Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.

Ilustraciones

Autores:
Cardona González, Daniela
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79694
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79694
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
Metales - Características físico-químicas
MOF
Porosidad
Metal-organic frameworks
Adsorption
Redes metal-orgánicas
Porosidad
Adsorción
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_fa528ddb7a94be52b542c400792caba0
oai_identifier_str oai:repositorio.unal.edu.co:unal/79694
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
dc.title.translated.eng.fl_str_mv Synthesis of heterostructural mixed-ligand metal-organic frameworks
title Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
spellingShingle Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
540 - Química y ciencias afines::546 - Química inorgánica
Metales - Características físico-químicas
MOF
Porosidad
Metal-organic frameworks
Adsorption
Redes metal-orgánicas
Porosidad
Adsorción
title_short Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
title_full Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
title_fullStr Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
title_full_unstemmed Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
title_sort Síntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.
dc.creator.fl_str_mv Cardona González, Daniela
dc.contributor.advisor.none.fl_str_mv Muñoz Acevedo, Juan Carlos
Pabón Gelves, Elizabeth
dc.contributor.author.none.fl_str_mv Cardona González, Daniela
dc.contributor.researchgroup.spa.fl_str_mv Ciencia de Materiales Avanzados
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
Metales - Características físico-químicas
MOF
Porosidad
Metal-organic frameworks
Adsorption
Redes metal-orgánicas
Porosidad
Adsorción
dc.subject.lemb.none.fl_str_mv Metales - Características físico-químicas
dc.subject.proposal.eng.fl_str_mv MOF
Porosidad
Metal-organic frameworks
Adsorption
dc.subject.proposal.spa.fl_str_mv Redes metal-orgánicas
Porosidad
Adsorción
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-23T21:04:47Z
dc.date.available.none.fl_str_mv 2021-06-23T21:04:47Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79694
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79694
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science (80-. ). 341, (2013).
2. Öhrström, L. Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and Why We Need Them. Crystals 5, 154–162 (2015).
3. Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 20, 132–142 (2018).
4. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).
5. Müller-Buschbaum, K. Luminescent MOFs and Frameworks. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 1–20 (Elsevier, 2015). doi:10.1016/B978-0-12-409547-2.11493-3
6. Tominaka, S. & Cheetham, A. K. Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv. 4, 54382–54387 (2014).
7. Falcaro, P., Ricco, R., Doherty, C. M., Liang, K., Hill, A. J. & Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).
8. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P. & Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).
9. Cai, H., Huang, Y. L. & Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. (2017). doi:10.1016/j.ccr.2017.12.003
10. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).
11. Yaghi, O. M., Li, H., Eddaoudi, M. & O’Keeffe, M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).
12. Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).
13. Li, B. & Chen, B. Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. in Structure and Bonding 119, 75–107 (2014).
14. Bunck, D. N. & Dichtel, W. R. Mixed Linker Strategies for Organic Framework Functionalization. Chem. - A Eur. J. 19, 818–827 (2013).
15. Bitzer, J. & Kleist, W. Synthetic Strategies and Structural Arrangements of Isoreticular Mixed‐Component Metal–Organic Frameworks. Chem. – A Eur. J. 25, 1866–1882 (2019).
16. Pang, Q., Tu, B. & Li, Q. Metal–organic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107–125 (2019).
17. Ali Akbar Razavi, S. & Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 399, 213023 (2019).
18. Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M. & Zhou, H.-C. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).
19. Ugale, B., Singh, D. & Nagaraja, C. M. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal-organic framework: In situ cleavage of S-S and C-S bonds. J. Solid State Chem. 226, 273–278 (2015).
20. Qu, X.-L. & Yan, B. Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans , trans -Muconic Acid as a Biomarker of Benzene. Inorg. Chem. 57, 7815–7824 (2018).
21. Ahmed, F., Roy, S., Naskar, K., Sinha, C., Alam, S. M., Kundu, S., Vittal, J. J. & Mir, M. H. Halogen···halogen interactions in the supramolecular assembly of 2D coordination polymers and the CO2sorption behavior. Cryst. Growth Des. 16, 5514–5519 (2016).
22. Pletnev, M. Y. Chemestry of surfactants. (1996). doi:10.1016/S1383-7303(01)80062-4
23. Fu, J.-H., Wang, Y.-L., Chen, Y., Hu, C.-H. & Tang, L. A one-dimensional heterometallic coordination polymer with a three-dimensional supramolecular framework: poly[μ 2 -aqua-diaqua(2,2′-bipyridyl)(μ 5 -2-sulfonatobutanedioato)copper(II)sodium(I)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 68, m209–m212 (2012).
