Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno

ilustraciones, fotografías, graficas|

Autores:
Franco Rodríguez, César Germán
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82878
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82878
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Óxido de Grafeno
Carbón
Nano materiales
Graphene Oxide
Coal
Nano materials
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_fa6de6505571dfe18f9207eba9c1acfb
oai_identifier_str oai:repositorio.unal.edu.co:unal/82878
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
dc.title.translated.eng.fl_str_mv Liquid Phase Exfoliation (LPE) of high rank coal to obtain graphene oxide
title Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
spellingShingle Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Óxido de Grafeno
Carbón
Nano materiales
Graphene Oxide
Coal
Nano materials
title_short Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
title_full Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
title_fullStr Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
title_full_unstemmed Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
title_sort Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafeno
dc.creator.fl_str_mv Franco Rodríguez, César Germán
dc.contributor.advisor.none.fl_str_mv Guerrero Fajardo, Carlos Alberto
dc.contributor.author.none.fl_str_mv Franco Rodríguez, César Germán
dc.contributor.researchgroup.spa.fl_str_mv APRENA Aprovechamiento Energético de los Recursos Naturales
dc.contributor.orcid.spa.fl_str_mv Franco, Cesar [0000000332944498]
dc.contributor.cvlac.spa.fl_str_mv Franco Rodríguez, César Germán [0000025336]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Óxido de Grafeno
Carbón
Nano materiales
Graphene Oxide
Coal
Nano materials
dc.subject.proposal.spa.fl_str_mv Óxido de Grafeno
Carbón
Nano materiales
dc.subject.proposal.eng.fl_str_mv Graphene Oxide
Coal
Nano materials
description ilustraciones, fotografías, graficas|
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-11T17:32:09Z
dc.date.available.none.fl_str_mv 2023-01-11T17:32:09Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82878
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82878
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv British Petroleum Company, “BP Energy Outlook 2022,” 2022. Accessed: Jul. 24, 2022.
Unidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021.
K. S. Novoselov et al., “Electric field in atomically thin carbon films,” Science (1979), vol. 306, no. 5696, pp. 666–669, Oct. 2004
S. A. M. R. Clark, “Global Graphene Market - Forecast 2014-2021,” Porlant OR, Feb. 2016.
Brodie B. C., “On the atomic weight of graphite,” Philos Trans R Soc Lond, vol. 149, pp. 249–259, Dec. 1859
Staudenmaier L, “Verfahren zur Darstellung der Graphits€aure,” Ber. Dtsch. Chem. Ges., vol. 31, no. 2, pp. 1481–1487, 1898.
W. Hummers and R. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958
M. Inagaki, F. Kang, M. Toyoda, and H. Konno, Advanced materials science and engineering of carbon. 2013.
R. Ye et al., “Coal as an abundant source of graphene quantum dots,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–7, Dec. 2013
S. P. Sasikala et al., “High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids,” ACS Nano, vol. 10, no. 5, pp. 5293–5303, May 2016
International Energy Agency, “Coal Information: Overview (2020 edition),” 2020.
Agencia Nacional de Minería, “ANM Producción Nacional de Minerales y Contraprestaciones Económicas Trimestral | Datos Abiertos Colombia,” 2022.
Unidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía,” 2018. Accessed: Jun. 13, 2022
Unidad de Planeación Minero Energética, “EL CARBÓN COLOMBIANO. Fuente de Energía para el Mundo.” pp. 1–52, 2005
R. Kumar et al., “Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst,” Journal of Nanoparticle Research 2013 15:1, vol. 15, no. 1, pp. 1–11, Jan. 2013
S. Awasthi, K. Awasthi, A. K. Ghosh, S. K. Srivastava, and O. N. Srivastava, “Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal,” Fuel, vol. 147, pp. 35–42, May 2015
D. P. Savitskii, “Preparation and characterization of colloidal dispersions of graphene-like structures from different ranks of coals,” Journal of Fuel Chemistry and Technology, vol. 45, no. 8, pp. 897–907, Aug. 2017
U. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016
T. Das, P. K. Boruah, M. R. Das, and B. K. Saikia, “Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: application in photocatalytic degradation of 2-nitrophenol,” RSC Adv, vol. 6, no. 42, pp. 35177–35190, Apr. 2016
E. Senthil Kumar, V. Sivasankar, R. Sureshbabu, S. Raghu, and R. A. Kalaivani, “Facile synthesis of few layer graphene from bituminous coal and its application towards electrochemical sensing of caffeine,” Adv Mater Lett, vol. 8, no. 3, pp. 239–245, Mar. 2017
J. Zhu et al., “Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics,” Carbon N Y, vol. 129, pp. 54–62, Apr. 2018
S. H. Vijapur, D. Wang, D. C. Ingram, and G. G. Botte, “An investigation of growth mechanism of coal derived graphene films,” Mater Today Commun, vol. 11, pp. 147–155, Jun. 2017
X. Mu, Z. Xu, Y. Xie, H. Mi, and J. Ma, “Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation,” J Alloys Compd, vol. 711, pp. 374–380, Jul. 2017
H. Zhao, L. Wang, D. Jia, W. Xia, J. Li, and Z. Guo, “Coal based activated carbon nanofibers prepared by electrospinning,” J Mater Chem A Mater, vol. 2, no. 24, pp. 9338–9344, May 2014
T. Das, B. K. Saikia, and B. P. Baruah, “Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: Value added products from low grade coal,” Gondwana Research, vol. 31, pp. 295–304, Mar. 2016
M. Guo et al., “Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors,” RSC Adv, vol. 7, no. 72, pp. 45363–45368, Sep. 2017
S. Kang et al., “Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–7, Mar. 2019
ASTM International, “ASTM D121 − 09a Standard Terminology of Coal and Coke,” 2012.
J. G. Speight, “The chemistry and technology of coal, third edition,” The Chemistry and Technology of Coal, Third Edition, pp. 1–808, Jan. 2012
D. Osborne, “The Coal Handbook: Towards Cleaner Production,” The Coal Handbook: Towards Cleaner Production, vol. 1, pp. 1–755, Oct. 2013
I. Wender, “Catalytic Synthesis of Chemicals from Coal,” Catalysis Reviews, vol. 14, no. 1, pp. 97–129, Jan. 1976
L. Lazarov and S. P. Marinov, “Modelling the structure of a coking coal,” Fuel Processing Technology, vol. 15, no. C, pp. 411–422, Jan. 1987
Pappano PJ, Mathews JP, and Schobert HH, “Structural Determinations of Pennsylvania Anthracites,” Acs Division of Fuel Chemistry, Preprints., vol. 44, pp. 567–568, 1999
ASTM International, “ASTM D 388 - 12 Standard Classification of Coals by Rank,” 2012.
A. U. Agobi, A. J. Ekpunobi, A. I. Ikeuba, and H. Louis, “The effects of graphene oxide load on the optical, structural and electrical properties of ternary nanocomposites (Polyvinyl alcohol/copper/graphene oxide) for electronic and photovoltaic application,” Results in Optics, vol. 8, p. 100261, Aug. 2022
A. Najim, O. Bajjou, M. Boulghallat, M. Khenfouch, K. Rahmani, and Y. Chrafih, “First-principles calculations to investigate the influence of porphyrin substitution on the structural, electronic and optical properties of graphene oxide,” Optik (Stuttg), vol. 257, p. 168874, May 2022
S. Sahoo, M. Bhuyan, and D. Sahoo, “Tuning of dielectric and magnetic performance of graphene oxide via defect regulation by metal oxide nanoparticle for high temperature device,” J Alloys Compd, vol. 935, p. 168097, Feb. 2023
K. Shiva, H. S. S. Ramakrishna Matte, H. B. Rajendra, A. J. Bhattacharyya, and C. N. R. Rao, “Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries,” Nano Energy, vol. 2, no. 5, pp. 787–793, Sep. 2013
H. Yang et al., “Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability,” Electrochim Acta, vol. 91, pp. 275–281, Feb. 2013
V. C. Hoang, M. Hassan, and V. G. Gomes, “Coal derived carbon nanomaterials – Recent advances in synthesis and applications,” Appl Mater Today, vol. 12, pp. 342–358, Sep. 2018
International Energy Agency, “World Energy Outlook 2018 | Enhanced Reader,” 2018
C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (1979), vol. 321, no. 5887, pp. 385–388, Jul. 2008
T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Prog Polym Sci, vol. 35, no. 11, pp. 1350–1375, Nov. 2010
Y. Cui, S. I. Kundalwal, and S. Kumar, “Gas barrier performance of graphene/polymer nanocomposites,” Carbon N Y, vol. 98, pp. 313–333, Mar. 2016
L. Sun, M. Xiao, J. Liu, and K. Gong, “A study of the polymerization of styrene initiated by K–THF–GIC system,” Eur Polym J, vol. 42, no. 2, pp. 259–264, Feb. 2006
Y. Zhu et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, Sep. 2010
S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, “Solution properties of graphite and graphene,” J Am Chem Soc, vol. 128, no. 24, pp. 7720–7721, Jun. 2006
A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482, Jun. 1998
F. Pendolino and N. Armata, Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017
S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon N Y, vol. 50, no. 9, pp. 3210–3228, Aug. 2012
B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, “Graphene and graphene oxide and their uses in barrier polymers,” J Appl Polym Sci, vol. 131, no. 1, Jan. 2014
C. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017
C. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017
B. Tan and N. L. Thomas, “A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites,” J Memb Sci, vol. 514, pp. 595–612, Sep. 2016
F. A. Ghauri, M. A. Raza, M. S. Baig, and S. Ibrahim, “Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings,” Mater Res Express, vol. 4, no. 12, p. 125601, Dec. 2017
R. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: the new membrane material,” Appl Mater Today, vol. 1, no. 1, pp. 1–12, Nov. 2015
K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, “A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution,” Angewandte Chemie International Edition, vol. 53, no. 27, pp. 6929–6932, Jul. 2014
S. Sun and P. Wu, “A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks,” J Mater Chem, vol. 21, no. 12, pp. 4095–4097, Mar. 2011
Y. Chen et al., “Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics,” Adv Funct Mater, vol. 24, no. 28, pp. 4386–4396, Jul. 2014
S. Thakur and N. Karak, “Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites,” J Mater Chem A Mater, vol. 2, no. 36, pp. 14867–14875, Aug. 2014
N. J. Huang et al., “Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons,” RSC Adv, vol. 7, no. 36, pp. 22045–22053, Apr. 2017
P. Zhang et al., “Fracture toughness of graphene,” Nat Commun, vol. 5, Apr. 2014
J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, “Mechanical properties of monolayer graphene oxide,” ACS Nano, vol. 4, no. 11, pp. 6557–6564, Nov. 2010
C. Gómez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Lett, vol. 8, no. 7, pp. 2045–2049, Jul. 2008
S. Jiang et al., “Effect of carbon fiber-graphene oxide multiscale reinforcements on the thermo-mechanical properties of polyurethane elastomer,” Polym Compos, vol. 40, no. S2, pp. E953–E961, Mar. 2019
H. Kim, A. A. Abdala, and C. W. MacOsko, “Graphene/polymer nanocomposites,” Macromolecules, vol. 43, no. 16, pp. 6515–6530, Aug. 2010
T. Cheng-An, Z. Hao, W. Fang, Z. Hui, Z. Xiaorong, and W. Jianfang, “Mechanical Properties of Graphene Oxide/Polyvinyl Alcohol Composite Film:,” vol. 25, no. 1, pp. 11–16, Jan. 2017
C. Bao et al., “Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending,” J Mater Chem, vol. 22, no. 13, pp. 6088–6096, Mar. 2012
K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 2012 490:7419, vol. 490, no. 7419, pp. 192–200, Oct. 2012
S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology 2009 4:4, vol. 4, no. 4, pp. 217–224, Mar. 2009
S. Stankovich et al., “Graphene-based composite materials,” Nature 2006 442:7100, vol. 442, no. 7100, pp. 282–286, Jul. 2006
E. Jaafar, M. Kashif, S. K. Sahari, and Z. Ngaini, “Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO),” in Materials Science Forum, 2018, vol. 917 MSF, pp. 112–116
G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat Nanotechnol, vol. 3, no. 5, pp. 270–274, May 2008
S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,” Carbon N Y, vol. 48, no. 15, pp. 4466–4474, Dec. 2010
A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry 2010 2:7, vol. 2, no. 7, pp. 581–587, Jun. 2010
S. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007
I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nature Communications 2010 1:1, vol. 1, no. 1, pp. 1–6, Sep. 2010
P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, “Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness,” Carbon N Y, vol. 94, pp. 494–500, Nov. 2015
L. L. Zhang et al., “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors,” Nano Lett, vol. 12, no. 4, pp. 1806–1812, Apr. 2012
M. Kim, C. Lee, and J. Jang, “Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity,” Adv Funct Mater, vol. 24, no. 17, pp. 2489–2499, May 2014
M. Hou, M. Xu, and B. Li, “Enhanced Electrical Conductivity of Cellulose Nanofiber/Graphene Composite Paper with a Sandwich Structure,” ACS Sustain Chem Eng, vol. 6, no. 3, pp. 2983–2990, Mar. 2018
S. Wan, J. Peng, Y. Li, H. Hu, L. Jiang, and Q. Cheng, “Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan,” ACS Nano, vol. 9, no. 10, pp. 9830–9836, Oct. 2015
H. bin Zhang et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymer (Guildf), vol. 51, no. 5, pp. 1191–1196, Mar. 2010
S. Song, Y. Zhai, and Y. Zhang, “Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant,” ACS Appl Mater Interfaces, vol. 8, no. 45, pp. 31264–31272, Nov. 2016
F. Li, J. Chen, X. Wang, M. Xue, and G. F. Chen, “Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes,” Adv Funct Mater, vol. 25, no. 29, pp. 4601–4606, Aug. 2015
S. Wang et al., “Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs,” ACS Nano, vol. 11, no. 2, pp. 2066–2074, Feb. 2017
J. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015
S. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007
C. bin Kim, J. Lee, J. Cho, and M. Goh, “Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation,” Carbon N Y, vol. 139, pp. 386–392, Nov. 2018
J. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015
J. Kim, H. Im, J. M. Kim, and J. Kim, “Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites,” Journal of Materials Science 2011 47:3, vol. 47, no. 3, pp. 1418–1426, Sep. 2011
H. Im and J. Kim, “Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite,” Carbon N Y, vol. 50, no. 15, pp. 5429–5440, Dec. 2012
S. Kim, J. Shimazu, T. Fukaminato, T. Ogata, and S. Kurihara, “Thermal conductivity of graphene oxide-enhanced polyvinyl alcohol composites depending on molecular interaction,” Polymer (Guildf), vol. 129, pp. 201–206, Oct. 2017
G. Xue, J. Zhong, S. Gao, and B. Wang, “Correlation between the free volume and thermal conductivity of porous poly(vinyl alcohol)/reduced graphene oxide composites studied by positron spectroscopy,” Carbon N Y, vol. 96, pp. 871–878, Jan. 2016
S. Song and Y. Zhang, “Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber,” Carbon N Y, vol. 123, pp. 158–167, Oct. 2017
M. A. Rafiee et al., “Graphene nanoribbon composites,” ACS Nano, vol. 4, no. 12, pp. 7415–7420, Dec. 2010
J. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, “Printed Graphene Circuits,” Advanced Materials, vol. 19, no. 21, pp. 3623–3627, Nov. 2007
Z. U. Khan, A. Kausar, H. Ullah, A. Badshah, and W. U. Khan, “A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques:,” Journal of Plastic Film & Sheeting, vol. 32, no. 4, pp. 336–379, Nov. 2015
X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett, vol. 8, no. 1, pp. 323–327, Jan. 2008
A. Bianco et al., “All in the graphene family – A recommended nomenclature for two-dimensional carbon materials,” Carbon N Y, vol. 65, pp. 1–6, Dec. 2013
Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, “Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films,” Advanced Materials, vol. 25, no. 4, pp. 503–508, Jan. 2013
Y. Su, V. G. Kravets, S. L. Wong, J. Waters, A. K. Geim, and R. R. Nair, “Impermeable barrier films and protective coatings based on reduced graphene oxide,” Nature Communications 2014 5:1, vol. 5, no. 1, pp. 1–5, Sep. 2014
I. H. Tseng, Y. F. Liao, J. C. Chiang, and M. H. Tsai, “Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property,” Mater Chem Phys, vol. 136, no. 1, pp. 247–253, Sep. 2012
L. Sun, W. J. Boo, A. Clearfield, H. J. Sue, and H. Q. Pham, “Barrier properties of model epoxy nanocomposites,” J Memb Sci, vol. 318, no. 1–2, pp. 129–136, Jun. 2008
Sun L. and Sue H.-J., “Permeation properties of epoxy nanocomposites,” in Barrier Properties of Polymer Clay Nanocomposites, New York: Nova Science Publishers, 2010, pp. 73–93.
