Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas

ilustraciones

Autores:
Núñez Campos, César Augusto
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83760
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83760
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales
500 - Ciencias naturales y matemáticas
520 - Astronomía y ciencias afines
Genoma
Tecnología de bajo costo
Genome
Low Cost Technology
reads
contigs
ensamblaje
tecnologías de secuenciación
traducción
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_faffa49786b62f27a56c0007b0e6ddb6
oai_identifier_str oai:repositorio.unal.edu.co:unal/83760
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
dc.title.translated.eng.fl_str_mv Assembly of the genome of Leuconostoc mesenteroides IBUN 91.2.98. through bioinformatics tools
title Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
spellingShingle Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
000 - Ciencias de la computación, información y obras generales
500 - Ciencias naturales y matemáticas
520 - Astronomía y ciencias afines
Genoma
Tecnología de bajo costo
Genome
Low Cost Technology
reads
contigs
ensamblaje
tecnologías de secuenciación
traducción
title_short Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
title_full Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
title_fullStr Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
title_full_unstemmed Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
title_sort Ensamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticas
dc.creator.fl_str_mv Núñez Campos, César Augusto
dc.contributor.advisor.none.fl_str_mv Ospina Sánchez, Sonia Amparo
dc.contributor.author.none.fl_str_mv Núñez Campos, César Augusto
dc.contributor.researchgroup.spa.fl_str_mv Biopolímeros y Biofuncionales
dc.contributor.orcid.spa.fl_str_mv César Augusto Núñez Campos [0000000152190836]
dc.contributor.cvlac.spa.fl_str_mv Núñez Campos, César Augusto
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales
500 - Ciencias naturales y matemáticas
520 - Astronomía y ciencias afines
topic 000 - Ciencias de la computación, información y obras generales
500 - Ciencias naturales y matemáticas
520 - Astronomía y ciencias afines
Genoma
Tecnología de bajo costo
Genome
Low Cost Technology
reads
contigs
ensamblaje
tecnologías de secuenciación
traducción
dc.subject.decs.spa.fl_str_mv Genoma
Tecnología de bajo costo
dc.subject.decs.eng.fl_str_mv Genome
Low Cost Technology
dc.subject.proposal.eng.fl_str_mv reads
contigs
dc.subject.proposal.spa.fl_str_mv ensamblaje
tecnologías de secuenciación
traducción
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-10-07
dc.date.accessioned.none.fl_str_mv 2023-04-24T13:54:41Z
dc.date.available.none.fl_str_mv 2023-04-24T13:54:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83760
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83760
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M. N. Ruiz, “Bioinformática: Conceptos y alcances en las fronteras de la ciencia,” p. 88, 2004.
J. A. Valverde, “Anotación de genoma,” Conogasi, Conoc. para la vida, 2016.
L. Brenes-Guillén, “Ensamblaje de genomas y anotación,” vol. 22, no. 3, p. 2013, 2013.
S. González de la Fuente, “Ensamblaje de novo y anotación génica del genoma de Leishmania major mediante secuenciación masiva,” Uoc Univ. Oberta Catalunya, 2018, [Online]. Available: http://hdl.handle.net/10609/81889
M. Naessens, A. Cerdobbel, and W. Soetaert, “Leuconostoc dextransucrasa y dextrano : producción , propiedades y aplicaciones,” vol. 860, pp. 845–860, 2005.
H. Neubauer, A. Bauché, and B. Mollet, “Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures,” Microbiology, vol. 149, no. 4, pp. 973–982, 2003, doi: 10.1099/mic.0.26029-0.
E. Díaz-Montes, J. Yáñez-Fernández, and R. Castro-Muñoz, “Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3,” Food Bioprod. Process., vol. 119, pp. 317–328, 2020, doi: 10.1016/j.fbp.2019.11.017.
G. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.
F. Chen, G. Huang, and H. Huang, “Preparation and application of dextran and its derivatives as carriers,” Int. J. Biol. Macromol., vol. 145, pp. 827–834, 2020, doi: 10.1016/j.ijbiomac.2019.11.151.