24. Bo, Q.-B., Sun, G.-X. & Geng, D.-L. Novel Three-Dimensional Pillared-Layer Ln(III)−Cu(I) Coordination Polymers Featuring Spindle-Shaped Heterometallic Building Units. Inorg. Chem. 49, 561–571 (2010).
25. Schwedler, I., Henke, S., Wharmby, M. T., Bajpe, S. R., Cheetham, A. K. & Fischer, R. A. Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalt. Trans. 45, 4230–4241 (2016).
26. Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Paik Suh, M. & Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).
27. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chemical Reviews 112, 673–674 (2012).
28. Olajire, A. A. Synthesis chemistry of metal-organic frameworks for CO2capture and conversion for sustainable energy future. Renew. Sustain. Energy Rev. 92, 570–607 (2018).
29. Roy, S., Chakraborty, A. & Maji, T. K. Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord. Chem. Rev. 273–274, 139–164 (2014).
30. Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 358, 92–107 (2018).
31. Wen, J., Fang, Y. & Zeng, G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere 201, 627–643 (2018).
32. Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Acc. Chem. Res. 34, 319–330 (2001).
33. Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2, 52–80 (2017).
34. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).
35. Van Vleet, M. J., Weng, T., Li, X. & Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 118, 3681–3721 (2018).
36. Bae, Y. S., Yazayd’n, A. Ö. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain Ultra-Micropores. Langmuir 26, 5475–5483 (2010).
37. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).
38. Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008).
39. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–72 (2002).
40. Wang, X. L., Qin, C., Wu, S. X., Shao, K. Z., Lan, Y. Q., Wang, S., Zhu, D. X., Su, Z. M. & Wang, E. B. Bottom-up synthesis of porous coordination frameworks: Apical substitution of a pentanuclear tetrahedral precursor. Angew. Chemie - Int. Ed. 48, 5291–5295 (2009).
41. Wuest, J. D. Engineering crystals by the strategy of molecular tectonics. Chem. Commun. 5830–5837 (2005). doi:10.1039/b512641j
42. Hosseini, M. W. Molecular Tectonics: From Simple Tectons to Complex Molecular Networks. Acc. Chem. Res. 38, 313–323 (2005).
43. Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400 (2009).
44. Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 43, 6141–72 (2014).
45. Li, J. R., Timmons, D. J. & Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).
46. Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coord. Chem. Rev. 358, 125–152 (2018).
47. Wen, Y., Zhang, J., Xu, Q., Wu, X. T. & Zhu, Q. L. Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord. Chem. Rev. 376, 248–276 (2018).
48. Lee, Y. R., Kim, J. & Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 30, 1667–1680 (2013).
49. Jhung, S. H., Lee, J. H., Forster, P. M., Férey, G., Cheetham, A. K. & Chang, J. S. Microwave synthesis of hybrid inorganic - Organic porous materials: phase-selective and rapid crystallization. Chem. - A Eur. J. 12, 7899–7905 (2006).
50. Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G. & Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).
51. Sargazi, G., Afzali, D., Daldosso, N., Kazemian, H., Chauhan, N. P. S., Sadeghian, Z., Tajerian, T., Ghafarinazari, A. & Mozafari, M. A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds. Ultrason. Sonochem. 27, 395–402 (2015).
52. Jung, D. W., Yang, D. A., Kim, J., Kim, J. & Ahn, W. S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalt. Trans. 39, 2883–2887 (2010).
53. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).
54. Hartmann, M., Kunz, S., Himsl, D., Tangermann, O., Ernst, S. & Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 24, 8634–8642 (2008).
55. Beldon, P. J., Fábián, L., Stein, R. S., Thirumurugan, A., Cheetham, A. K. & Friščić, T. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angew. Chemie Int. Ed. 49, 9640–9643 (2010).
56. Friščić, T., Reid, D. G., Halasz, I., Stein, R. S., Dinnebier, R. E. & Duer, M. J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angew. Chemie - Int. Ed. 49, 712–715 (2010).
57. Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. Solvent-Controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain, 2D Layer, and 3D Coordination Architectures. Cryst. Growth Des. 8, 3437–3445 (2008).
58. Huang, X.-C., Li, D. & Chen, X.-M. Solvent-induced supramolecular isomerism in silver(i) 2-methylimidazolate. CrystEngComm 8, 3 51 (2006).