H. J. Sue, K. T. Gam, N. Bestaoui, A. Clearfield, M. Miyamoto, and N. Miyatake, “Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites,” Acta Mater, vol. 52, no. 8, pp. 2239–2250, May 2004
W. J. Boo et al., “Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites,” J Polym Sci B Polym Phys, vol. 45, no. 12, pp. 1459–1469, Jun. 2007
J. Liu, “Nanostructured Multi-functional Hybrid Nanocoatings from One-Step Coassembly,” 2018. Accessed: Jun. 15, 2022
A. Kausar, “Composite coatings of polyamide/graphene: microstructure, mechanical, thermal, and barrier properties”, vol. 25, no. 2, pp. 109–125, Feb. 2017
D. Pierleoni et al., “Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers,” ACS Appl Mater Interfaces, vol. 10, no. 13, pp. 11242–11250, Apr. 2018
M. Hu and B. Mi, “Enabling graphene oxide nanosheets as water separation membranes,” Environ Sci Technol, vol. 47, no. 8, pp. 3715–3723, Apr. 2013
R. R. Nair, H. A. Wu, P. N. Jayaram, I. v. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science (1979), vol. 335, no. 6067, pp. 442–444, Jan. 2012
H. Huang et al., “Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–9, Dec. 2013
C. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, “On the origin of the stability of graphene oxide membranes in water,” Nature Chemistry 2014 7:2, vol. 7, no. 2, pp. 166–170, Jan. 2015
K. H. Thebo, X. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. Ren, “Highly stable graphene-oxide-based membranes with superior permeability,” Nature Communications 2018 9:1, vol. 9, no. 1, pp. 1–8, Apr. 2018
B. Tansel, “Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects,” Sep Purif Technol, vol. 86, pp. 119–126, Feb. 2012
J. Abraham et al., “Tunable sieving of ions using graphene oxide membranes,” Nature Nanotechnology 2017 12:6, vol. 12, no. 6, pp. 546–550, Apr. 2017
F. Perreault, H. Jaramillo, M. Xie, M. Ude, L. D. Nghiem, and M. Elimelech, “Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes,” Environ Sci Technol, vol. 50, no. 11, pp. 5840–5848, Jun. 2016
M. Ma, L. Guo, D. G. Anderson, and R. Langer, “Bio-inspired polymer composite actuator and generator driven by water gradients,” Science (1979), vol. 339, no. 6116, pp. 186–189, Jan. 2013
H. Arazoe et al., “An autonomous actuator driven by fluctuations in ambient humidity,” Nature Materials 2016 15:10, vol. 15, no. 10, pp. 1084–1089, Jul. 2016
Y. Qiu, M. Wang, W. Zhang, Y. Liu, Y. V. Li, and K. Pan, “An asymmetric graphene oxide film for developing moisture actuators,” Nanoscale, vol. 10, no. 29, pp. 14060–14066, Jul. 2018
Y. Zhang et al., “Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures,” J Mater Chem A Mater, vol. 5, no. 28, pp. 14604–14610, Jul. 2017
G. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, “Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method,” Carbon N Y, vol. 47, no. 1, pp. 68–72, Jan. 2009
C. W. Lo, D. Zhu, and H. Jiang, “An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604–5609, Jun. 2011
E. Wang, M. S. Desai, and S. W. Lee, “Light-controlled graphene-elastin composite hydrogel actuators,” Nano Lett, vol. 13, no. 6, pp. 2826–2830, Jun. 2013
Z. Wang et al., “Aqueous phase preparation of graphene with low defect density and adjustable layers,” Chemical Communications, vol. 49, no. 92, pp. 10835–10837, Oct. 2013
J. T. Robinson et al., “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J Am Chem Soc, vol. 133, no. 17, pp. 6825–6831, May 2011
Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites,” ACS Appl Mater Interfaces, vol. 7, no. 49, pp. 27494–27501, Dec. 2015
H. Kim et al., “Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide,” ACS Appl Mater Interfaces, vol. 10, no. 38, pp. 32760–32764, Sep. 2018
J. Kim, J. H. Jeon, H. J. Kim, H. Lim, and I. K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano, vol. 8, no. 3, pp. 2986–2997, Mar. 2014
M. Stratmann, R. Feser, and A. Leng, “Corrosion protection by organic films,” Electrochim Acta, vol. 39, no. 8–9, pp. 1207–1214, Jun. 1994
X. Luo, J. Zhong, Q. Zhou, S. Du, S. Yuan, and Y. Liu, “Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity,” ACS Appl Mater Interfaces, vol. 10, no. 21, pp. 18400–18415, May 2018
C. Cui, A. T. O. Lim, and J. Huang, “A cautionary note on graphene anti-corrosion coatings,” Nature Nanotechnology 2017 12:9, vol. 12, no. 9, pp. 834–835, Sep. 2017
M. Wang et al., “All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method,” ACS Appl Mater Interfaces, vol. 7, no. 2, pp. 1348–1354, Jan. 2015
W. K. Chee et al., “Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration,” Electrochim Acta, vol. 157, pp. 88–94, Mar. 2015
X. Cao et al., “Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal–Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors,” Advanced Materials, vol. 27, no. 32, pp. 4695–4701, Aug. 2015
A. Lamberti et al., “Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors,” Carbon N Y, vol. 105, pp. 649–654, Aug. 2016
J. Cao et al., “A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for High-Performance Lithium–Sulfur Batteries with Unconventional Configurations,” Advanced Materials, vol. 28, no. 43, pp. 9629–9636, Nov. 2016
J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, and F. Wei, “Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries,” ACS Nano, vol. 9, no. 3, pp. 3002–3011, Mar. 2015
D. Lin et al., “Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes,” Nature Nanotechnology 2016 11:7, vol. 11, no. 7, pp. 626–632, Mar. 2016
K. Fu et al., “Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries,” Advanced Materials, vol. 28, no. 13, pp. 2587–2594, Apr. 2016
K. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 2009 457:7230, vol. 457, no. 7230, pp. 706–710, Jan. 2009
H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, and J. H. Ahn, “Graphene-Based Flexible and Stretchable Electronics,” Advanced Materials, vol. 28, no. 22, pp. 4184–4202, Jun. 2016
J. Xu et al., “A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes,” Advanced Materials, vol. 28, no. 26, pp. 5222–5228, Jul. 2016
R. S. Dey, H. A. Hjuler, and Q. Chi, “Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks,” J Mater Chem A Mater, vol. 3, no. 12, pp. 6324–6329, Mar. 2015
Y. Chen, Z. Liu, L. Sun, Z. Lu, and K. Zhuo, “Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte,” J Power Sources, vol. 390, pp. 215–223, Jun. 2018
M. Shabani-Nooshabadi and F. Zahedi, “Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications,” Electrochim Acta, vol. 245, pp. 575–586, Aug. 2017
X. L. Su, L. Fu, M. Y. Cheng, J. H. Yang, X. X. Guan, and X. C. Zheng, “3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors,” Appl Surf Sci, vol. 426, pp. 924–932, Dec. 2017
K. Le et al., “Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors,” Dalton Transactions, vol. 48, no. 16, pp. 5193–5202, 2019
X. Chen, X. Chen, F. Zhang, Z. Yang, and S. Huang, “One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor,” J Power Sources, vol. 243, pp. 555–561, 2013
M. T. U. Malik, A. Sarker, S. M. S. Mahmud Rahat, and S. B. Shuchi, “Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review,” Materials Today Communications, vol. 28. Elsevier Ltd, Sep. 01, 2021
C. Rodríguez González and O. V. Kharissova, “Propiedades y aplicaciones del grafeno,” Ingenierías, vol. XI, no. 38, pp. 17–23, 2008
X.-Y. Wang, A. Narita, and K. Müllen, “Precision synthesis versus bulk-scale fabrication of graphenes,” Nature Reviews Chemistry 2017 2:1, vol. 2, no. 1, pp. 1–10, Dec. 2017
C. K. Chua and M. Pumera, “Chemical reduction of graphene oxide: a synthetic chemistry viewpoint,” Chem Soc Rev, vol. 43, no. 1, pp. 291–312, Dec. 2013
S. A. M. Zobir, S. A. Rashid, and T. Tan, “Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives,” Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 77–107, Jan. 2019
S. Kellici, J. Acord, J. Ball, H. S. Reehal, D. Morgan, and B. Saha, “A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities,” RSC Adv, vol. 4, no. 29, pp. 14858–14861, Mar. 2014
A. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, no. 11, pp. 4598–4810, Mar. 2015
R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology. John Wiley and Sons, 2005
M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf Sci, vol. 82, no. 1, pp. 228–236, Mar. 1979
B. Y. Cao and Y. W. Li, “A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics,” Journal of Chemical Physics, vol. 133, no. 2, Jul. 2010
J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf Sci, vol. 43, no. 2, pp. 493–520, Jun. 1974
S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst,” Nano Lett, vol. 10, no. 10, pp. 4128–4133, Oct. 2010
Y. Lee et al., “Wafer-scale synthesis and transfer of graphene films,” Nano Lett, vol. 10, no. 2, pp. 490–493, Feb. 2010
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011
J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, Jul. 2008
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011
F. Varchon et al., “Electronic structure of epitaxial graphene layers on SiC: effect of the substrate,” Phys Rev Lett, vol. 99, no. 12, Sep. 2007
J. Penuelas et al., “Surface morphology and characterization of thin graphene films on SiC vicinal substrate,” Phys Rev B Condens Matter Mater Phys, vol. 79, no. 3, p. 033408, Jan. 2009
X. Li and R. B. Kaner, “Graphene-Based Materials,” Science (1979), vol. 320, no. 5777, pp. 1170–1171, May 2008
Y. Hernandez et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology 2008 3:9, vol. 3, no. 9, pp. 563–568, Aug. 2008
M. Lotya et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J Am Chem Soc, vol. 131, no. 10, pp. 3611–3620, Mar. 2009
A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett, vol. 9, no. 12, pp. 4031–4036, Dec. 2009
M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv Phys, vol. 51, no. 1, pp. 1–186, Jan. 2002
Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, “Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges,” Nanomaterials, vol. 8, no. 11. MDPI AG, Nov. 09, 2018
N. Mishra, J. Boeckl, N. Motta, and F. Iacopi, “Graphene growth on silicon carbide: A review (Phys. Status Solidi A 9∕2016),” Physica Status Solidi (A) Applications and Materials Science, vol. 213, no. 9. Wiley-VCH Verlag, p. 2269, Sep. 01, 2016
R. M. Jacobberger, R. Machhi, J. Wroblewski, B. Taylor, A. L. Gillian-Daniel, and M. S. Arnold, “Simple Graphene Synthesis via Chemical Vapor Deposition,” J Chem Educ, vol. 92, no. 11, pp. 1903–1907, Nov. 2015
A. Ciesielski and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation,” Chemical Society Reviews, vol. 43, no. 1. Royal Society of Chemistry, pp. 381–398, Jan. 07, 2014
R. Narayan and S. O. Kim, “Surfactant mediated liquid phase exfoliation of graphene,” Nano Converg, vol. 2, no. 1, Dec. 2015
A. S. Pavlova, E. A. Obraztsova, A. v. Belkin, C. Monat, P. Rojo-Romeo, and E. D. Obraztsova, “Liquid-phase exfoliation of flaky graphite,” J. of Nanophotonics, vol. 10, no. 1, p. 012525, Feb. 2016
K. H. Choi, A. Ali, and J. Jo, “Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique,” Journal of Materials Science: Materials in Electronics 2013 24:12, vol. 24, no. 12, pp. 4893–4900, Sep. 2013
D. Nuvoli et al., “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid,” J Mater Chem, vol. 21, no. 10, pp. 3428–3431, Feb. 2011
Universidad Nacional de Colombia, “Reglamento Interno Laboratorio de Química General.” pp. 1–5, 2021.