V. Monchois, R. Willemot, and P. Monsan, “Glucansucrasas : mecanismo de acción y estructura ^ función relaciones,” vol. 23, 1999.
M. Naessens, A. Cerdobbel, W. Soetaert, and E. J. Vandamme, “Leuconostoc dextransucrase and dextran: Production, properties and applications,” J. Chem. Technol. Biotechnol., vol. 80, no. 8, pp. 845–860, 2005, doi: 10.1002/jctb.1322.
F. G. G. Yhon., “Estudio de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides cepa IBUN 91.2.98.” Bogotá, p. 46, 2014.
“Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química EMMETT ECHEVERRÍA VALENZUELA ASESORADO POR M . Sc . ZENÓN MUCH SANTOS,” 2006.
L. Alejandra and G. Galindo, “Caracterización molecular y funcional del gen codificante para la dextransacarasa de,” pp. 1–36, 2018.
G. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.
B. H. Chun, K. H. Kim, H. H. Jeon, S. H. Lee, and C. O. Jeon, “Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation,” Sci. Rep., vol. 7, no. 1, pp. 1–16, 2017, doi: 10.1038/s41598-017-12016-z.
W. Ruppitsch et al., “Genetic diversity of leuconostoc mesenteroides isolates from traditional montenegrin brine cheese,” Microorganisms, vol. 9, no. 8, pp. 1–16, 2021, doi: 10.3390/microorganisms9081612.
P. Zhang, P. Zhang, J. Wu, D. Tao, and R. Wu, “Effects of Leuconostoc mesenteroides on physicochemical and microbial succession characterization of soybean paste, Da-jiang,” Lwt, vol. 115, 2019, doi: 10.1016/j.lwt.2019.04.029.
L. H. Deegan, P. D. Cotter, C. Hill, and P. Ross, “Bacteriocins: Biological tools for bio-preservation and shelf-life extension,” Int. Dairy J., vol. 16, no. 9, pp. 1058–1071, 2006, doi: 10.1016/j.idairyj.2005.10.026.
N. A. Vega Castro and E. A. Reyes Montaño, “Introducción al análisis estructural de proteínas y glicoproteínas,” Introd. al análisis estructural proteínas y glicoproteínas, 2020, doi: 10.36385/fcbog-3-0.
L. Liu et al., “Comparison of next-generation sequencing systems,” J. Biomed. Biotechnol., vol. 2012, 2012, doi: 10.1155/2012/251364.
J. M. Heather and B. Chain, “The sequence of sequencers: The history of sequencing DNA,” Genomics, vol. 107, no. 1, pp. 1–8, 2016, doi: 10.1016/j.ygeno.2015.11.003.
T. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation sequencing: Computational challenges and solutions,” Nat. Rev. Genet., vol. 13, no. 1, pp. 36–46, 2012, doi: 10.1038/nrg3117.
N. B. Larson, A. L. Oberg, A. A. Adjei, and L. Wang, “A Clinician’s Guide to Bioinformatics for Next-Generation Sequencing,” J. Thorac. Oncol., vol. 18, no. 2, pp. 143–157, 2023, doi: 10.1016/j.jtho.2022.11.006.
L. J. Fennell et al., “Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis,” Cell Reports Methods, vol. 2, no. 11, p. 100323, 2022, doi: 10.1016/j.crmeth.2022.100323.
Y. Guo et al., “Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue,” EBioMedicine, vol. 73, p. 103639, 2021, doi: 10.1016/j.ebiom.2021.103639.
M. Yermagambetova, S. Abugalieva, Y. Turuspekov, and S. Almerekova, “Illumina sequencing data of the complete chloroplast genome of rare species Juniperus seravschanica (Cupressaceae) from Kazakhstan,” Data Br., vol. 46, p. 108866, 2023, doi: 10.1016/j.dib.2022.108866.