59. Pedireddi, V. R. & Varughese, S. Solvent-Dependent Coordination Polymers: Cobalt Complexes of 3,5-Dinitrobenzoic Acid and 3,5-Dinitro-4-methylbenzoic Acid with 4,4′-Bipyrdine. Inorg. Chem. 43, 450–457 (2004).
60. Wang, F.-K., Yang, S.-Y., Huang, R.-B., Zheng, L.-S. & Batten, S. R. Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture. CrystEngComm 10, 1211 (2008).
61. Ma, L., Wang, L.-Y., Lu, D., Batten, S. R. & Wang, J. Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H 2 tbip/bpp Mixed Ligands System. Cryst. Growth Des. 9, 1741–1749 (2009).
62. Pan, L., Frydel, T., Sander, M. B., Huang, X. & Li, J. The Effect of pH on the Dimensionality of Coordination Polymers. Inorg. Chem. 40, 1271–1283 (2001).
63. Fang, Q., Zhu, G., Xue, M., Sun, J., Tian, G., Wu, G. & Qiu, S. Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks. Dalt. Trans. 2202–2207 (2004). doi:10.1039/B402715A
64. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F. & Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 117, 406–413 (2009).
65. Muñoz Acevedo, J. C. Síntesis y carácterización de mallas lantánidos con acidos carboxílicos y aminas aromáticas. (Universidad de Antioquia, 2006).
66. Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A. & Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC - Trends Anal. Chem. 118, 401–425 (2019). 67. Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks. CrystEngComm 7, 548 (2005).
68. Bauer, S., Bein, T. & Stock, N. High-Throughput Investigation and Characterization of Cobalt Carboxy Phosphonates. Inorg. Chem. 44, 5882–5889 (2005).
69. Stock, N. & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933–969 (2012).
70. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 130, 11650–11661 (2008).
71. Kumar, G. & Gupta, R. Molecularly designed architectures – the metalloligand way. Chem. Soc. Rev. Chem. Soc. Rev 42, 9403–9453 (2013).
72. Xiang, S., Li, L., Zhang, J., Tan, X., Cui, H., Shi, J., Hu, Y., Chen, L., Su, C.-Y. & James, S. L. Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J. Mater. Chem. 22, 1862 (2012).
73. Lohe, M. R., Rose, M. & Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 6056 (2009). doi:10.1039/b910175f
74. Ghorbani-Choghamarani, A., Darvishnejad, Z. & Tahmasbi, B. Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols. Inorganica Chim. Acta 435, 223–231 (2015).
75. Tu, T. N., Nguyen, M. V., Nguyen, H. L., Yuliarto, B., Cordova, K. E. & Demir, S. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 364, 33–50 (2018).
76. Su, J. & Chen, J. Lanthanide Metal-Organic Frameworks. Structure and Bonding 163, (Springer Berlin Heidelberg, 2015).
77. Luo, F., Batten, S. R., Che, Y. & Zheng, J.-M. Synthesis, Structure, and Characterization of Three Series of 3d–4f Metal-Organic Frameworks Based on Rod-Shaped and (6,3)-Sheet Metal Carboxylate Substructures. Chem. - A Eur. J. 13, 4948–4955 (2007).
78. Fordham, S., Wang, X., Bosch, M. & Zhou, H.-C. Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. in Structure and Bonding 119, 1–27 (2014).
79. Zhang, S. & Cheng, P. Recent advances in the construction of lanthanide–copper heterometallic metal–organic frameworks. CrystEngComm 17, 4250–4271 (2015).
80. Duan, H., Dan, W. & Fang, X. Zinc-coordinated MOFs complexes regulated by hydrogen bonds: Synthesis, structure and luminescence study toward broadband white-light emission. J. Solid State Chem. 260, 159–164 (2018).
81. Peña-Rodríguez, R., Molina-González, J. A., Desirena-Enrriquez, H., Rivera-Villanueva, J. M. & Castillo-Blum, S. E. Tunable luminescence modulation and warm light emission of Zn-MOF (4,4′-bipyridyl and zinc acetate) doped with Eu3+ and Tb3+. Mater. Chem. Phys. 223, 494–502 (2018).
82. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O’Keeffe, M., Kim, J. & Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science (80-. ). 329, 424–428 (2010).
83. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).
84. Modak, A. & Jana, S. Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 276, 107–132 (2018).
85. Cotton, S. Lanthanide and Actinide Chemistry - Cotton - Wiley Online Library. (John Wiley & Sons, Ltd, 2006).
86. Mendiratta, S., Usman, M. & Lu, K. L. Expanding the dimensions of metal–organic framework research towards dielectrics. Coord. Chem. Rev. 360, 77–91 (2018).