V. Alzari et al., “Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization,” J Mater Chem, vol. 21, no. 24, pp. 8727–8733, Jun. 2011
C. Gómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007
A. Mianowski, “Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids,” Chemik, vol. 67, no. 4, pp. 267–274, 2013
R. Verdejo, F. Barroso-Bujans, M. A. Rodriguez-Perez, J. A. de Saja, and M. A. Lopez-Manchado, “Functionalized graphene sheet filled silicone foam nanocomposites,” J Mater Chem, vol. 18, no. 19, pp. 2221–2226, Apr. 2008
W. Cai et al., “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science, vol. 321, no. 5897, pp. 1815–1817, Sep. 2008
W. Gao, L. Alemany, L. Ci, and P. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat Chem, vol. 1, no. 5, pp. 403–408, Aug. 2009
T. Szabó et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater., vol. 18, no. 11, pp. 2740–2749, 2006
A. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, vol. 19, no. 15, pp. 6050–6055, Jul. 2003
C. G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, “Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer,” Appl Phys Lett, vol. 95, no. 2, p. 023304, Jul. 2009
H. J. Shin et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance,” Adv Funct Mater, vol. 19, no. 12, pp. 1987–1992, Jun. 2009
D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology 2008 3:2, vol. 3, no. 2, pp. 101–105, Jan. 2008
S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J Mater Chem, vol. 16, no. 2, pp. 155–158, Dec. 2006
S. Wang et al., “Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets,” Advanced Materials, vol. 20, no. 18, pp. 3440–3446, Sep. 2008
Z. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H. M. Cheng, “Synthesis of high-quality graphene with a pre-determined number of layers,” Carbon N Y, vol. 47, no. 2, pp. 493–499, Feb. 2009
X. Fan et al., “Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation,” Advanced Materials, vol. 20, no. 23, pp. 4490–4493, Dec. 2008
M. McAllister et al., “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, Sep. 2007
B. Manoj and A. G. Kunjomana, “Systematic investigations of graphene layers in sub-bituminous coal,” Russian Journal of Applied Chemistry 2014 87:11, vol. 87, no. 11, pp. 1726–1733, Mar. 2015
Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou, and J. Qiu, “Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application,” Energy and Fuels, vol. 26, no. 8, pp. 5186–5192, Aug. 2012
P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu, and B. D. Pandey, “Demineralization of low grade coal – A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745–761, Jan. 2015
H. Dhawan and D. K. Sharma, “Advances in the chemical leaching (inorgano-leaching), bio-leaching and desulphurisation of coals,” Int J Coal Sci Technol, vol. 6, no. 2, pp. 169–183, Jun. 2019
K. M. Steel, J. Besida, T. A. O’Donnell, and D. G. Wood, “Production of Ultra Clean Coal: Part II—Ionic equilibria in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid,” Fuel Processing Technology, vol. 70, no. 3, pp. 193–219, Jul. 2001
R. A. Meyers, Coal Desulfurization: High-efficiency Preparation Methods. New York: Marcel Dekker Inc., 1977. Accessed: Jun. 16, 2022
K. M. Steel and J. W. Patrick, “The production of ultra clean coal by sequential leaching with HF followed by HNO3,” Fuel, vol. 82, no. 15–17, pp. 1917–1920, Oct. 2003
ASTM International, “ASTM D2234 - 10 Standard Practice for Collection of a Gross Sample of Coal,” 2010
ASTM International, “ASTM D2013 -10 Standard Practice for Preparing Coal Samples for Analysis,” 2010
ASTM International, “ASTM D3172-07 Proximate Analysis of Coal and Coke,” 2007.
ASTM International, “ASTM D3173-11 Standard Test Method for Moisture in the Analysis Sample of Coal and Coke,” 2011
ASTM International, “ASTM D3174-11 Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal,” 2011
ASTM International, “ASTM D3175-11 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke,” 2011
ASTM International, “ASTM D4239-12 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion,” 2012
ASTM International, “ASTM D3176-09 Standard Practice for Ultimate Analysis of Coal and Coke,” 2009.
ASTM International, “ASTM D5373-16 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” 2016.
ASTM International, “ASTM D2799-13 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal,” 2013.
M. C. Stopes, “On the petrology of bandes bituminous coals,” Fuel, vol. 14, pp. 4–13, 1935.
ASTM International, “ASTM D2797-11 Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light,” 2011.
ASTM International, “ASTM D2798-11 Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal,” 2011.
ASTM International, “ASTM D3302-07 Standard Test Method for Total Moisture in Coal,” 2007. doi: 10.1520/D3302_D3302M-12.
J. Saiz, “Ingeniería Siderúrgica. Proceso de baterías de coke,” 2015.
M. J. Burgess and R. V. Wheeler, “The Volatile Constituents of Coal,” J. Chem. Soc., vol. 97, pp. 1917–1935, 1910.
A. Nabeel, T. A. Khan, and D. K. Sharma, “Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching of Low-grade Coals,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 31, no. 7, pp. 594–601, 2009,
N. Toro Vélez, “Proceso de biodesulfurización del azufre orgánico presente enun carbón colombiano, mediante el usode una cepa pura de Rhodococcus Rhodochrous IGTS8,” Tesis para optar por el título de Magíster en Ingeniería - Materiales y Procesos, Universidad Nacional de Colombia, Medellín, 2014.
Prayuenyong P., “Coal biodesulfurization processes | Semantic Scholar,” J. Sci. Tecnol., vol. 24, no. 3, pp. 493–507, 2002,
Gómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007
D. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, Aug. 2010
K. Parvez, S. Yang, X. Feng, and K. Müllen, “Exfoliation of graphene via wet chemical routes,” Synth Met, vol. 210, pp. 123–132, Dec. 2015
W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958
X. Hangxun, B. W. Zeiger, and K. S. Suslick, “Sonochemical synthesis of nanomaterials,” Chem Soc Rev, vol. 42, no. 7, pp. 2555–2567, Mar. 2013
J. H. Bang and K. S. Suslick, “Applications of Ultrasound to the Synthesis of Nanostructured Materials,” Advanced Materials, vol. 22, no. 10, pp. 1039–1059, Mar. 2010
P. v. Kamat and K. Vinodgopal, “Sonochromic effect in WO3 colloidal suspensions,” Langmuir, vol. 12, no. 23, pp. 5739–5741, Nov. 1996
K. S. Suslick and G. J. Price, “Applications of Ultrasound to Materials Chemistry,” Annual Review of Materials Science, vol. 29, pp. 295–326, Nov. 2003
J. Shen et al., “Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets,” J Colloid Interface Sci, vol. 352, no. 2, pp. 366–370, Dec. 2010
W. Zhang, W. He, and X. Jing, “Preparation of a stable graphene dispersion with high concentration by ultrasound,” Journal of Physical Chemistry B, vol. 114, no. 32, pp. 10368–10373, Aug. 2010
V. Štengl, J. Henych, M. Slušná, and P. Ecorchard, “Ultrasound exfoliation of inorganic analogues of graphene,” Nanoscale Res Lett, vol. 9, no. 1, pp. 1–14, Apr. 2014
H. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, “Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite,” Ind Eng Chem Res, vol. 53, no. 46, pp. 17878–17883, Nov. 2014
T. Soltani and B. K. Lee, “Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide,” Ultrason Sonochem, vol. 38, pp. 693–703, Sep. 2017
Z. S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H. M. Cheng, “Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets,” Nano Research 2010 3:1, vol. 3, no. 1, pp. 16–22, Mar. 2010
A. Abulizi, K. Okitsu, and J. J. Zhu, “Ultrasound assisted reduction of graphene oxide to graphene in l-ascorbic acid aqueous solutions: Kinetics and effects of various factors on the rate of graphene formation,” Ultrason Sonochem, vol. 21, no. 3, pp. 1174–1181, May 2014
T. Soltani and B. Kyu Lee, “A benign ultrasonic route to reduced graphene oxide from pristine graphite,” J Colloid Interface Sci, vol. 486, pp. 337–343, Jan. 2017
D. A. Skoog, J. J. Holler, and S. R. Crouch, “An Introduction to Ultraviolet-Visible Molecular Absorption Spectrometry,” in Principles of Instrumental Analysis, Seventh Edition., no. 3, Boston MA: Cengage Learning, 2016, pp. 304–330
R. Gandhimathi, S. Vijayaraj, and M. P. Jyothirmaie, “Analytical Process of Drugs by Ultraviolet (UV) Spectroscopy-A Review,” International Journal of Pharmaceutical Research & Analysis, vol. 2, no. 2, pp. 72–78, 2012, Accessed: Jun. 24, 2022
Y. R. Sharma, “Ultraviolet and Visible Spectroscopy,” in Elementary Organic Spectroscopy, First Edition., New Delhi, 2004, pp. 9–60. Accessed: Jun. 24, 2022
Thermo Spectronic, “Basic UV-Vis Theory, Concepts and Applications.” pp. 1–28. Accessed: Jun. 24, 2022.
G. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, Fifth Edition. New York: Longman Scientific & Technical, 1989.
D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to Spectroscopy, Fifth Edition. Cengage Learning, 2013. Accessed: Jun. 24, 2022
B. J. Clark, T. Frost, and M. A. Rusell, UV Spectroscopy: Techniques, Instrumentation and Data Handling, vol. 4. Springer, 1993
Sheffield Hallam University, “UV-Vis Absorption Spectroscopy - Instrumentation.”
The Royal Society of Chemistry, “Modern Chemical Techniques | Ultraviolet/visible spectroscopy.”
Chemical Dictionary, “Definition of spectronic_20 - Chemistry Dictionary.”
W. Gong, M. Kraft, H. Morgan, and M. Mowlem, “A Simple, Low-Cost Double Beam Spectrophotometer for Colorimetric Detection of Nitrite in Seawater,” IEEE Sens J, vol. 9, no. 7, pp. 862–869, 2009,
U. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016,
D. A. Long, Raman spectroscopy. New York: McGraw-Hill, 1977.
C. v. Raman and K. S. Krishnan, “Polarisation of Scattered Light-quanta,” Nature 1928 122:3066, vol. 122, no. 3066, pp. 169–169, 1928,
E. v. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal Chim Acta, vol. 606, no. 2, pp. 119–134, Jan. 2008,
R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib Spectrosc, vol. 57, no. 2, pp. 163–176, Nov. 2011,
E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci Technol, vol. 7, no. 11, pp. 361–370, Nov. 1996,
S. A. Asher, “UV Resonance Raman Spectroscopy for Analytical, Physical, and Biophysical Chemistry,” Anal Chem, vol. 65, no. 4, pp. 201A-210A, Feb. 2012,
A. Kudelski, “Raman spectroscopy of surfaces,” Surf Sci, vol. 603, no. 10–12, pp. 1328–1334, Jun. 2009,
A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta, vol. 76, no. 1, pp. 1–8, Jun. 2008,
C. L. Haynes, A. D. McFarland, and R. P. van Duyne, “Surface-enhanced: Raman spectroscopy,” Anal Chem, vol. 77, no. 17, Sep. 2005,
X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang, “In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO42-,” Eng Fail Anal, vol. 18, no. 8, pp. 1981–1989, Dec. 2011
B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. van Duyne, “SERS: Materials, applications, and the future,” Materials Today, vol. 15, no. 1–2, pp. 16–25, Jan. 2012,
D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem Phys Lett, vol. 283, no. 5–6, pp. 381–385, Feb. 1998,
R. A. Halvorson and P. J. Vikesland, “Surface-enhanced Raman spectroscopy (SERS) for environmental analyses,” Environ Sci Technol, vol. 44, no. 20, pp. 7749–7755, Oct. 2010
N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem Soc Rev, vol. 45, no. 8, pp. 2263–2290, Apr. 2016,
W. H. Li, X. Y. Li, and N. T. Yu, “Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study,” Chem Phys Lett, vol. 312, no. 1, pp. 28–36, Oct. 1999
K. Kneipp et al., “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys Rev Lett, vol. 78, no. 9, p. 1667, Mar. 1997
K. F. Gibson and S. G. Kazarian, “Tip-enhanced Raman Spectroscopy,” Encyclopedia of Analytical Chemistry, pp. 1–30, Sep. 2014
B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman Spectroscopy – Its status, challenges and future directions,” Chem Phys Lett, vol. 472, no. 1–3, pp. 1–13, Apr. 2009
N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl Phys Lett, vol. 85, no. 25, p. 6239, Dec. 2004
B. Pettinger, “Single-molecule surface- and tip-enhanced Raman spectroscopy,” Mol Phys, vol. 108, no. 16, pp. 2039–2059, Aug. 2010
R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem Phys Lett, vol. 318, no. 1–3, pp. 131–136, Feb. 2000
E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem Soc Rev, vol. 37, no. 5, pp. 921–930, Apr. 2008
N. Hayazawa, A. Tarun, A. Taguchi, and K. Furusawa, “Tip-enhanced Raman spectroscopy,” in Raman Spectroscopy for Nanomaterials Characterization, Kumar C S S R, Ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 2012
D. Cialla et al., “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Analytical and Bioanalytical Chemistry 2011 403:1, vol. 403, no. 1, pp. 27–54, Dec. 2011
A. J. Driscoll, M. H. Harpster, and P. A. Johnson, “The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges,” Physical Chemistry Chemical Physics, vol. 15, no. 47, pp. 20415–20433, Nov. 2013
A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys Rev Lett, vol. 90, no. 9, p. 4, Mar. 2003
Y. Okuno, Y. Saito, S. Kawata, and P. Verma, “Tip-enhanced raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube,” Phys Rev Lett, vol. 111, no. 21, p. 216101, Nov. 2013
Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, Oct. 2009
W. Su and D. Roy, “Visualizing graphene edges using tip-enhanced Raman spectroscopy,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 4, p. 041808, Jul. 2013
A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys Rev Lett, vol. 82, no. 20, p. 4142, May 1999
J. P. R. Day et al., “Quantitative coherent anti-stokes raman scattering (CARS) microscopy,” Journal of Physical Chemistry B, vol. 115, no. 24, pp. 7713–7725, Jun. 2011
D. Kopf, F. Ganikhanov, M. Katz, S. Carrasco, W. Seitz, and X. S. Xie, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Optics Letters, Vol. 31, Issue 9, pp. 1292-1294, vol. 31, no. 9, pp. 1292–1294, May 2006
J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” Journal of Physical Chemistry B, vol. 108, no. 3, pp. 827–840, Jan. 2004
J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, “Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 4, pp. 858–863, Jul. 2005
C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl Phys Lett, vol. 84, no. 5, p. 816, Jan. 2004
N. Djaker, P. F. Lenne, D. Marguet, A. Colonna, C. Hadjur, and H. Rigneault, “Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications,” Nucl Instrum Methods Phys Res A, vol. 571, no. 1–2, pp. 177–181, Feb. 2007
M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman Scattering Microscopy,” ChemPhysChem, vol. 8, no. 15, pp. 2156–2170, Oct. 2007
M. H. F. Kox et al., “Label-Free Chemical Imaging of Catalytic Solids by Coherent Anti-Stokes Raman Scattering and Synchrotron-Based Infrared Microscopy,” Angewandte Chemie International Edition, vol. 48, no. 47, pp. 8990–8994, Nov. 2009
D. Schafer, J. A. Squier, J. van Maarseveen, D. Bonn, M. Bonn, and M. Müller, “In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy,” J Am Chem Soc, vol. 130, no. 35, pp. 11592–11593, Sep. 2008
W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem Soc Rev, vol. 45, no. 8, pp. 2075–2089, Apr. 2016
D. Zhang, P. Wang, M. N. Slipchenko, and J. X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated raman scattering microscopy,” Acc Chem Res, vol. 47, no. 8, pp. 2282–2290, Aug. 2014
K. Y. Bliokh, A. Y. Bekshaev, F. Nori, C. Zhang, and J. A. Aldana-Mendoza, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J Phys, vol. 11, no. 3, p. 033026, Mar. 2009
P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal Chem, vol. 78, no. 17, pp. 5952–5959, Sep. 2006
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal Bioanal Chem, vol. 387, no. 5, pp. 1691–1703, Mar. 2007
D. P. Strommen and K. Nakamoto, “Resonance raman spectroscopy,” J Chem Educ, vol. 54, no. 8, pp. 474–478, 1977
N. Everall, “Depth Profiling with Confocal Raman Microscopy,” Spectroscopy, vol. 19, no. 10, pp. 22–28, 2004, Accessed: Jun. 24, 2022
M. Etienne, M. Dossot, J. Grausem, and G. Herzog, “Combined raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis,” Anal Chem, vol. 86, no. 22, pp. 11203–11210, Nov. 2014
Princeton Instruments, “Confocal Raman Microscopy, General Overview - Application Note.”
Horiba Scientific, “Raman Imaging and Spectrometers - HORIBA.”
M. Wall, “The Raman Spectroscopy of Graphene and the Determination of Layer Thickness,” 2011. Accessed: Jun. 24, 2022.
K. Alam et al., “In-situ deposition of graphene oxide catalyst for efficient photoelectrochemical hydrogen evolution reaction using atmospheric plasma,” Materials, vol. 13, no. 1, Jan. 2020
A. Wróblewska et al., “Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping,” Journal of Physics: Condensed Matter, vol. 29, no. 47, p. 475201, Nov. 2017
P. S. Rawat, R. C. Srivastava, G. Dixit, and K. Asokan, “Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation,” Vacuum, vol. 182, Dec. 2020
I. M. Vyshkvorkina, Y. v. Stebunov, A. v. Arsenin, V. S. Volkov, and S. M. Novikov, “Comparison of CVD-grown and exfoliated graphene for biosensing applications,” in AIP Conference Proceedings, Jun. 2021,
G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys Rev Lett, vol. 56, no. 9, pp. 930–933, Mar. 1986
Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nature Reviews Microbiology 2008 6:9, vol. 6, no. 9, pp. 674–680, Jul. 2008
A. Engel and D. J. Müller, “Observing single biomolecules at work with the atomic force microscope,” Nature Structural Biology 2000 7:9, vol. 7, no. 9, pp. 715–718, Sep. 2000
S. Liu and Y. Wang, “Application of AFM in microbiology: a review,” Scanning, vol. 32, no. 2, pp. 61–73, Mar. 2010
Y. F. Dufrêne, “AFM for nanoscale microbe analysis,” Analyst, vol. 133, no. 3, pp. 297–301, 2008
Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J Appl Phys, vol. 61, no. 10, p. 4723, Jun. 1998
S. Y. Lee and R. L. Mahajan, “A facile method for coal to graphene oxide and its application to a biosensor,” Carbon N Y, vol. 181, pp. 408–420, Aug. 2021
Federal Highway Administration, “Guidelines for Detection, Analysis, and Treatment of Materials-Related Distress in Concrete Pavements Volume 1,” McLean VA, Mar. 2002
Microscopy Australia, “Scanning Electron Microscopy.”
J. I. Goldstein et al., “Scanning Electron Microscopy and X-ray Microanalysis,” 2003
CAEN Group, “Inorganic Scintillator Detectors.”
R. Zhang and B. D. Ulery, “Synthetic vaccine characterization and design,” Journal of Bionanoscience, vol. 12, no. 1, pp. 1–11, Feb. 2018
B. Das, R. Kundu, and S. Chakravarty, “Preparation and characterization of graphene oxide from coal,” Mater Chem Phys, vol. 290, p. 126597, Oct. 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 161 páginas mas anexos
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82878/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82878/2/7185151.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82878/3/7185151.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5ef8e53200530244ea4e112a19216823
65ee8d1e662cbf83baf4c2b8886e887f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089426955927552
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero Fajardo, Carlos Alberto8158c2ed082a222d8fcff4117ee21159Franco Rodríguez, César Germán5da10cf2ce127a7474b66f031e46cb4bAPRENA Aprovechamiento Energético de los Recursos NaturalesFranco, Cesar [0000000332944498]Franco Rodríguez, César Germán [0000025336]2023-01-11T17:32:09Z2023-01-11T17:32:09Z2022https://repositorio.unal.edu.co/handle/unal/82878Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficas|Este documento es el resultado del trabajo de obtención de óxido de grafeno usando como material de partida carbón semi antracita procedente de la mina San José del municipio de Boavita (Boyacá). El objetivo del proyecto es evaluar la obtención de óxido de grafeno por medio del método de exfoliación de fase líquida usando carbón de alto rango como materia prima. Se tienen en cuenta dos variables: el tamaño de partícula de inicio (mayor a 0,15 mm, 0,15 mm a 0,05 mm y menor a 0,05 mm) y el retiro de materia mineral por medio de un lavado básico de las muestras. Se diseña un protocolo de molienda y selección de tamaños de partícula, luego se procede a hacer el lavado básico de las muestras, se continúa con el proceso de oxidación por medio del Método de Hummers Modificado, para finalmente proceder a hacer la exfoliación en fase líquida (LPE) usando como surfactante el Pluronic 123. Se comparan rendimientos en la obtención de óxido de grafeno teniendo en cuenta el tamaño de partícula y la eliminación (o no) de materia mineral. Para evaluar la calidad del óxido de grafeno obtenido se usan técnicas de caracterización como la espectroscopía Raman, la espectroscopía UV-vis, la microscopía electrónica de barrido (SEM), la espectroscopía de rayos X de dispersión de energía (EDX) y la microscopía de fuerza atómica (AFM). En conclusión, es factible obtener óxido de grafeno multicapa a partir de carbón antracítico, obteniendo estructuras con altura promedio entre 10,8 nm y 184,6 nm. Así mismo es posible obtener estructuras con tamaños entre los 200 nm y las 10 µm. Finalmente, es factible obtener rendimientos cercanos al 30% de la masa inicial.This document shows the results to obtain graphene oxide using semi-anthracite coal as raw material from San José mine in Boavita (Boyacá). The main objective of the project is to evaluate the obtaining of graphene oxide through the liquid phase exfoliation method using high-rank coal as raw material. Two variables are taken into account: the initial particle size (0.15 to 0.09 mm, 0.09 to 0.05 mm and less than 0.05 mm) and the removal of mineral matter by basic washing method. A protocol for grinding and selection of particle sizes is designed, then the basic washing of the samples is carried out, the oxidation process continues by means of the Modified Hummers Method, and finally the in liquid phase exfoliation is carried out using Pluronic 123 as a surfactant. To evaluate the quality of the graphene oxide obtained, are used characterization techniques such as Raman Spectroscopy, Uv-Vis Spectroscopy, Scanning Electron mMicroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Atomic Force Microscopy (AFM). In conclusion, it is feasible to obtain multilayer graphene oxide from anthracite coal, obtaining structures with average height between 10.8 nm and 184.6 nm. Likewise, it is possible to obtain structures with sizes between 200 nm and 10 µm. Finally, it is feasible to obtain yields close to 30% of the initial mass.Gobernación de Boyacá y al Ministerio de Ciencia Tecnología e Innovación por financiar mis estudios por medio de la Convocatoria 733 de 2015.DoctoradoDoctor en Ingeniería - Ciencia y Tecnología de MaterialesNano materialesCarbonesxx, 161 páginas mas anexosapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaÓxido de GrafenoCarbónNano materialesGraphene OxideCoalNano materialsExfoliación en fase líquida de carbón de alto rango para obtener óxido de grafenoLiquid Phase Exfoliation (LPE) of high rank coal to obtain graphene oxideTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBritish Petroleum Company, “BP Energy Outlook 2022,” 2022. Accessed: Jul. 24, 2022.Unidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía 2016-2020,” 2021.K. S. Novoselov et al., “Electric field in atomically thin carbon films,” Science (1979), vol. 306, no. 5696, pp. 666–669, Oct. 2004S. A. M. R. Clark, “Global Graphene Market - Forecast 2014-2021,” Porlant OR, Feb. 2016.Brodie B. C., “On the atomic weight of graphite,” Philos Trans R Soc Lond, vol. 149, pp. 249–259, Dec. 1859Staudenmaier L, “Verfahren zur Darstellung der Graphits€aure,” Ber. Dtsch. Chem. Ges., vol. 31, no. 2, pp. 1481–1487, 1898.W. Hummers and R. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958M. Inagaki, F. Kang, M. Toyoda, and H. Konno, Advanced materials science and engineering of carbon. 2013.R. Ye et al., “Coal as an abundant source of graphene quantum dots,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–7, Dec. 2013S. P. Sasikala et al., “High Yield Synthesis of Aspect Ratio Controlled Graphenic Materials from Anthracite Coal in Supercritical Fluids,” ACS Nano, vol. 10, no. 5, pp. 5293–5303, May 2016International Energy Agency, “Coal Information: Overview (2020 edition),” 2020.Agencia Nacional de Minería, “ANM Producción Nacional de Minerales y Contraprestaciones Económicas Trimestral | Datos Abiertos Colombia,” 2022.Unidad de Planeación Minero Energética, “Boletín Estadístico de Minas y Energía,” 2018. Accessed: Jun. 13, 2022Unidad de Planeación Minero Energética, “EL CARBÓN COLOMBIANO. Fuente de Energía para el Mundo.” pp. 1–52, 2005R. Kumar et al., “Synthesis of coal-derived single-walled carbon nanotube from coal by varying the ratio of Zr/Ni as bimetallic catalyst,” Journal of Nanoparticle Research 2013 15:1, vol. 15, no. 1, pp. 1–11, Jan. 2013S. Awasthi, K. Awasthi, A. K. Ghosh, S. K. Srivastava, and O. N. Srivastava, “Formation of single and multi-walled carbon nanotubes and graphene from Indian bituminous coal,” Fuel, vol. 147, pp. 35–42, May 2015D. P. Savitskii, “Preparation and characterization of colloidal dispersions of graphene-like structures from different ranks of coals,” Journal of Fuel Chemistry and Technology, vol. 45, no. 8, pp. 897–907, Aug. 2017U. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016T. Das, P. K. Boruah, M. R. Das, and B. K. Saikia, “Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: application in photocatalytic degradation of 2-nitrophenol,” RSC Adv, vol. 6, no. 42, pp. 35177–35190, Apr. 2016E. Senthil Kumar, V. Sivasankar, R. Sureshbabu, S. Raghu, and R. A. Kalaivani, “Facile synthesis of few layer graphene from bituminous coal and its application towards electrochemical sensing of caffeine,” Adv Mater Lett, vol. 8, no. 3, pp. 239–245, Mar. 2017J. Zhu et al., “Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics,” Carbon N Y, vol. 129, pp. 54–62, Apr. 2018S. H. Vijapur, D. Wang, D. C. Ingram, and G. G. Botte, “An investigation of growth mechanism of coal derived graphene films,” Mater Today Commun, vol. 11, pp. 147–155, Jun. 2017X. Mu, Z. Xu, Y. Xie, H. Mi, and J. Ma, “Pt nanoparticles supported on Co embedded coal-based carbon nanofiber for enhanced electrocatalytic activity towards methanol electro-oxidation,” J Alloys Compd, vol. 711, pp. 374–380, Jul. 2017H. Zhao, L. Wang, D. Jia, W. Xia, J. Li, and Z. Guo, “Coal based activated carbon nanofibers prepared by electrospinning,” J Mater Chem A Mater, vol. 2, no. 24, pp. 9338–9344, May 2014T. Das, B. K. Saikia, and B. P. Baruah, “Formation of carbon nano-balls and carbon nano-tubes from northeast Indian Tertiary coal: Value added products from low grade coal,” Gondwana Research, vol. 31, pp. 295–304, Mar. 2016M. Guo et al., “Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors,” RSC Adv, vol. 7, no. 72, pp. 45363–45368, Sep. 2017S. Kang et al., “Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–7, Mar. 2019ASTM International, “ASTM D121 − 09a Standard Terminology of Coal and Coke,” 2012.J. G. Speight, “The chemistry and technology of coal, third edition,” The Chemistry and Technology of Coal, Third Edition, pp. 1–808, Jan. 2012D. Osborne, “The Coal Handbook: Towards Cleaner Production,” The Coal Handbook: Towards Cleaner Production, vol. 1, pp. 1–755, Oct. 2013I. Wender, “Catalytic Synthesis of Chemicals from Coal,” Catalysis Reviews, vol. 14, no. 1, pp. 97–129, Jan. 1976L. Lazarov and S. P. Marinov, “Modelling the structure of a coking coal,” Fuel Processing Technology, vol. 15, no. C, pp. 411–422, Jan. 1987Pappano PJ, Mathews JP, and Schobert HH, “Structural Determinations of Pennsylvania Anthracites,” Acs Division of Fuel Chemistry, Preprints., vol. 44, pp. 567–568, 1999ASTM International, “ASTM D 388 - 12 Standard Classification of Coals by Rank,” 2012.A. U. Agobi, A. J. Ekpunobi, A. I. Ikeuba, and H. Louis, “The effects of graphene oxide load on the optical, structural and electrical properties of ternary nanocomposites (Polyvinyl alcohol/copper/graphene oxide) for electronic and photovoltaic application,” Results in Optics, vol. 8, p. 100261, Aug. 2022A. Najim, O. Bajjou, M. Boulghallat, M. Khenfouch, K. Rahmani, and Y. Chrafih, “First-principles calculations to investigate the influence of porphyrin substitution on the structural, electronic and optical properties of graphene oxide,” Optik (Stuttg), vol. 257, p. 168874, May 2022S. Sahoo, M. Bhuyan, and D. Sahoo, “Tuning of dielectric and magnetic performance of graphene oxide via defect regulation by metal oxide nanoparticle for high temperature device,” J Alloys Compd, vol. 935, p. 168097, Feb. 2023K. Shiva, H. S. S. Ramakrishna Matte, H. B. Rajendra, A. J. Bhattacharyya, and C. N. R. Rao, “Employing synergistic interactions between few-layer WS2 and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries,” Nano Energy, vol. 2, no. 5, pp. 787–793, Sep. 2013H. Yang et al., “Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability,” Electrochim Acta, vol. 91, pp. 275–281, Feb. 2013V. C. Hoang, M. Hassan, and V. G. Gomes, “Coal derived carbon nanomaterials – Recent advances in synthesis and applications,” Appl Mater Today, vol. 12, pp. 342–358, Sep. 2018International Energy Agency, “World Energy Outlook 2018 | Enhanced Reader,” 2018C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (1979), vol. 321, no. 5887, pp. 385–388, Jul. 2008T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Prog Polym Sci, vol. 35, no. 11, pp. 1350–1375, Nov. 2010Y. Cui, S. I. Kundalwal, and S. Kumar, “Gas barrier performance of graphene/polymer nanocomposites,” Carbon N Y, vol. 98, pp. 313–333, Mar. 2016L. Sun, M. Xiao, J. Liu, and K. Gong, “A study of the polymerization of styrene initiated by K–THF–GIC system,” Eur Polym J, vol. 42, no. 2, pp. 259–264, Feb. 2006Y. Zhu et al., “Graphene and Graphene Oxide: Synthesis, Properties, and Applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, Sep. 2010S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hamon, and R. C. Haddon, “Solution properties of graphite and graphene,” J Am Chem Soc, vol. 128, no. 24, pp. 7720–7721, Jun. 2006A. Lerf, H. He, M. Forster, and J. Klinowski, “Structure of Graphite Oxide Revisited,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482, Jun. 1998F. Pendolino and N. Armata, Graphene Oxide in Environmental Remediation Process. Cham: Springer International Publishing, 2017S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon N Y, vol. 50, no. 9, pp. 3210–3228, Aug. 2012B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, “Graphene and graphene oxide and their uses in barrier polymers,” J Appl Polym Sci, vol. 131, no. 1, Jan. 2014C. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017C. Cheng, S. Li, A. Thomas, N. A. Kotov, and R. Haag, “Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications,” Chem Rev, vol. 117, no. 3, pp. 1826–1914, Feb. 2017B. Tan and N. L. Thomas, “A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites,” J Memb Sci, vol. 514, pp. 595–612, Sep. 2016F. A. Ghauri, M. A. Raza, M. S. Baig, and S. Ibrahim, “Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings,” Mater Res Express, vol. 4, no. 12, p. 125601, Dec. 2017R. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: the new membrane material,” Appl Mater Today, vol. 1, no. 1, pp. 1–12, Nov. 2015K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, and W. Jin, “A Graphene Oxide Membrane with Highly Selective Molecular Separation of Aqueous Organic Solution,” Angewandte Chemie International Edition, vol. 53, no. 27, pp. 6929–6932, Jul. 2014S. Sun and P. Wu, “A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks,” J Mater Chem, vol. 21, no. 12, pp. 4095–4097, Mar. 2011Y. Chen et al., “Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics,” Adv Funct Mater, vol. 24, no. 28, pp. 4386–4396, Jul. 2014S. Thakur and N. Karak, “Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites,” J Mater Chem A Mater, vol. 2, no. 36, pp. 14867–14875, Aug. 2014N. J. Huang et al., “Efficient interfacial interaction for improving mechanical properties of polydimethylsiloxane nanocomposites filled with low content of graphene oxide nanoribbons,” RSC Adv, vol. 7, no. 36, pp. 22045–22053, Apr. 2017P. Zhang et al., “Fracture toughness of graphene,” Nat Commun, vol. 5, Apr. 2014J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, “Mechanical properties of monolayer graphene oxide,” ACS Nano, vol. 4, no. 11, pp. 6557–6564, Nov. 2010C. Gómez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Lett, vol. 8, no. 7, pp. 2045–2049, Jul. 2008S. Jiang et al., “Effect of carbon fiber-graphene oxide multiscale reinforcements on the thermo-mechanical properties of polyurethane elastomer,” Polym Compos, vol. 40, no. S2, pp. E953–E961, Mar. 2019H. Kim, A. A. Abdala, and C. W. MacOsko, “Graphene/polymer nanocomposites,” Macromolecules, vol. 43, no. 16, pp. 6515–6530, Aug. 2010T. Cheng-An, Z. Hao, W. Fang, Z. Hui, Z. Xiaorong, and W. Jianfang, “Mechanical Properties of Graphene Oxide/Polyvinyl Alcohol Composite Film:,” vol. 25, no. 1, pp. 11–16, Jan. 2017C. Bao et al., “Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending,” J Mater Chem, vol. 22, no. 13, pp. 6088–6096, Mar. 2012K. S. Novoselov, V. I. Fal’Ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 2012 490:7419, vol. 490, no. 7419, pp. 192–200, Oct. 2012S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology 2009 4:4, vol. 4, no. 4, pp. 217–224, Mar. 2009S. Stankovich et al., “Graphene-based composite materials,” Nature 2006 442:7100, vol. 442, no. 7100, pp. 282–286, Jul. 2006E. Jaafar, M. Kashif, S. K. Sahari, and Z. Ngaini, “Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO),” in Materials Science Forum, 2018, vol. 917 MSF, pp. 112–116G. Eda, G. Fanchini, and M. Chhowalla, “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,” Nat Nanotechnol, vol. 3, no. 5, pp. 270–274, May 2008S. Pei, J. Zhao, J. Du, W. Ren, and H. M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,” Carbon N Y, vol. 48, no. 15, pp. 4466–4474, Dec. 2010A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, and V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry 2010 2:7, vol. 2, no. 7, pp. 581–587, Jun. 2010S. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, “Reduced graphene oxide by chemical graphitization,” Nature Communications 2010 1:1, vol. 1, no. 1, pp. 1–6, Sep. 2010P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, “Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness,” Carbon N Y, vol. 94, pp. 494–500, Nov. 2015L. L. Zhang et al., “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors,” Nano Lett, vol. 12, no. 4, pp. 1806–1812, Apr. 2012M. Kim, C. Lee, and J. Jang, “Fabrication of Highly Flexible, Scalable, and High-Performance Supercapacitors Using Polyaniline/Reduced Graphene Oxide Film with Enhanced Electrical Conductivity and Crystallinity,” Adv Funct Mater, vol. 24, no. 17, pp. 2489–2499, May 2014M. Hou, M. Xu, and B. Li, “Enhanced Electrical Conductivity of Cellulose Nanofiber/Graphene Composite Paper with a Sandwich Structure,” ACS Sustain Chem Eng, vol. 6, no. 3, pp. 2983–2990, Mar. 2018S. Wan, J. Peng, Y. Li, H. Hu, L. Jiang, and Q. Cheng, “Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan,” ACS Nano, vol. 9, no. 10, pp. 9830–9836, Oct. 2015H. bin Zhang et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymer (Guildf), vol. 51, no. 5, pp. 1191–1196, Mar. 2010S. Song, Y. Zhai, and Y. Zhang, “Bioinspired Graphene Oxide/Polymer Nanocomposite Paper with High Strength, Toughness, and Dielectric Constant,” ACS Appl Mater Interfaces, vol. 8, no. 45, pp. 31264–31272, Nov. 2016F. Li, J. Chen, X. Wang, M. Xue, and G. F. Chen, “Stretchable Supercapacitor with Adjustable Volumetric Capacitance Based on 3D Interdigital Electrodes,” Adv Funct Mater, vol. 25, no. 29, pp. 4601–4606, Aug. 2015S. Wang et al., “Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs,” ACS Nano, vol. 11, no. 2, pp. 2066–2074, Feb. 2017J. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015S. Stankovich et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon N Y, vol. 45, no. 7, pp. 1558–1565, Jun. 2007C. bin Kim, J. Lee, J. Cho, and M. Goh, “Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation,” Carbon N Y, vol. 139, pp. 386–392, Nov. 2018J. D. Renteria et al., “Strongly Anisotropic Thermal Conductivity of Free-Standing Reduced Graphene Oxide Films Annealed at High Temperature,” Adv Funct Mater, vol. 25, no. 29, pp. 4664–4672, Aug. 2015J. Kim, H. Im, J. M. Kim, and J. Kim, “Thermal and electrical conductivity of Al(OH)3 covered graphene oxide nanosheet/epoxy composites,” Journal of Materials Science 2011 47:3, vol. 47, no. 3, pp. 1418–1426, Sep. 2011H. Im and J. Kim, “Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite,” Carbon N Y, vol. 50, no. 15, pp. 5429–5440, Dec. 2012S. Kim, J. Shimazu, T. Fukaminato, T. Ogata, and S. Kurihara, “Thermal conductivity of graphene oxide-enhanced polyvinyl alcohol composites depending on molecular interaction,” Polymer (Guildf), vol. 129, pp. 201–206, Oct. 2017G. Xue, J. Zhong, S. Gao, and B. Wang, “Correlation between the free volume and thermal conductivity of porous poly(vinyl alcohol)/reduced graphene oxide composites studied by positron spectroscopy,” Carbon N Y, vol. 96, pp. 871–878, Jan. 2016S. Song and Y. Zhang, “Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene -butadiene rubber,” Carbon N Y, vol. 123, pp. 158–167, Oct. 2017M. A. Rafiee et al., “Graphene nanoribbon composites,” ACS Nano, vol. 4, no. 12, pp. 7415–7420, Dec. 2010J. H. Chen, M. Ishigami, C. Jang, D. R. Hines, M. S. Fuhrer, and E. D. Williams, “Printed Graphene Circuits,” Advanced Materials, vol. 19, no. 21, pp. 3623–3627, Nov. 2007Z. U. Khan, A. Kausar, H. Ullah, A. Badshah, and W. U. Khan, “A review of graphene oxide, graphene buckypaper, and polymer/graphene composites: Properties and fabrication techniques:,” Journal of Plastic Film & Sheeting, vol. 32, no. 4, pp. 336–379, Nov. 2015X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett, vol. 8, no. 1, pp. 323–327, Jan. 2008A. Bianco et al., “All in the graphene family – A recommended nomenclature for two-dimensional carbon materials,” Carbon N Y, vol. 65, pp. 1–6, Dec. 2013Y. H. Yang, L. Bolling, M. A. Priolo, and J. C. Grunlan, “Super Gas Barrier and Selectivity of Graphene Oxide-Polymer Multilayer Thin Films,” Advanced Materials, vol. 25, no. 4, pp. 503–508, Jan. 2013Y. Su, V. G. Kravets, S. L. Wong, J. Waters, A. K. Geim, and R. R. Nair, “Impermeable barrier films and protective coatings based on reduced graphene oxide,” Nature Communications 2014 5:1, vol. 5, no. 1, pp. 1–5, Sep. 2014I. H. Tseng, Y. F. Liao, J. C. Chiang, and M. H. Tsai, “Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property,” Mater Chem Phys, vol. 136, no. 1, pp. 247–253, Sep. 2012L. Sun, W. J. Boo, A. Clearfield, H. J. Sue, and H. Q. Pham, “Barrier properties of model epoxy nanocomposites,” J Memb Sci, vol. 318, no. 1–2, pp. 129–136, Jun. 2008Sun L. and Sue H.-J., “Permeation properties of epoxy nanocomposites,” in Barrier Properties of Polymer Clay Nanocomposites, New York: Nova Science Publishers, 2010, pp. 73–93.H. J. Sue, K. T. Gam, N. Bestaoui, A. Clearfield, M. Miyamoto, and N. Miyatake, “Fracture behavior of α-zirconium phosphate-based epoxy nanocomposites,” Acta Mater, vol. 52, no. 8, pp. 2239–2250, May 2004W. J. Boo et al., “Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites,” J Polym Sci B Polym Phys, vol. 45, no. 12, pp. 1459–1469, Jun. 2007J. Liu, “Nanostructured Multi-functional Hybrid Nanocoatings from One-Step Coassembly,” 2018. Accessed: Jun. 15, 2022A. Kausar, “Composite coatings of polyamide/graphene: microstructure, mechanical, thermal, and barrier properties”, vol. 25, no. 2, pp. 109–125, Feb. 2017D. Pierleoni et al., “Selective Gas Permeation in Graphene Oxide-Polymer Self-Assembled Multilayers,” ACS Appl Mater Interfaces, vol. 10, no. 13, pp. 11242–11250, Apr. 2018M. Hu and B. Mi, “Enabling graphene oxide nanosheets as water separation membranes,” Environ Sci Technol, vol. 47, no. 8, pp. 3715–3723, Apr. 2013R. R. Nair, H. A. Wu, P. N. Jayaram, I. v. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science (1979), vol. 335, no. 6067, pp. 442–444, Jan. 2012H. Huang et al., “Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,” Nature Communications 2013 4:1, vol. 4, no. 1, pp. 1–9, Dec. 2013C. N. Yeh, K. Raidongia, J. Shao, Q. H. Yang, and J. Huang, “On the origin of the stability of graphene oxide membranes in water,” Nature Chemistry 2014 7:2, vol. 7, no. 2, pp. 166–170, Jan. 2015K. H. Thebo, X. Qian, Q. Zhang, L. Chen, H. M. Cheng, and W. Ren, “Highly stable graphene-oxide-based membranes with superior permeability,” Nature Communications 2018 9:1, vol. 9, no. 1, pp. 1–8, Apr. 2018B. Tansel, “Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects,” Sep Purif Technol, vol. 86, pp. 119–126, Feb. 2012J. Abraham et al., “Tunable sieving of ions using graphene oxide membranes,” Nature Nanotechnology 2017 12:6, vol. 12, no. 6, pp. 546–550, Apr. 2017F. Perreault, H. Jaramillo, M. Xie, M. Ude, L. D. Nghiem, and M. Elimelech, “Biofouling Mitigation in Forward Osmosis Using Graphene Oxide Functionalized Thin-Film Composite Membranes,” Environ Sci Technol, vol. 50, no. 11, pp. 5840–5848, Jun. 2016M. Ma, L. Guo, D. G. Anderson, and R. Langer, “Bio-inspired polymer composite actuator and generator driven by water gradients,” Science (1979), vol. 339, no. 6116, pp. 186–189, Jan. 2013H. Arazoe et al., “An autonomous actuator driven by fluctuations in ambient humidity,” Nature Materials 2016 15:10, vol. 15, no. 10, pp. 1084–1089, Jul. 2016Y. Qiu, M. Wang, W. Zhang, Y. Liu, Y. V. Li, and K. Pan, “An asymmetric graphene oxide film for developing moisture actuators,” Nanoscale, vol. 10, no. 29, pp. 14060–14066, Jul. 2018Y. Zhang et al., “Graphene oxide based moisture-responsive biomimetic film actuators with nacre-like layered structures,” J Mater Chem A Mater, vol. 5, no. 28, pp. 14604–14610, Jul. 2017G. Wang, B. Wang, J. Park, J. Yang, X. Shen, and J. Yao, “Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method,” Carbon N Y, vol. 47, no. 1, pp. 68–72, Jan. 2009C. W. Lo, D. Zhu, and H. Jiang, “An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite,” Soft Matter, vol. 7, no. 12, pp. 5604–5609, Jun. 2011E. Wang, M. S. Desai, and S. W. Lee, “Light-controlled graphene-elastin composite hydrogel actuators,” Nano Lett, vol. 13, no. 6, pp. 2826–2830, Jun. 2013Z. Wang et al., “Aqueous phase preparation of graphene with low defect density and adjustable layers,” Chemical Communications, vol. 49, no. 92, pp. 10835–10837, Oct. 2013J. T. Robinson et al., “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J Am Chem Soc, vol. 133, no. 17, pp. 6825–6831, May 2011Z. Cheng, T. Wang, X. Li, Y. Zhang, and H. Yu, “NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites,” ACS Appl Mater Interfaces, vol. 7, no. 49, pp. 27494–27501, Dec. 2015H. Kim et al., “Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide,” ACS Appl Mater Interfaces, vol. 10, no. 38, pp. 32760–32764, Sep. 2018J. Kim, J. H. Jeon, H. J. Kim, H. Lim, and I. K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano, vol. 8, no. 3, pp. 2986–2997, Mar. 2014M. Stratmann, R. Feser, and A. Leng, “Corrosion protection by organic films,” Electrochim Acta, vol. 39, no. 8–9, pp. 1207–1214, Jun. 1994X. Luo, J. Zhong, Q. Zhou, S. Du, S. Yuan, and Y. Liu, “Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity,” ACS Appl Mater Interfaces, vol. 10, no. 21, pp. 18400–18415, May 2018C. Cui, A. T. O. Lim, and J. Huang, “A cautionary note on graphene anti-corrosion coatings,” Nature Nanotechnology 2017 12:9, vol. 12, no. 9, pp. 834–835, Sep. 2017M. Wang et al., “All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method,” ACS Appl Mater Interfaces, vol. 7, no. 2, pp. 1348–1354, Jan. 2015W. K. Chee et al., “Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration,” Electrochim Acta, vol. 157, pp. 88–94, Mar. 2015X. Cao et al., “Reduced Graphene Oxide-Wrapped MoO3 Composites Prepared by Using Metal–Organic Frameworks as Precursor for All-Solid-State Flexible Supercapacitors,” Advanced Materials, vol. 27, no. 32, pp. 4695–4701, Aug. 2015A. Lamberti et al., “Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors,” Carbon N Y, vol. 105, pp. 649–654, Aug. 2016J. Cao et al., “A Flexible Nanostructured Paper of a Reduced Graphene Oxide–Sulfur Composite for High-Performance Lithium–Sulfur Batteries with Unconventional Configurations,” Advanced Materials, vol. 28, no. 43, pp. 9629–9636, Nov. 2016J. Q. Huang, T. Z. Zhuang, Q. Zhang, H. J. Peng, C. M. Chen, and F. Wei, “Permselective graphene oxide membrane for highly stable and anti-self-discharge lithium-sulfur batteries,” ACS Nano, vol. 9, no. 3, pp. 3002–3011, Mar. 2015D. Lin et al., “Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes,” Nature Nanotechnology 2016 11:7, vol. 11, no. 7, pp. 626–632, Mar. 2016K. Fu et al., “Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries,” Advanced Materials, vol. 28, no. 13, pp. 2587–2594, Apr. 2016K. S. Kim et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 2009 457:7230, vol. 457, no. 7230, pp. 706–710, Jan. 2009H. Jang, Y. J. Park, X. Chen, T. Das, M. S. Kim, and J. H. Ahn, “Graphene-Based Flexible and Stretchable Electronics,” Advanced Materials, vol. 28, no. 22, pp. 4184–4202, Jun. 2016J. Xu et al., “A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes,” Advanced Materials, vol. 28, no. 26, pp. 5222–5228, Jul. 2016R. S. Dey, H. A. Hjuler, and Q. Chi, “Approaching the theoretical capacitance of graphene through copper foam integrated three-dimensional graphene networks,” J Mater Chem A Mater, vol. 3, no. 12, pp. 6324–6329, Mar. 2015Y. Chen, Z. Liu, L. Sun, Z. Lu, and K. Zhuo, “Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte,” J Power Sources, vol. 390, pp. 215–223, Jun. 2018M. Shabani-Nooshabadi and F. Zahedi, “Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications,” Electrochim Acta, vol. 245, pp. 575–586, Aug. 2017X. L. Su, L. Fu, M. Y. Cheng, J. H. Yang, X. X. Guan, and X. C. Zheng, “3D nitrogen-doped graphene aerogel nanomesh: Facile synthesis and electrochemical properties as the electrode materials for supercapacitors,” Appl Surf Sci, vol. 426, pp. 924–932, Dec. 2017K. Le et al., “Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors,” Dalton Transactions, vol. 48, no. 16, pp. 5193–5202, 2019X. Chen, X. Chen, F. Zhang, Z. Yang, and S. Huang, “One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor,” J Power Sources, vol. 243, pp. 555–561, 2013M. T. U. Malik, A. Sarker, S. M. S. Mahmud Rahat, and S. B. Shuchi, “Performance enhancement of graphene/GO/rGO based supercapacitors: A comparative review,” Materials Today Communications, vol. 28. Elsevier Ltd, Sep. 01, 2021C. Rodríguez González and O. V. Kharissova, “Propiedades y aplicaciones del grafeno,” Ingenierías, vol. XI, no. 38, pp. 17–23, 2008X.