T. Soni, R. Pandit, D. Blake, C. Joshi, and M. Joshi, “Comparative analysis of two next-generation sequencing platforms for analysis of antimicrobial resistance genes,” J. Glob. Antimicrob. Resist., vol. 31, pp. 167–174, 2022, doi: 10.1016/j.jgar.2022.08.017.
Z. Liang et al., “Combined Illumina and Pacbio sequencing technology on transcriptome analysis reveals several key regulations during the early development of American shad (Alosa sapidissima),” Aquac. Reports, vol. 25, no. July, p. 101264, 2022, doi: 10.1016/j.aqrep.2022.101264.
L. Aguilar-Bultet and L. Falquet, “Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos,” Rev. Salud Anim, vol. 37, no. 2, pp. 125–132, 2015.
H. E. L. Lischer and K. K. Shimizu, “Reference-guided de novo assembly approach improves genome reconstruction for related species,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–12, 2017, doi: 10.1186/s12859-017-1911-6.
B. Wajid and E. Serpedin, “Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers,” Genomics, Proteomics Bioinforma., vol. 10, no. 2, pp. 58–73, 2012, doi: 10.1016/j.gpb.2012.05.006.
S. Andrews, “Index of projects fastqc help 3 - Analysis Modules,” 2010.
M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory,” BMC Bioinformatics, vol. 13, no. 1, 2012, doi: 10.1186/1471-2105-13-238.
L. T. G. Navarrete, “Garcia Navarrete (2018) Estrategia computacional,” Universidad Nacional de Colombia. 2018.
K. J. McKernan et al., “Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding,” Genome Res., vol. 19, no. 9, pp. 1527–1541, 2009, doi: 10.1101/gr.091868.109.
M. Hernández, N. M. Quijada, D. Rodríguez-Lázaro, and J. M. Eiros, “Bioinformatics of next generation sequencing in clinical microbiology diagnosis,” Rev. Argent. Microbiol., vol. 52, no. 2, pp. 150–161, 2020, doi: 10.1016/j.ram.2019.06.003.
N. Nagarajan and M. Pop, “Sequence assembly demystified,” Nat. Rev. Genet., vol. 14, no. 3, pp. 157–167, 2013, doi: 10.1038/nrg3367.
S. Meader, L. D. W. Hillier, D. Locke, C. P. Ponting, and G. Lunter, “Genome assembly quality: Assessment and improvement using the neutral indel model,” Genome Res., vol. 20, no. 5, pp. 675–684, 2010, doi: 10.1101/gr.096966.109.
E. Port, F. Sun, D. Martin, and M. S. Waterman, “Genomic mapping by end-characterized random clones: a mathematical analysis,” Genomics, vol. 26, no. 1, pp. 84–100, 1995, doi: 10.1016/0888-7543(95)80086-2.
A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: Quality assessment tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp. 1072–1075, 2013, doi: 10.1093/bioinformatics/btt086.
J. Bohlin et al., “Analysis of intra-genomic GC content homogeneity within prokaryotes,” BMC Genojmics, vol. 11, no. 1, 2010, doi: 10.1186/1471-2164-11-464.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83760/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83760/2/1022338090.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83760/3/1022338090.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
7845d69246b042865620a00b2590204c
a7141199b8401673e4d46dd1f612f9b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089405562880000
