J. A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology, 103(4), 967-977.Clutton-Brock, T. H., Major, M., Albon, S. D., y Guinness, F. E. (1987). Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. The Journal of Animal Ecology, 53-67.Coulson, T. (2012). Integral projections models, their construction and use in posing hypotheses in ecology. Oikos, 121(9), 1337-1350.Coulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J., Pemberton, J. M., Clutton-Brock, T. H., ... y Grenfell, B. T. (2001). Age, sex, density, winter weather, and population crashes in Soay sheep. Science, 292(5521), 1528-1531.Coulson, T., Tuljapurkar, S., y Childs, D. Z. (2010). Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 79(6), 1226-1240.Delaney, D. M., y Warner, D. A. (2016). Age-and sex-specific variations in microhabitat and macrohabitat use in a territorial lizard. Behavioral ecology and sociobiology, 70(6), 981-991.Easterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-specific sensitivity: applying a new structured population model. Ecology 81:694–708.Ellner, S. P., y Rees, M. (2006). Integral projection models for species with complex demography. The American Naturalist, 167(3), 410-428.Fabian, D., y Flatt, T. (2012). Life history evolution. Nature Education Knowledge, 3.Fowler, C. W., y Smith, T. D. (1981). Dynamics of large mammal populations (No. 599 F6).Hixon, M. A., Pacala, S. W., y Sandin, S. A. (2002). Population regulation: historical context and contemporary challenges of open vs. closed systems. Ecology, 83(6), 1490-1508.Jongejans E, de Vere N, de Kroon H (2008) Demographic vulnerability of the clonal and endangered meadow thistle. Plant Ecol 198(2):225–240.Kohler, S. L., y Hoiland, W. K. (2001). Population regulation in an aquatic insect: the role of disease. Ecology, 82(8), 2294-2305.Lagos PA, Herberstein ME. 2017. Are males more scared of predators? Differential change in metabolic rate between males and females under predation risk. Physiol Behav. 173:110–115Laurie, W. A., y Brown, D. (1990). Changes in annual survival rates and the effects of size, sex, age and fecundity in a population crash. The Journal of Animal Ecology, 529-544.Lecomte, J., Clobert, J., Massot, M., y Barbault, R. (1994). Spatial and behavioural consequences of a density manipulation in the common lizard1. Ecoscience, 1(4), 300-310.Le Galliard, J. F., Ferriere, R., y Clobert, J. (2005). Juvenile growth and survival under dietary restriction: are males and females equal?. Oikos, 111(2), 368-376.Losos, J. B., T. W. Schoener, and D. A. Spiller. 2004. Predator-induced behaviour shifts and natural selection in field-experimental lizard populations. Nature 432:505–508.Losos JB, Schoener TW, Langerhans RB, Spiller DA. 2006. Rapid temporal reversal in predator-driven natural selection. Science. 314:1111.Merow, C., Dahlgren, J. P., Metcalf, C. J. E., Childs, D. Z., Evans, M. E., Jongejans, E., ... y McMahon, S. M. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99-110.Metcalf, C. J. E., McMahon, S. M., Salguero‐Gómez, R., y Jongejans, E. (2013). IPM pack: an R package for integral projection models. Methods in Ecology and Evolution, 4(2), 195-200.Moreno‐Arias, R. A., y Urbina‐Cardona, J. N. (2013). Population Dynamics of the Andean Lizard Anolis heterodermus: Fast‐slow Demographic Strategies in Fragmented Scrubland Landscapes. Biotropica, 45(2), 253-261.Morris WF, Doak DF (2002) Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis (Sinauer Associates, Sunderland, MA)Mugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2010). Immediate and delayed life history effects caused by food deprivation early in life in a short‐lived lizard. Journal of evolutionary biology, 23(9), 1886-1898.Mugabo, M., Marquis, O., Perret, S., y Le Galliard, J. F. (2011). Direct and socially-mediated effects of food availability late in life on life-history variation in a short-lived lizard. Oecologia, 166(4), 949-960.Nichols, J. D., and J. E. Hines. 2002. Approaches for the direct estimation of k, and demographic contributions to k, using capture-recapture data. Journal of Applied Statistics 29:539–568Peters, R. H., y Peters, R. H. (1986). The ecological implications of body size (Vol. 2). Cambridge University Press.Paterson, J. E., y Blouin‐Demers, G. (2018). Tree lizard (Urosaurus ornatus) growth decreases with population density, but increases with habitat quality. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 329(10), 527-535.Plard, F., Fay, R., Kéry, M., Cohas, A., y Schaub, M. (2019). Integrated population models: powerful methods to embed individual processes in population dynamics models. Ecology, e02715.Rees, M., y Ellner, S. P. (2009). Integral projection models for populations in temporally varying environments. Ecological Monographs, 79(4), 575-594.Rees, M., Childs, D. Z., y Ellner, S. P. (2014). Building integral projection models: a user's guide. Journal of Animal Ecology,83(3), 528-545.Rose, K. E., Clutton‐Brock, T. H., y Guinness, F. E. (1998). Cohort variation in male survival and lifetime breeding success in red deer. Journal of Animal Ecology, 67(6), 979-986.Sæther, B. E. (1997). Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends in Ecology y Evolution, 12(4), 143-149.Schaub, M., y Abadi, F. (2011). Integrated population models: a novel analysis framework for deeper insights into population dynamics. Journal of Ornithology, 152(1), 227-237.Schoener, T. W. (2011). The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. science, 331(6016), 426-429.Sibly, R. M., y Hone, J. (2002). Population growth rate and its determinants: an overview. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1425), 1153-1170.Smallegange, I. M., y Coulson, T. (2013). Towards a general, population-level understanding of eco-evolutionary change. Trends in ecology y evolution, 28(3), 143-148.Sinervo, B., E. Svensson, and T. Comendant. 2000. Density cycles and an offspring quantity and quality game driven by natural selection. Nature 406:985–988.Sorci, G., Clobert, J., y Belichon, S. (1996). Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. Journal of Animal ecology, 781-790.Stamps, J. A., y Buechner, M. (1985). The territorial defense hypothesis and the ecology of insular vertebrates. The Quarterly Review of Biology, 60(2), 155-181.Stapley, J., Garcia, M., y Andrews, R. M. (2015). Long-term data reveal a population decline of the tropical lizard Anolis apletophallus, and a negative affect of El Niño years on population growth rate. PloS one, 10(2), e0115450Stearns, S. C. 1989. Trade-offs in life-history evolution. Funct. Ecol. 3:259– 268.Stearns, S. C. 1992. The evolution of life histories. Oxford Univ. Press, OxfordSvanbäck, R., y Bolnick, D. I. (2007). Intraspecific competition drives increased resource use diversity within a natural population. Proceedings of the Royal Society B: Biological Sciences, 274, 839e844.Tuljapurkar, S. (1990). Delayed reproduction and fitness in variable environments. Proceedings of the National Academy of Sciences, 87(3), 1139-1143.Wang, G., Hobbs, N. T., Twombly, S., Boone, R. B., Illius, A. W., Gordon, I. J., y Gross, J. E. (2009). Density dependence in northern ungulates: interactions with predation and resources. Population Ecology, 51(1), 123-132.InvestigadoresPúblico generalORIGINAL1068661586.2019.pdf1068661586.2019.pdfTesis Maestría en Bosques y Conservación Ambientalapplication/pdf720196https://repositorio.unal.edu.co/bitstream/unal/82287/7/1068661586.2019.pdf694ede5290ada54188800ac3b3524b04MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82287/6/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD56CC-LICENSESantos Morales Amilcar Hernan_licencia2.pdfSantos Morales Amilcar Hernan_licencia2.pdfapplication/pdf717560https://repositorio.unal.edu.co/bitstream/unal/82287/9/Santos%20Morales%20Amilcar%20Hernan_licencia2.pdf63c149722c71a84e19b527792aba4488MD59santos Morales Amilcar Hernan_licencia1.pdfsantos Morales Amilcar Hernan_licencia1.pdfapplication/pdf753273https://repositorio.unal.edu.co/bitstream/unal/82287/10/santos%20Morales%20Amilcar%20Hernan_licencia1.pdf4b5b6aeca4345032d24d178bc5505901MD510THUMBNAIL1068661586.2019.pdf.jpg1068661586.2019.pdf.jpgGenerated Thumbnailimage/jpeg4575https://repositorio.unal.edu.co/bitstream/unal/82287/11/1068661586.2019.pdf.jpgc16f4a3a3d16b44d38a52342f9a4f018MD511unal/82287oai:repositorio.unal.edu.co:unal/822872023-11-28 08:15:51.905Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==