-Y. Wang, A. Narita, and K. Müllen, “Precision synthesis versus bulk-scale fabrication of graphenes,” Nature Reviews Chemistry 2017 2:1, vol. 2, no. 1, pp. 1–10, Dec. 2017C. K. Chua and M. Pumera, “Chemical reduction of graphene oxide: a synthetic chemistry viewpoint,” Chem Soc Rev, vol. 43, no. 1, pp. 291–312, Dec. 2013S. A. M. Zobir, S. A. Rashid, and T. Tan, “Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives,” Synthesis, Technology and Applications of Carbon Nanomaterials, pp. 77–107, Jan. 2019S. Kellici, J. Acord, J. Ball, H. S. Reehal, D. Morgan, and B. Saha, “A single rapid route for the synthesis of reduced graphene oxide with antibacterial activities,” RSC Adv, vol. 4, no. 29, pp. 14858–14861, Mar. 2014A. C. Ferrari et al., “Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems,” Nanoscale, vol. 7, no. 11, pp. 4598–4810, Mar. 2015R. W. Kelsall, I. W. Hamley, and M. Geoghegan, Nanoscale Science and Technology. John Wiley and Sons, 2005M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surf Sci, vol. 82, no. 1, pp. 228–236, Mar. 1979B. Y. Cao and Y. W. Li, “A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics,” Journal of Chemical Physics, vol. 133, no. 2, Jul. 2010J. C. Shelton, H. R. Patil, and J. M. Blakely, “Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition,” Surf Sci, vol. 43, no. 2, pp. 493–520, Jun. 1974S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, “Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst,” Nano Lett, vol. 10, no. 10, pp. 4128–4133, Oct. 2010Y. Lee et al., “Wafer-scale synthesis and transfer of graphene films,” Nano Lett, vol. 10, no. 2, pp. 490–493, Feb. 2010V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics: Condensed Matter, vol. 20, no. 32, p. 323202, Jul. 2008V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: Past, present and future,” Prog Mater Sci, vol. 56, no. 8, pp. 1178–1271, Oct. 2011F. Varchon et al., “Electronic structure of epitaxial graphene layers on SiC: effect of the substrate,” Phys Rev Lett, vol. 99, no. 12, Sep. 2007J. Penuelas et al., “Surface morphology and characterization of thin graphene films on SiC vicinal substrate,” Phys Rev B Condens Matter Mater Phys, vol. 79, no. 3, p. 033408, Jan. 2009X. Li and R. B. Kaner, “Graphene-Based Materials,” Science (1979), vol. 320, no. 5777, pp. 1170–1171, May 2008Y. Hernandez et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotechnology 2008 3:9, vol. 3, no. 9, pp. 563–568, Aug. 2008M. Lotya et al., “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J Am Chem Soc, vol. 131, no. 10, pp. 3611–3620, Mar. 2009A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett, vol. 9, no. 12, pp. 4031–4036, Dec. 2009M. S. Dresselhaus and G. Dresselhaus, “Intercalation compounds of graphite,” Adv Phys, vol. 51, no. 1, pp. 1–186, Jan. 2002Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, “Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges,” Nanomaterials, vol. 8, no. 11. MDPI AG, Nov. 09, 2018N. Mishra, J. Boeckl, N. Motta, and F. Iacopi, “Graphene growth on silicon carbide: A review (Phys. Status Solidi A 9∕2016),” Physica Status Solidi (A) Applications and Materials Science, vol. 213, no. 9. Wiley-VCH Verlag, p. 2269, Sep. 01, 2016R. M. Jacobberger, R. Machhi, J. Wroblewski, B. Taylor, A. L. Gillian-Daniel, and M. S. Arnold, “Simple Graphene Synthesis via Chemical Vapor Deposition,” J Chem Educ, vol. 92, no. 11, pp. 1903–1907, Nov. 2015A. Ciesielski and P. Samorì, “Graphene via sonication assisted liquid-phase exfoliation,” Chemical Society Reviews, vol. 43, no. 1. Royal Society of Chemistry, pp. 381–398, Jan. 07, 2014R. Narayan and S. O. Kim, “Surfactant mediated liquid phase exfoliation of graphene,” Nano Converg, vol. 2, no. 1, Dec. 2015A. S. Pavlova, E. A. Obraztsova, A. v. Belkin, C. Monat, P. Rojo-Romeo, and E. D. Obraztsova, “Liquid-phase exfoliation of flaky graphite,” J. of Nanophotonics, vol. 10, no. 1, p. 012525, Feb. 2016K. H. Choi, A. Ali, and J. Jo, “Randomly oriented graphene flakes film fabrication from graphite dispersed in N-methyl-pyrrolidone by using electrohydrodynamic atomization technique,” Journal of Materials Science: Materials in Electronics 2013 24:12, vol. 24, no. 12, pp. 4893–4900, Sep. 2013D. Nuvoli et al., “High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid,” J Mater Chem, vol. 21, no. 10, pp. 3428–3431, Feb. 2011Universidad Nacional de Colombia, “Reglamento Interno Laboratorio de Química General.” pp. 1–5, 2021.V. Alzari et al., “Graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization,” J Mater Chem, vol. 21, no. 24, pp. 8727–8733, Jun. 2011C. Gómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007A. Mianowski, “Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids,” Chemik, vol. 67, no. 4, pp. 267–274, 2013R. Verdejo, F. Barroso-Bujans, M. A. Rodriguez-Perez, J. A. de Saja, and M. A. Lopez-Manchado, “Functionalized graphene sheet filled silicone foam nanocomposites,” J Mater Chem, vol. 18, no. 19, pp. 2221–2226, Apr. 2008W. Cai et al., “Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide,” Science, vol. 321, no. 5897, pp. 1815–1817, Sep. 2008W. Gao, L. Alemany, L. Ci, and P. Ajayan, “New insights into the structure and reduction of graphite oxide,” Nat Chem, vol. 1, no. 5, pp. 403–408, Aug. 2009T. Szabó et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides,” Chem. Mater., vol. 18, no. 11, pp. 2740–2749, 2006A. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, vol. 19, no. 15, pp. 6050–6055, Jul. 2003C. G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, “Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer,” Appl Phys Lett, vol. 95, no. 2, p. 023304, Jul. 2009H. J. Shin et al., “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance,” Adv Funct Mater, vol. 19, no. 12, pp. 1987–1992, Jun. 2009D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology 2008 3:2, vol. 3, no. 2, pp. 101–105, Jan. 2008S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” J Mater Chem, vol. 16, no. 2, pp. 155–158, Dec. 2006S. Wang et al., “Band-like Transport in Surface-Functionalized Highly Solution-Processable Graphene Nanosheets,” Advanced Materials, vol. 20, no. 18, pp. 3440–3446, Sep. 2008Z. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang, and H. M. Cheng, “Synthesis of high-quality graphene with a pre-determined number of layers,” Carbon N Y, vol. 47, no. 2, pp. 493–499, Feb. 2009X. Fan et al., “Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation,” Advanced Materials, vol. 20, no. 23, pp. 4490–4493, Dec. 2008M. McAllister et al., “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, Sep. 2007B. Manoj and A. G. Kunjomana, “Systematic investigations of graphene layers in sub-bituminous coal,” Russian Journal of Applied Chemistry 2014 87:11, vol. 87, no. 11, pp. 1726–1733, Mar. 2015Q. Zhou, Z. Zhao, Y. Zhang, B. Meng, A. Zhou, and J. Qiu, “Graphene Sheets from Graphitized Anthracite Coal: Preparation, Decoration, and Application,” Energy and Fuels, vol. 26, no. 8, pp. 5186–5192, Aug. 2012P. Meshram, B. K. Purohit, M. K. Sinha, S. K. Sahu, and B. D. Pandey, “Demineralization of low grade coal – A review,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 745–761, Jan. 2015H. Dhawan and D. K. Sharma, “Advances in the chemical leaching (inorgano-leaching), bio-leaching and desulphurisation of coals,” Int J Coal Sci Technol, vol. 6, no. 2, pp. 169–183, Jun. 2019K. M. Steel, J. Besida, T. A. O’Donnell, and D. G. Wood, “Production of Ultra Clean Coal: Part II—Ionic equilibria in solution when mineral matter from black coal is treated with aqueous hydrofluoric acid,” Fuel Processing Technology, vol. 70, no. 3, pp. 193–219, Jul. 2001R. A. Meyers, Coal Desulfurization: High-efficiency Preparation Methods. New York: Marcel Dekker Inc., 1977. Accessed: Jun. 16, 2022K. M. Steel and J. W. Patrick, “The production of ultra clean coal by sequential leaching with HF followed by HNO3,” Fuel, vol. 82, no. 15–17, pp. 1917–1920, Oct. 2003ASTM International, “ASTM D2234 - 10 Standard Practice for Collection of a Gross Sample of Coal,” 2010ASTM International, “ASTM D2013 -10 Standard Practice for Preparing Coal Samples for Analysis,” 2010ASTM International, “ASTM D3172-07 Proximate Analysis of Coal and Coke,” 2007.ASTM International, “ASTM D3173-11 Standard Test Method for Moisture in the Analysis Sample of Coal and Coke,” 2011ASTM International, “ASTM D3174-11 Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal,” 2011ASTM International, “ASTM D3175-11 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke,” 2011ASTM International, “ASTM D4239-12 Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion,” 2012ASTM International, “ASTM D3176-09 Standard Practice for Ultimate Analysis of Coal and Coke,” 2009.ASTM International, “ASTM D5373-16 Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke,” 2016.ASTM International, “ASTM D2799-13 Standard Test Method for Microscopical Determination of the Maceral Composition of Coal,” 2013.M. C. Stopes, “On the petrology of bandes bituminous coals,” Fuel, vol. 14, pp. 4–13, 1935.ASTM International, “ASTM D2797-11 Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light,” 2011.ASTM International, “ASTM D2798-11 Standard Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal,” 2011.ASTM International, “ASTM D3302-07 Standard Test Method for Total Moisture in Coal,” 2007. doi: 10.1520/D3302_D3302M-12.J. Saiz, “Ingeniería Siderúrgica. Proceso de baterías de coke,” 2015.M. J. Burgess and R. V. Wheeler, “The Volatile Constituents of Coal,” J. Chem. Soc., vol. 97, pp. 1917–1935, 1910.A. Nabeel, T. A. Khan, and D. K. Sharma, “Studies on the Production of Ultra-clean Coal by Alkali-acid Leaching of Low-grade Coals,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 31, no. 7, pp. 594–601, 2009,N. Toro Vélez, “Proceso de biodesulfurización del azufre orgánico presente enun carbón colombiano, mediante el usode una cepa pura de Rhodococcus Rhodochrous IGTS8,” Tesis para optar por el título de Magíster en Ingeniería - Materiales y Procesos, Universidad Nacional de Colombia, Medellín, 2014.Prayuenyong P., “Coal biodesulfurization processes | Semantic Scholar,” J. Sci. Tecnol., vol. 24, no. 3, pp. 493–507, 2002,Gómez-Navarro et al., “Electronic transport properties of individual chemically reduced graphene oxide sheets,” Nano Lett, vol. 7, no. 11, pp. 3499–3503, Nov. 2007D. C. Marcano et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, Aug. 2010K. Parvez, S. Yang, X. Feng, and K. Müllen, “Exfoliation of graphene via wet chemical routes,” Synth Met, vol. 210, pp. 123–132, Dec. 2015W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J Am Chem Soc, vol. 80, no. 6, p. 1339, Mar. 1958X. Hangxun, B. W. Zeiger, and K. S. Suslick, “Sonochemical synthesis of nanomaterials,” Chem Soc Rev, vol. 42, no. 7, pp. 2555–2567, Mar. 2013J. H. Bang and K. S. Suslick, “Applications of Ultrasound to the Synthesis of Nanostructured Materials,” Advanced Materials, vol. 22, no. 10, pp. 1039–1059, Mar. 2010P. v. Kamat and K. Vinodgopal, “Sonochromic effect in WO3 colloidal suspensions,” Langmuir, vol. 12, no. 23, pp. 5739–5741, Nov. 1996K. S. Suslick and G. J. Price, “Applications of Ultrasound to Materials Chemistry,” Annual Review of Materials Science, vol. 29, pp. 295–326, Nov. 2003J. Shen et al., “Synthesis of hydrophilic and organophilic chemically modified graphene oxide sheets,” J Colloid Interface Sci, vol. 352, no. 2, pp. 366–370, Dec. 2010W. Zhang, W. He, and X. Jing, “Preparation of a stable graphene dispersion with high concentration by ultrasound,” Journal of Physical Chemistry B, vol. 114, no. 32, pp. 10368–10373, Aug. 2010V. Štengl, J. Henych, M. Slušná, and P. Ecorchard, “Ultrasound exfoliation of inorganic analogues of graphene,” Nanoscale Res Lett, vol. 9, no. 1, pp. 1–14, Apr. 2014H. Yang, H. Li, J. Zhai, L. Sun, and H. Yu, “Simple synthesis of graphene oxide using ultrasonic cleaner from expanded graphite,” Ind Eng Chem Res, vol. 53, no. 46, pp. 17878–17883, Nov. 2014T. Soltani and B. K. Lee, “Low intensity-ultrasonic irradiation for highly efficient, eco-friendly and fast synthesis of graphene oxide,” Ultrason Sonochem, vol. 38, pp. 693–703, Sep. 2017Z. S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H. M. Cheng, “Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets,” Nano Research 2010 3:1, vol. 3, no. 1, pp. 16–22, Mar. 2010A. Abulizi, K. Okitsu, and J. J. Zhu, “Ultrasound assisted reduction of graphene oxide to graphene in l-ascorbic acid aqueous solutions: Kinetics and effects of various factors on the rate of graphene formation,” Ultrason Sonochem, vol. 21, no. 3, pp. 1174–1181, May 2014T. Soltani and B. Kyu Lee, “A benign ultrasonic route to reduced graphene oxide from pristine graphite,” J Colloid Interface Sci, vol. 486, pp. 337–343, Jan. 2017D. A. Skoog, J. J. Holler, and S. R. Crouch, “An Introduction to Ultraviolet-Visible Molecular Absorption Spectrometry,” in Principles of Instrumental Analysis, Seventh Edition., no. 3, Boston MA: Cengage Learning, 2016, pp. 304–330R. Gandhimathi, S. Vijayaraj, and M. P. Jyothirmaie, “Analytical Process of Drugs by Ultraviolet (UV) Spectroscopy-A Review,” International Journal of Pharmaceutical Research & Analysis, vol. 2, no. 2, pp. 72–78, 2012, Accessed: Jun. 24, 2022Y. R. Sharma, “Ultraviolet and Visible Spectroscopy,” in Elementary Organic Spectroscopy, First Edition., New Delhi, 2004, pp. 9–60. Accessed: Jun. 24, 2022Thermo Spectronic, “Basic UV-Vis Theory, Concepts and Applications.” pp. 1–28. Accessed: Jun. 24, 2022.G. H. Jeffery, J. Basset, J. Mendham, and R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, Fifth Edition. New York: Longman Scientific & Technical, 1989.D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to Spectroscopy, Fifth Edition. Cengage Learning, 2013. Accessed: Jun. 24, 2022B. J. Clark, T. Frost, and M. A. Rusell, UV Spectroscopy: Techniques, Instrumentation and Data Handling, vol. 4. Springer, 1993Sheffield Hallam University, “UV-Vis Absorption Spectroscopy - Instrumentation.”The Royal Society of Chemistry, “Modern Chemical Techniques | Ultraviolet/visible spectroscopy.”Chemical Dictionary, “Definition of spectronic_20 - Chemistry Dictionary.”W. Gong, M. Kraft, H. Morgan, and M. Mowlem, “A Simple, Low-Cost Double Beam Spectrophotometer for Colorimetric Detection of Nitrite in Seawater,” IEEE Sens J, vol. 9, no. 7, pp. 862–869, 2009,U. Sierra, P. Álvarez, C. Blanco, M. Granda, R. Santamaría, and R. Menéndez, “Cokes of different origin as precursors of graphene oxide,” Fuel, vol. 166, pp. 400–403, Feb. 2016,D. A. Long, Raman spectroscopy. New York: McGraw-Hill, 1977.C. v. Raman and K. S. Krishnan, “Polarisation of Scattered Light-quanta,” Nature 1928 122:3066, vol. 122, no. 3066, pp. 169–169, 1928,E. v. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal Chim Acta, vol. 606, no. 2, pp. 119–134, Jan. 2008,R. S. Das and Y. K. Agrawal, “Raman spectroscopy: Recent advancements, techniques and applications,” Vib Spectrosc, vol. 57, no. 2, pp. 163–176, Nov. 2011,E. C. Y. Li-Chan, “The applications of Raman spectroscopy in food science,” Trends Food Sci Technol, vol. 7, no. 11, pp. 361–370, Nov. 1996,S. A. Asher, “UV Resonance Raman Spectroscopy for Analytical, Physical, and Biophysical Chemistry,” Anal Chem, vol. 65, no. 4, pp. 201A-210A, Feb. 2012,A. Kudelski, “Raman spectroscopy of surfaces,” Surf Sci, vol. 603, no. 10–12, pp. 1328–1334, Jun. 2009,A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta, vol. 76, no. 1, pp. 1–8, Jun. 2008,C. L. Haynes, A. D. McFarland, and R. P. van Duyne, “Surface-enhanced: Raman spectroscopy,” Anal Chem, vol. 77, no. 17, Sep. 2005,X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang, “In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO42-,” Eng Fail Anal, vol. 18, no. 8, pp. 1981–1989, Dec. 2011B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. van Duyne, “SERS: Materials, applications, and the future,” Materials Today, vol. 15, no. 1–2, pp. 16–25, Jan. 2012,D. Zeisel, V. Deckert, R. Zenobi, and T. Vo-Dinh, “Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films,” Chem Phys Lett, vol. 283, no. 5–6, pp. 381–385, Feb. 1998,R. A. Halvorson and P. J. Vikesland, “Surface-enhanced Raman spectroscopy (SERS) for environmental analyses,” Environ Sci Technol, vol. 44, no. 20, pp. 7749–7755, Oct. 2010N. L. Gruenke, M. F. Cardinal, M. O. McAnally, R. R. Frontiera, G. C. Schatz, and R. P. van Duyne, “Ultrafast and nonlinear surface-enhanced Raman spectroscopy,” Chem Soc Rev, vol. 45, no. 8, pp. 2263–2290, Apr. 2016,W. H. Li, X. Y. Li, and N. T. Yu, “Surface-enhanced resonance hyper-Raman scattering and surface-enhanced resonance Raman scattering of dyes adsorbed on silver electrode and silver colloid: a comparison study,” Chem Phys Lett, vol. 312, no. 1, pp. 28–36, Oct. 1999K. Kneipp et al., “Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS),” Phys Rev Lett, vol. 78, no. 9, p. 1667, Mar. 1997K. F. Gibson and S. G. Kazarian, “Tip-enhanced Raman Spectroscopy,” Encyclopedia of Analytical Chemistry, pp. 1–30, Sep. 2014B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. Zhang, “Tip-enhanced Raman Spectroscopy – Its status, challenges and future directions,” Chem Phys Lett, vol. 472, no. 1–3, pp. 1–13, Apr. 2009N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl Phys Lett, vol. 85, no. 25, p. 6239, Dec. 2004B. Pettinger, “Single-molecule surface- and tip-enhanced Raman spectroscopy,” Mol Phys, vol. 108, no. 16, pp. 2039–2059, Aug. 2010R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem Phys Lett, vol. 318, no. 1–3, pp. 131–136, Feb. 2000E. Bailo and V. Deckert, “Tip-enhanced Raman scattering,” Chem Soc Rev, vol. 37, no. 5, pp. 921–930, Apr. 2008N. Hayazawa, A. Tarun, A. Taguchi, and K. Furusawa, “Tip-enhanced Raman spectroscopy,” in Raman Spectroscopy for Nanomaterials Characterization, Kumar C S S R, Ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 2012D. Cialla et al., “Surface-enhanced Raman spectroscopy (SERS): progress and trends,” Analytical and Bioanalytical Chemistry 2011 403:1, vol. 403, no. 1, pp. 27–54, Dec. 2011A. J. Driscoll, M. H. Harpster, and P. A. Johnson, “The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges,” Physical Chemistry Chemical Physics, vol. 15, no. 47, pp. 20415–20433, Nov. 2013A. Hartschuh, E. J. Sánchez, X. S. Xie, and L. Novotny, “High-Resolution Near-Field Raman Microscopy of Single-Walled Carbon Nanotubes,” Phys Rev Lett, vol. 90, no. 9, p. 4, Mar. 2003Y. Okuno, Y. Saito, S. Kawata, and P. Verma, “Tip-enhanced raman investigation of extremely localized semiconductor-to-metal transition of a carbon nanotube,” Phys Rev Lett, vol. 111, no. 21, p. 216101, Nov. 2013Y. Saito, P. Verma, K. Masui, Y. Inouye, and S. Kawata, “Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy,” Journal of Raman Spectroscopy, vol. 40, no. 10, pp. 1434–1440, Oct. 2009W. Su and D. Roy, “Visualizing graphene edges using tip-enhanced Raman spectroscopy,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 4, p. 041808, Jul. 2013A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys Rev Lett, vol. 82, no. 20, p. 4142, May 1999J. P. R. Day et al., “Quantitative coherent anti-stokes raman scattering (CARS) microscopy,” Journal of Physical Chemistry B, vol. 115, no. 24, pp. 7713–7725, Jun. 2011D. Kopf, F. Ganikhanov, M. Katz, S. Carrasco, W. Seitz, and X. S. Xie, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Optics Letters, Vol. 31, Issue 9, pp. 1292-1294, vol. 31, no. 9, pp. 1292–1294, May 2006J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” Journal of Physical Chemistry B, vol. 108, no. 3, pp. 827–840, Jan. 2004J. W. Chan, H. Winhold, S. M. Lane, and T. Huser, “Optical trapping and coherent anti-Stokes Raman scattering (CARS) spectroscopy of submicron-size particles,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 11, no. 4, pp. 858–863, Jul. 2005C. Heinrich, S. Bernet, and M. Ritsch-Marte, “Wide-field coherent anti-Stokes Raman scattering microscopy,” Appl Phys Lett, vol. 84, no. 5, p. 816, Jan. 2004N. Djaker, P. F. Lenne, D. Marguet, A. Colonna, C. Hadjur, and H. Rigneault, “Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications,” Nucl Instrum Methods Phys Res A, vol. 571, no. 1–2, pp. 177–181, Feb. 2007M. Müller and A. Zumbusch, “Coherent anti-Stokes Raman Scattering Microscopy,” ChemPhysChem, vol. 8, no. 15, pp. 2156–2170, Oct. 2007M. H. F. Kox et al., “Label-Free Chemical Imaging of Catalytic Solids by Coherent Anti-Stokes Raman Scattering and Synchrotron-Based Infrared Microscopy,” Angewandte Chemie International Edition, vol. 48, no. 47, pp. 8990–8994, Nov. 2009D. Schafer, J. A. Squier, J. van Maarseveen, D. Bonn, M. Bonn, and M. Müller, “In situ quantitative measurement of concentration profiles in a microreactor with submicron resolution using multiplex CARS microscopy,” J Am Chem Soc, vol. 130, no. 35, pp. 11592–11593, Sep. 2008W. J. Tipping, M. Lee, A. Serrels, V. G. Brunton, and A. N. Hulme, “Stimulated Raman scattering microscopy: an emerging tool for drug discovery,” Chem Soc Rev, vol. 45, no. 8, pp. 2075–2089, Apr. 2016D. Zhang, P. Wang, M. N. Slipchenko, and J. X. Cheng, “Fast vibrational imaging of single cells and tissues by stimulated raman scattering microscopy,” Acc Chem Res, vol. 47, no. 8, pp. 2282–2290, Aug. 2014K. Y. Bliokh, A. Y. Bekshaev, F. Nori, C. Zhang, and J. A. Aldana-Mendoza, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J Phys, vol. 11, no. 3, p. 033026, Mar. 2009P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond stimulated Raman spectroscopy,” Anal Chem, vol. 78, no. 17, pp. 5952–5959, Sep. 2006B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal Bioanal Chem, vol. 387, no. 5, pp. 1691–1703, Mar. 2007D. P. Strommen and K. Nakamoto, “Resonance raman spectroscopy,” J Chem Educ, vol. 54, no. 8, pp. 474–478, 1977N. Everall, “Depth Profiling with Confocal Raman Microscopy,” Spectroscopy, vol. 19, no. 10, pp. 22–28, 2004, Accessed: Jun. 24, 2022M. Etienne, M. Dossot, J. Grausem, and G. Herzog, “Combined raman microspectrometer and shearforce regulated SECM for corrosion and self-healing analysis,” Anal Chem, vol. 86, no. 22, pp. 11203–11210, Nov. 2014Princeton Instruments, “Confocal Raman Microscopy, General Overview - Application Note.”Horiba Scientific, “Raman Imaging and Spectrometers - HORIBA.”M. Wall, “The Raman Spectroscopy of Graphene and the Determination of Layer Thickness,” 2011. Accessed: Jun. 24, 2022.K. Alam et al., “In-situ deposition of graphene oxide catalyst for efficient photoelectrochemical hydrogen evolution reaction using atmospheric plasma,” Materials, vol. 13, no. 1, Jan. 2020A. Wróblewska et al., “Statistical analysis of the reduction process of graphene oxide probed by Raman spectroscopy mapping,” Journal of Physics: Condensed Matter, vol. 29, no. 47, p. 475201, Nov. 2017P. S. Rawat, R. C. Srivastava, G. Dixit, and K. Asokan, “Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation,” Vacuum, vol. 182, Dec. 2020I. M. Vyshkvorkina, Y. v. Stebunov, A. v. Arsenin, V. S. Volkov, and S. M. Novikov, “Comparison of CVD-grown and exfoliated graphene for biosensing applications,” in AIP Conference Proceedings, Jun. 2021,G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys Rev Lett, vol. 56, no. 9, pp. 930–933, Mar. 1986Y. F. Dufrêne, “Towards nanomicrobiology using atomic force microscopy,” Nature Reviews Microbiology 2008 6:9, vol. 6, no. 9, pp. 674–680, Jul. 2008A. Engel and D. J. Müller, “Observing single biomolecules at work with the atomic force microscope,” Nature Structural Biology 2000 7:9, vol. 7, no. 9, pp. 715–718, Sep. 2000S. Liu and Y. Wang, “Application of AFM in microbiology: a review,” Scanning, vol. 32, no. 2, pp. 61–73, Mar. 2010Y. F. Dufrêne, “AFM for nanoscale microbe analysis,” Analyst, vol. 133, no. 3, pp. 297–301, 2008Y. Martin, C. C. Williams, and H. K. Wickramasinghe, “Atomic force microscope–force mapping and profiling on a sub 100‐Å scale,” J Appl Phys, vol. 61, no. 10, p. 4723, Jun. 1998S. Y. Lee and R. L. Mahajan, “A facile method for coal to graphene oxide and its application to a biosensor,” Carbon N Y, vol. 181, pp. 408–420, Aug. 2021Federal Highway Administration, “Guidelines for Detection, Analysis, and Treatment of Materials-Related Distress in Concrete Pavements Volume 1,” McLean VA, Mar. 2002Microscopy Australia, “Scanning Electron Microscopy.”J. I. Goldstein et al., “Scanning Electron Microscopy and X-ray Microanalysis,” 2003CAEN Group, “Inorganic Scintillator Detectors.”R. Zhang and B. D. Ulery, “Synthetic vaccine characterization and design,” Journal of Bionanoscience, vol. 12, no. 1, pp. 1–11, Feb. 2018B. Das, R. Kundu, and S. Chakravarty, “Preparation and characterization of graphene oxide from coal,” Mater Chem Phys, vol. 290, p. 126597, Oct. 2022Exfoliación en fase líquida de carbón de alto rango para obtener óxido de grafenoMinisterio de Ciencia, Tecnología e InnovaciónEstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82878/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL7185151.2022.pdf7185151.2022.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf68980030https://repositorio.unal.edu.co/bitstream/unal/82878/2/7185151.2022.pdf5ef8e53200530244ea4e112a19216823MD52THUMBNAIL7185151.2022.pdf.jpg7185151.2022.pdf.jpgGenerated Thumbnailimage/jpeg4743https://repositorio.unal.edu.co/bitstream/unal/82878/3/7185151.2022.pdf.jpg65ee8d1e662cbf83baf4c2b8886e887fMD53unal/82878oai:repositorio.unal.edu.co:unal/828782024-08-13 23:38:43.328Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=