87. Tian, Y., Cong, J., Shen, S., Chai, Y., Yan, L., Wang, S. & Sun, Y. Electric control of magnetism in a multiferroic metal-organic framework. Phys. status solidi - Rapid Res. Lett. 8, 91–94 (2014).
88. Abtab, S. M. T., Maity, M., Bhattacharya, K., Sañudo, E. C. & Chaudhury, M. Syntheses, Structures, and Magnetic Properties of a Family of Tetranuclear Hydroxido-Bridged Ni II 2 Ln III 2 (Ln = La, Gd, Tb, and Dy) Complexes: Display of Slow Magnetic Relaxation by the Zinc(II)–Dysprosium(III) Analogue. Inorg. Chem. 51, 10211–10221 (2012).
89. Yang, R. T. Fundamental Factors for Designing Adsorbent. in Adsorbents: Fundamentals and Applications 8–16 (John Wiley & Sons, Inc., 2003). doi:10.1002/047144409X.ch2
90. Pearson, G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).
91. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science (80-. ). 336, 1018–1023 (2012).
92. Tian, Y.-Q., Chen, Z.-X., Weng, L.-H., Guo, H.-B., Gao, S. & Zhao, D. Y. Two Polymorphs of Cobalt(II) Imidazolate Polymers Synthesized Solvothermally by Using One Organic Template N , N -Dimethylacetamide. Inorg. Chem. 43, 4631–4635 (2004).
93. Cai, H., Huang, Y.-L. & Li, D. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2017).
94. Carraher, J. M., Matthiesen, J. E. & Tessonnier, J. P. Comments on “Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range”. J. Mol. Liq. 224, 420–422 (2016).
95. Matthiesen, J. E., Carraher, J. M., Vasiliu, M., Dixon, D. A. & Tessonnier, J. P. Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers. ACS Sustain. Chem. Eng. 4, 3575–3585 (2016).
96. Khalil, I., Quintens, G., Junkers, T. & Dusselier, M. Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chem. 22, 1517–1541 (2020).
97. Michaelides, A., Skoulika, S. & Siskos, M. G. 2D and 3D photoreactive lanthanide MOFs of trans,trans-muconic acid. Chem. Commun. 49, 1008–1010 (2013).
98. Yoneda, K., Ohba, M., Shiga, T., Oshio, H. & Kitagawa, S. Three-dimensional Ferromagnetic Frameworks of Syn–Anti-type Carboxylate-bridged Ni II and Co II Coordination Polymers. Chem. Lett. 36, 1184–1185 (2007).
99. Dimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. Microporous Rare Earth Coordination Polymers: Effect of Lanthanide Contraction on Crystal Architecture and Porosity. Chem. Mater. 14, 2616–2622 (2002). 100. Goel, N. & Kumar, N. Study of four new Cd(II) metal-organic frameworks: Syntheses, structures, and highly selective sensing for 4-nitrophenol. Inorganica Chim. Acta 503, 119352 (2020).
101. Siddiqi, Z. A., Sharma, P. K., Shahid, M., Kumar, S., Anjuli & Siddique, A. Structural, electrochemical characterization and SOD mimic activities of 1D chain or 3D network encouraged by unique μ2-bridging by adipate ion in mixed ligand complexes containing α-diimine as auxiliary ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 280–289 (2012).
102. Long, L.-S., Wu, Y.-R., Huang, R.-B. & Zheng, L.-S. A Well-Resolved uudd Cyclic Water Tetramer in the Crystal Host of [Cu(adipate)(4,4-bipyridine)]·(H 2 O) 2. Inorg. Chem. 43, 3798–3800 (2004).
103. Lin, J.-L. & Zheng, Y.-Q. catena -Poly[[μ-hexanedioato-1κ O 1 :2κ O 6 -bis[aqua(5-carboxypentanoato-κ O )copper(II)]]-di-μ-4,4′-bipyridine-1κ N :1′κ N ′;2κ N :2′κ N ′]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 61, m501–m503 (2005).
104. Nagaraja, C. M., Ugale, B. & Chanthapally, A. Construction of 2D interwoven and 3D interpenetrated metal-organic frameworks of Zn(ii) by varying N,N′-donor spacers. CrystEngComm 16, 4805–4815 (2014).
105. Mir, M. H. & Vittal, J. J. Muconate bridged coordination polymers of Cu(II): Effect of auxiliary ligand on their structural architectures. Inorganica Chim. Acta 403, 97–101 (2013).