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospina Sánchez, Sonia Amparo116924f4f0abca4647115a08c2e62940Núñez Campos, César Augusto7bf699b12602adaa313790f5aac21ba4Biopolímeros y BiofuncionalesCésar Augusto Núñez Campos [0000000152190836]Núñez Campos, César Augusto2023-04-24T13:54:41Z2023-04-24T13:54:41Z2022-10-07https://repositorio.unal.edu.co/handle/unal/83760Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesA pesar de la importancia del dextrano en varias aplicaciones industriales y la necesidad de masificar su producción, no se tiene muy documentado el mecanismo de expresión y regulación de las dextransacarasas en cepas productoras como el Leuconostoc mesenteroides cepa IBUN 91.2.98. El desarrollo de métodos de secuenciación de segunda generación y el uso de herramientas bioinformáticas permitirán secuenciar, ensamblar y evaluar genomas completos a un costo relativamente bajo guiados por un genoma de referencia de L. mesenteroides subsp. mesenteroides ATCC 8293, para ayudar al proceso de ensamblaje. La secuenciación produjo un total de 1.47 Gb de datos crudos, que después del trimming y control de calidad generaron 1,40 Gb (7.78 X de profundidad) que se usaron para el ensamblaje. Se obtuvo un ensamblaje para el Leuconostoc mesenteroides cepa IBUN 91.2.98 de una longitud de 2,064 Mpb. La longitud del ensamblaje represento el 85% del tamaño estimado del genoma de referencia de L. mesenteroides subsp. mesenteroides ATCC 8293. (Texto tomado de la fuente)Despite the importance of dextran in various industrial applications and the need to massify your production, the mechanism of expression and regulation of dextransucrases in producer strains such as Leuconostoc mesenteroides strain IBUN 91.2.98 has not been well documented. The development of second-generation sequencing methods and the use of bioinformatic tools will make it possible to sequence, assemble, and evaluate complete of genomes at relatively low cost guided by a reference genome of L. mesenteroides subsp. mesenteroides ATCC 8293, to help the assembly process. Sequencing produced a total of 1.47 Gb of raw data, which after trimming and quality control were generated 1.40 Gb (7.78 X deep) which was used for assembly. An assembly for Leuconostoc mesenteroides strain IBUN 91.2.98 with a length of 2,064 Mpb was obtained. The assembly length represented 85% of the estimated size of the reference genome of L. mesenteroides subsp. mesenteroides ATCC 8293.MaestríaMagíster en Ciencias - Química59 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales500 - Ciencias naturales y matemáticas520 - Astronomía y ciencias afinesGenomaTecnología de bajo costoGenomeLow Cost Technologyreadscontigsensamblajetecnologías de secuenciacióntraducciónEnsamblaje del genoma de Leuconostoc mesenteroides IBUN 91.2.98. por medio de herramientas bioinformáticasAssembly of the genome of Leuconostoc mesenteroides IBUN 91.2.98. through bioinformatics toolsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM. N. Ruiz, “Bioinformática: Conceptos y alcances en las fronteras de la ciencia,” p. 88, 2004.J. A. Valverde, “Anotación de genoma,” Conogasi, Conoc. para la vida, 2016.L. Brenes-Guillén, “Ensamblaje de genomas y anotación,” vol. 22, no. 3, p. 2013, 2013.S. González de la Fuente, “Ensamblaje de novo y anotación génica del genoma de Leishmania major mediante secuenciación masiva,” Uoc Univ. Oberta Catalunya, 2018, [Online]. Available: http://hdl.handle.net/10609/81889M. Naessens, A. Cerdobbel, and W. Soetaert, “Leuconostoc dextransucrasa y dextrano : producción , propiedades y aplicaciones,” vol. 860, pp. 845–860, 2005.H. Neubauer, A. Bauché, and B. Mollet, “Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures,” Microbiology, vol. 149, no. 4, pp. 973–982, 2003, doi: 10.1099/mic.0.26029-0.E. Díaz-Montes, J. Yáñez-Fernández, and R. Castro-Muñoz, “Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3,” Food Bioprod. Process., vol. 119, pp. 317–328, 2020, doi: 10.1016/j.fbp.2019.11.017.G. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.F. Chen, G. Huang, and H. Huang, “Preparation and application of dextran and its derivatives as carriers,” Int. J. Biol. Macromol., vol. 145, pp. 827–834, 2020, doi: 10.1016/j.ijbiomac.2019.11.151.V. Monchois, R. Willemot, and P. Monsan, “Glucansucrasas : mecanismo de acción y estructura ^ función relaciones,” vol. 23, 1999.M. Naessens, A. Cerdobbel, W. Soetaert, and E. J. Vandamme, “Leuconostoc dextransucrase and dextran: Production, properties and applications,” J. Chem. Technol. Biotechnol., vol. 80, no. 8, pp. 845–860, 2005, doi: 10.1002/jctb.1322.F. G. G. Yhon., “Estudio de la enzima dextransacarasa (DS) producida por Leuconostoc mesenteroides cepa IBUN 91.2.98.” Bogotá, p. 46, 2014.“Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ingeniería Química EMMETT ECHEVERRÍA VALENZUELA ASESORADO POR M . Sc . ZENÓN MUCH SANTOS,” 2006.L. Alejandra and G. Galindo, “Caracterización molecular y funcional del gen codificante para la dextransacarasa de,” pp. 1–36, 2018.G. S. Park, S. J. Hong, B. K. Jung, C. Lee, C. K. Park, and J. H. Shin, “The complete genome sequence of a lactic acid bacterium Leuconostoc mesenteroides ssp. dextranicum strain DSM 20484T,” J. Biotechnol., vol. 219, pp. 3–4, 2016, doi: 10.1016/j.jbiotec.2015.12.009.B. H. Chun, K. H. Kim, H. H. Jeon, S. H. Lee, and C. O. Jeon, “Pan-genomic and transcriptomic analyses of Leuconostoc mesenteroides provide insights into its genomic and metabolic features and roles in kimchi fermentation,” Sci. Rep., vol. 7, no. 1, pp. 1–16, 2017, doi: 10.1038/s41598-017-12016-z.W. Ruppitsch et al., “Genetic diversity of leuconostoc mesenteroides isolates from traditional montenegrin brine cheese,” Microorganisms, vol. 9, no. 8, pp. 1–16, 2021, doi: 10.3390/microorganisms9081612.P. Zhang, P. Zhang, J. Wu, D. Tao, and R. Wu, “Effects of Leuconostoc mesenteroides on physicochemical and microbial succession characterization of soybean paste, Da-jiang,” Lwt, vol. 115, 2019, doi: 10.1016/j.lwt.2019.04.029.L. H. Deegan, P. D. Cotter, C. Hill, and P. Ross, “Bacteriocins: Biological tools for bio-preservation and shelf-life extension,” Int. Dairy J., vol. 16, no. 9, pp. 1058–1071, 2006, doi: 10.1016/j.idairyj.2005.10.026.N. A. Vega Castro and E. A. Reyes Montaño, “Introducción al análisis estructural de proteínas y glicoproteínas,” Introd. al análisis estructural proteínas y glicoproteínas, 2020, doi: 10.36385/fcbog-3-0.L. Liu et al., “Comparison of next-generation sequencing systems,” J. Biomed. Biotechnol., vol. 2012, 2012, doi: 10.1155/2012/251364.J. M. Heather and B. Chain, “The sequence of sequencers: The history of sequencing DNA,” Genomics, vol. 107, no. 1, pp. 1–8, 2016, doi: 10.1016/j.ygeno.2015.11.003.T. J. Treangen and S. L. Salzberg, “Repetitive DNA and next-generation sequencing: Computational challenges and solutions,” Nat. Rev. Genet., vol. 13, no. 1, pp. 36–46, 2012, doi: 10.1038/nrg3117.N. B. Larson, A. L. Oberg, A. A. Adjei, and L. Wang, “A Clinician’s Guide to Bioinformatics for Next-Generation Sequencing,” J. Thorac. Oncol., vol. 18, no. 2, pp. 143–157, 2023, doi: 10.1016/j.jtho.2022.11.006.L. J. Fennell et al., “Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis,” Cell Reports Methods, vol. 2, no. 11, p. 100323, 2022, doi: 10.1016/j.crmeth.2022.100323.Y. Guo et al., “Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue,” EBioMedicine, vol. 73, p. 103639, 2021, doi: 10.1016/j.ebiom.2021.103639.M. Yermagambetova, S. Abugalieva, Y. Turuspekov, and S. Almerekova, “Illumina sequencing data of the complete chloroplast genome of rare species