106. Chen, B., Jiang, F., Han, L., Wu, B., Yuan, D., Wu, M. & Hong, M. A novel chiral framework constructed through three-fold interpenetration of (4,4) nets of Ni(II)–muconate–4,4′-bipyridine. Inorg. Chem. Commun. 9, 371–374 (2006).
107. Li, N., Feng, R., Zhu, J., Chang, Z. & Bu, X.-H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 375, 558–586 (2018).
108. Aljammal, N., Jabbour, C., Chaemchuen, S., Juzsakova, T. & Verpoort, F. Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts 9, 512 (2019).
109. Liu, Q.-Y., Li, L.-Q., Wang, Y.-L., Yang, E.-L., Wei, J.-J. & Fu, J.-H. New heterometallic frameworks with flexible sulfonate-carboxylate ligand: syntheses, structures, and properties. CrystEngComm 13, 6150 (2011).
110. Andruh, M. & Ruiz-Pérez, C. Crystal Engineering of Coordination Polymers. in Macromolecules Containing Metal and Metal-Like Elements 9, 451–511 (John Wiley & Sons, Inc., 2009).
111. Desai, A. V., Sharma, S., Let, S. & Ghosh, S. K. N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 395, 146–192 (2019).
112. Luo, F., Luo, M. B. & Liu, Y. H. Temperature-controlled structure diversity observed in the Zn(ii)-oxalate-4,4′-bipyridine three-member system. CrystEngComm 12, 1750–1753 (2010).
113. Lu, J. Y., Lawandy, M. a, Li, J., Yuen, T. & Lin, C. L. A New Type of Two-Dimensional Metal Coordination Systems: Hydrothermal Synthesis and Properties of the First Oxalate−bpy Mixed-Ligand Framework [M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = C 2 O 4 2- ; bpy = 4,4‘-bipyridine). Inorg. Chem. 38, 2695–2704 (1999).
114. Wang, G.-L., Yang, X.-L., Liu, Y., Li, Y.-Z., Du, H.-B. & You, X.-Z. A 3d–3d heterometallic organic framework consisting of two cross-linked coordination polymers. Inorg. Chem. Commun. 11, 814–817 (2008).
115. Rodríguez-Martín, Y., Hernández-Molina, M., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. Crystal structures and magnetic properties of two- and three-dimensional malonato-bridged manganese( II ) complexes. Dalt. Trans. 2359–2365 (2003). doi:10.1039/B300291H
116. Rodriguez-Martı́n, Y., Ruiz-Pérez*, C., Sanchiz, J., Lloret*, F. & Julve, M. Crystal structure and magnetic properties of the flexible self-assembled two-dimensional square network complex [Cu2(mal)2(H2O)2(4,4′-bpy)] (H2mal=malonic acid and 4,4′-bpy=4,4′-bipyridine). Inorganica Chim. Acta 318, 159–165 (2001).
117. Pasán, J., Sanchiz, J., Lloret, F., Julve, M. & Ruiz-Pérez, C. Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper( II)-methylmalonate layers. CrystEngComm 9, 478–487 (2007).
118. Déniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. Metal-organic coordination frameworks based on mixed methylmalonate and 4,4′-bipiridine ligands: synthesis, crystal structure and magnetic properties. New J. Chem. 34, 2515 (2010).
119. Das, S., Maloth, S. & Pal, S. Nickel(II) coordination polymers-4,4′-bipyridine-connected six- and four-fold metal-succinate helices and their corresponding chiral and achiral networks. Eur. J. Inorg. Chem. 4270–4276 (2011). doi:10.1002/ejic.201100355
120. Liu, Y., Feng, Y.-L. & Fu, W.-W. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties. Acta Crystallogr. Sect. C Struct. Chem. 72, 308–312 (2016).
121. Ying, S. M., Mao, J. G., Sun, Y. Q., Zeng, H. Y. & Dong, Z. C. Syntheses and crystal structures of three open-frameworks of metal succinates containing a 4,4′-bipyridine ligand. Polyhedron 22, 3097–3103 (2003).
122. Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. Coordination Polymers Based on Cobridging of Rigid and Flexible Spacer Ligands: Syntheses, Crystal Structures, and Magnetic Properties of [Mn(bpy)(H 2 O)(C 4 H 4 O 4 )]·0.5bpy, Mn(bpy)(C 5 H 6 O 4 ), and Mn(bpy)(C 6 H 8 O 4 ). Inorg. Chem. 43, 2590–2596 (2004).
123. Lyons, E. M., Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. An acentric luminescent cadmium dimethylsuccinate/bipyridine coordination polymer with an uncommon three-dimensional CdSO4 topology. Inorg. Chem. Commun. 11, 855–858 (2008).
124. Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. A Family of Nanoporous Materials Based on an Amino Acid Backbone. Angew. Chemie Int. Ed. 45, 6495–6499 (2006).
125. Shi, Z., Zhang, L., Gao, S., Yang, G., Hua, J., Gao, L. & Feng, S. Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change. Inorg. Chem. 39, 1990–1993 (2000).
126. Ma, B.-Q., Mulfort, K. L. & Hupp, J. T. Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions. Inorg. Chem. 44, 4912–4914 (2005).
127. Fujii, K., Garay, A. L., Hill, J., Sbircea, E., Pan, Z., Xu, M., Apperley, D. C., James, S. L. & Harris, K. D. M. Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem. Commun. 46, 7572 (2010).
128. Batool, M., Ibrahim, S., Iqbal, B., Ali, S., Badshah, A., Abbas, S., Turner, D. R. & Nadeem, M. A. Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochim. Acta 298, 248–253 (2019).
129. Lah, N., Cigić, I. K. & Leban, I. Solvothermal synthesis of a novel mixed valence Cu(I)/Cu(II) complex containing sulphate, malate and 4,4′-bipyridine, [CuICu 2II(mal)(SO4)(bpy)2·H 2O]n. Unique binding mode of the malate anion. Inorg. Chem. Commun. 6, 1441–1444 (2003).
130. Zavakhina, M. S., Samsonenko, D. G., Virovets, A. V., Dybtsev, D. N. & Fedin, V. P. Homochiral Cu(II) and Ni(II) malates with tunable structural features. J. Solid State Chem. 210, 125–129 (2014).
131. Duan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. Syntheses, Structures, and Magnetic Properties of Three Novel Metal−Malate−Bipyridine Coordination Polymers with Layered and Pillared Topology. Cryst. Growth Des. 6, 1101–1106 (2006).
132. Zingiryan, A., Zhang, J. & Bu, X. Cooperative Self-Assembly of Chiral L-Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorg. Chem. 47, 8607–8609 (2008).
133. Rather, B. & Zaworotko, M. J. A 3D metal-organic network, [Cu2(glutarate)2(4,4′-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydrationElectronic supplementary information (ESI) available: experimental details, IR, TGA and XRPD of all compounds. See ht. Chem. Commun. 2, 830–831 (2003).
134. Zheng, Y.-Q. & Ying, E.-B. New α,ω-dicarboxylate coordination polymers with 4,4′-bipyridine: Cu(bpy)(C5H6O4), Zn(bpy)(C5H6O4), Zn(bpy)(C6H8O4) and Mn(bpy)(C8H12O4)·H2O. Polyhedron 24, 397–406 (2005).
135. Chen, B., Ji, Y., Xue, M., Fronczek, F. R., Hurtado, E. J., Mondal, J. U., Liang, C. & Dai, S. Metal−Organic Framework with Rationally Tuned Micropores for Selective Adsorption of Water over Methanol. Inorg. Chem. 47, 5543–5545 (2008).
136. Borkowski, L. A. & Cahill, C. L. Crystal Engineering with the Uranyl Cation II. Mixed Aliphatic Carboxylate/Aromatic Pyridyl Coordination Polymers: Synthesis, Crystal Structures, and Sensitized Luminescence. Cryst. Growth Des. 6, 2248–2259 (2006).
137. Nettleman, J. H., Supkowski, R. M. & LaDuca, R. L. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4′-bipyridine. J. Solid State Chem. 183, 291–303 (2010).
138. Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J. & Li, J.-R. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ. 3, 191–228 (2018).
139. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F. & Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307, 147–187 (2016).
140. Banerjee, R., Day, G. M., Friščić, T. & Zhang, H. 2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm 18, 3963–3967 (2016).
141. Trickett, C. A., Helal, A., Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E. & Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).
142. Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and Reversible Ammonia Uptake in Mesoporous Azolate Metal–Organic Frameworks with Open Mn, Co, and Ni Sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).
143. Bhatt, P. M., Belmabkhout, Y., Assen, A. H., Weseliński, Ł. J., Jiang, H., Cadiau, A., Xue, D.-X. & Eddaoudi, M. Isoreticular rare earth fcu -MOFs for the selective removal of H 2 S from CO 2 containing gases. Chem. Eng. J. 324, 392–396 (2017).
144. Solovyeva, M. V., Gordeeva, L. G., Krieger, T. A. & Aristov, Y. I. MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Convers. Manag. 174, 356–363 (2018).
145. Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 5436 (2009). doi:10.1039/b910228k
146. Dinča, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006).
147. Mason, J. A., Oktawiec, J., Taylor, M. K., Hudson, M. R., Rodriguez, J., Bachman, J. E., Gonzalez, M. I., Cervellino, A., Guagliardi, A., Brown, C. M., Llewellyn, P. L., Masciocchi, N. & Long, J. R. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).
148. Schlichte, K., Kratzke, T. & Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73, 81–88 (2004).
149. Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A. & De Vos, D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem. - A Eur. J. 12, 7353–7363 (2006).
150. Corma, A., Iglesias, M., Llabrés i Xamena, F. X. & Sánchez, F. Cu and Au Metal-Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chem. - A Eur. J. 16, 9789–9795 (2010).
151. Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P. & Čejka, J. Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalt. Trans. 41, 4036 (2012).
152. Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H. & Čejka, J. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 (2013).
153. Phan, N. T. S., Vu, P. H. L. & Nguyen, T. T. Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. J. Catal. 306, 38–46 (2013). 154. Feldblyum, J. I., Keenan, E. A., Matzger, A. J. & Maldonado, S. Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. J. Phys. Chem. C 116, 3112–3121 (2012).
155. Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655 (2013).
156. Münch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. High-Separation Performance of Chromatographic Capillaries Coated with MOF-5 by the Controlled SBU Approach. Chem. - A Eur. J. 17, 10958–10964 (2011).
157. Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 Thin Films for Hybrid MOF-Based Devices. Adv. Mater. 24, 3970–3974 (2012).
158. Cui, Y., Xu, H., Yue, Y., Guo, Z., Yu, J., Chen, Z., Gao, J., Yang, Y., Qian, G. & Chen, B. A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. J. Am. Chem. Soc. 134, 3979–3982 (2012).
159. Díaz, R., Orcajo, M. G., Botas, J. A., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012).
160. An, J., Farha, O. K., Hupp, J. T., Pohl, E., Yeh, J. I. & Rosi, N. L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3, 604–606 (2012).
161. Cai, H., Xu, L.-L., Lai, H.-Y., Liu, J.-Y., Ng, S. W. & Li, D. A highly emissive and stable zinc(ii) metal–organic framework as a host–guest chemopalette for approaching white-light-emission. Chem. Commun. 53, 7917–7920 (2017).
162. Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. J. Am. Chem. Soc. 137, 11598–11601 (2015).
163. Zhao, M. & Wu, C.-D. Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Co-catalyst Platform. ChemCatChem 9, 1192–1196 (2017).
164. Hansen, J., Ruedy, R., Sato, M. & Lo, K. GLOBAL SURFACE TEMPERATURE CHANGE. Rev. Geophys. 48, RG4004 (2010).
165. Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011).
166. Ben-Mansour, R., Habib, M. A. A., Bamidele, O. E. E., Basha, M., Qasem, N. A. A. A. A., Peedikakkal, A., Laoui, T. & Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Appl. Energy 161, 225–255 (2016).
167. Pearce, C. K., Grosse, D. W. & Hessel, W. Effect of molecular structure on infrared spectra of six isomers of bipyridine. J. Chem. Eng. Data 15, 567–570 (1970).
168. Topacli, Ar. & Akyüz, S. 4,4’-Bipyridyl: vibrational assignments and force field. Spectrochim. Acta 51A, 633–641 (1995).
169. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Journal of Chemical Education 77, (John Wiley & Sons, Inc., 2008).
170. Liu, B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale 4, 7194 (2012).
171. Ferraro, J. R. & Walker, W. R. Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds. Inorg. Chem. 4, 1382–1386 (1965).
172. Xiu-min, S. H. I., Hai-yan, W., Yan-bing, L. I., Jing-xiu, Y., Lei, C., Ge, H. U. I., Wei-qing, X. U. & Bing, Z. Spectroscopic Studies on Co ( II ), Ni ( II ), Zn ( II ) Complexes with 4 , 4 ′ -Bipyridine. Chem. Res. Chinese Univ. 26, 1011–1015 (2010).
173. Czakis-Sulikowska, D. & Czylkowska, A. Complexes of Mn(II), Co(II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. Synthesis, thermal and other properties. J. Therm. Anal. Calorim. 71, 395–405 (2003).
174. Seguel, G. V., Rivas, B. L. & Órdenes, P. Syntheses and characterizations of copper complexes: Interaction of copper acetate dihydrate with 4,4’-bipyridine. J. Chil. Chem. Soc. 60, 3080–3082 (2015).