Juniperus seravschanica (Cupressaceae) from Kazakhstan,” Data Br., vol. 46, p. 108866, 2023, doi: 10.1016/j.dib.2022.108866.T. Soni, R. Pandit, D. Blake, C. Joshi, and M. Joshi, “Comparative analysis of two next-generation sequencing platforms for analysis of antimicrobial resistance genes,” J. Glob. Antimicrob. Resist., vol. 31, pp. 167–174, 2022, doi: 10.1016/j.jgar.2022.08.017.Z. Liang et al., “Combined Illumina and Pacbio sequencing technology on transcriptome analysis reveals several key regulations during the early development of American shad (Alosa sapidissima),” Aquac. Reports, vol. 25, no. July, p. 101264, 2022, doi: 10.1016/j.aqrep.2022.101264.L. Aguilar-Bultet and L. Falquet, “Secuenciación y ensamblaje de novo de genomas bacterianos: una alternativa para el estudio de nuevos patógenos,” Rev. Salud Anim, vol. 37, no. 2, pp. 125–132, 2015.H. E. L. Lischer and K. K. Shimizu, “Reference-guided de novo assembly approach improves genome reconstruction for related species,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–12, 2017, doi: 10.1186/s12859-017-1911-6.B. Wajid and E. Serpedin, “Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers,” Genomics, Proteomics Bioinforma., vol. 10, no. 2, pp. 58–73, 2012, doi: 10.1016/j.gpb.2012.05.006.S. Andrews, “Index of projects fastqc help 3 - Analysis Modules,” 2010.M. J. Chaisson and G. Tesler, “Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory,” BMC Bioinformatics, vol. 13, no. 1, 2012, doi: 10.1186/1471-2105-13-238.L. T. G. Navarrete, “Garcia Navarrete (2018) Estrategia computacional,” Universidad Nacional de Colombia. 2018.K. J. McKernan et al., “Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding,” Genome Res., vol. 19, no. 9, pp. 1527–1541, 2009, doi: 10.1101/gr.091868.109.M. Hernández, N. M. Quijada, D. Rodríguez-Lázaro, and J. M. Eiros, “Bioinformatics of next generation sequencing in clinical microbiology diagnosis,” Rev. Argent. Microbiol., vol. 52, no. 2, pp. 150–161, 2020, doi: 10.1016/j.ram.2019.06.003.N. Nagarajan and M. Pop, “Sequence assembly demystified,” Nat. Rev. Genet., vol. 14, no. 3, pp. 157–167, 2013, doi: 10.1038/nrg3367.S. Meader, L. D. W. Hillier, D. Locke, C. P. Ponting, and G. Lunter, “Genome assembly quality: Assessment and improvement using the neutral indel model,” Genome Res., vol. 20, no. 5, pp. 675–684, 2010, doi: 10.1101/gr.096966.109.E. Port, F. Sun, D. Martin, and M. S. Waterman, “Genomic mapping by end-characterized random clones: a mathematical analysis,” Genomics, vol. 26, no. 1, pp. 84–100, 1995, doi: 10.1016/0888-7543(95)80086-2.A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, “QUAST: Quality assessment tool for genome assemblies,” Bioinformatics, vol. 29, no. 8, pp. 1072–1075, 2013, doi: 10.1093/bioinformatics/btt086.J. Bohlin et al., “Analysis of intra-genomic GC content homogeneity within prokaryotes,” BMC Genojmics, vol. 11, no. 1, 2010, doi: 10.1186/1471-2164-11-464.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83760/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022338090.2023.pdf1022338090.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf5194466https://repositorio.unal.edu.co/bitstream/unal/83760/2/1022338090.2023.pdf7845d69246b042865620a00b2590204cMD52THUMBNAIL1022338090.2023.pdf.jpg1022338090.2023.pdf.jpgGenerated Thumbnailimage/jpeg5346https://repositorio.unal.edu.co/bitstream/unal/83760/3/1022338090.2023.pdf.jpga7141199b8401673e4d46dd1f612f9b3MD53unal/83760oai:repositorio.unal.edu.co:unal/837602024-08-04 23:10:26.871Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=