175. Guerriero, P., Casellato, U., Tamburini, S., Vigato, P. A. & Graziani, R. Lanthanide complexes with compartmental schiff bases. Inorganica Chim. Acta 129, 127–138 (1987).
176. Carnall, W. T., Siegel, S., Ferraro, J. R., Tani, B. & Gebert, E. A New Series of Anhydrous Double Nitrate Salts of the Lanthanides. Structural and Spectral Characterization1. Inorg. Chem. 12, 560–564 (1973).
177. Musgrave, T. R. & Mattson, C. E. Coordination chemistry of 4,4’-bipyridine. Inorg. Chem. 7, 1433–1436 (1968).
178. Langford, J. I. & Wilson, A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).
179. Ahuja, I. S. & Tripathi, S. X–Ray Diffraction Studies on 4,4′-Bipyridyl Complexes with Cobalt(II)-, Nickel(II)-, Zinc(II),- and Cadmium(II) Nitrates. Cryst. Res. Technol. 26, K92–K96 (1991).
180. Chohan, Z. H., Praveen, M. & Ghaffaf, A. Synthesis, Characterisation and Biological Role of Anions (Nitrate, Sulphate, Oxalate and Acetate) in Co(II), Cu(II) and Ni(II) Metal Chelates of Some Schiff Base Derived Amino Acids. Synth. React. Inorg. Met. Chem. 28, 1673–1687 (1998).
181. Morita, M., Takahashi, H., Yabushita, S. & Takahashi, K. Why does the IR spectrum of hydroxide stretching vibration weaken with increase in hydration? Phys. Chem. Chem. Phys. 16, 23143–23149 (2014).
182. Brusau, E. V., Pedregosa, J. C., Narda, G. E., Echeverria, G. & Punte, G. Seven-Coordinated Diaquasuccinatocadmium(II) Bidimensional Polymer: Crystal Structure and Vibrational and Thermal Behavior. J. Solid State Chem. 153, 1–8 (2000).
183. Dianu, M. L., Kriza, A., Stanica, N. & Musuc, A. M. Transition metal M(II) complexes with isonicotinoylhydrazone-9-anthraldehyde. J. Serbian Chem. Soc. 75, 1515–1531 (2010).
184. Barbooti, M. M. Thermal behaviour of copper oxides and copper sulphate in the presence of carbon. Sol. Energy Mater. 10, 35–40 (1984).
185. Baimuratova, R. K., Dzhardimalieva, G. I., Golubeva, N. D., Dremova, N. N. & Ivanov, A. V. Coordination polymers based on trans, trans -muconic acid: synthesis, structure, adsorption and thermal properties. Pure Appl. Chem. 92, 859–870 (2020).
186. Tilley, R. J. D. Crystals and Crystal Structures. (John Wiley & Sons, Ltd, 2006).
187. Côté, A. P. & Shimizu, G. K. H. The supramolecular chemistry of the sulfonate group in extended solids. Coord. Chem. Rev. 245, 49–64 (2003).
188. Xu, Z. P. & Braterman, P. S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J. Mater. Chem. 13, 268–273 (2003).
189. Evanson, K. W., Thorstenson, T. A. & Urban, M. W. Surface and interfacial FTIR spectroscopic studies of latexes. II. Surfactant–copolymer compatibility and mobility of surfactants. J. Appl. Polym. Sci. 42, 2297–2307 (1991).
190. Mohamed, G. G., El-Gamel, N. E. A. & Nour El-Dien, F. A. Preparation, chemical characterization, and electronic spectra of 6-(2-pyridylazo)-3-acetamidophenol and its metal complexes. Synth. React. Inorg. Met. Chem. 31, 347–358 (2001).
191. Gimenez, P. & Fereres, S. Effect of Heating Rates and Composition on the Thermal Decomposition of Nitrate Based Molten Salts. Energy Procedia 69, 654–662 (2015).
192. Moore, W. J. & Williams, E. L. Decomposition of Zinc Oxide by Zinc Vapor. J. Phys. Chem. 63, 1516–1517 (1959).
193. Elliott, N. A Redetermination of the Carbon—Oxygen Distance in Calcite and the Nitrogen—Oxygen Distance in Sodium Nitrate. J. Am. Chem. Soc. 59, 1380–1382 (1937).
194. Michaelides, A., Skoulika, S. & Siskos, M. G. Photoreactive 3D microporous lanthanide MOFs: formation of a strained ladderane in a partial single crystal-to-single crystal manner. Chem. Commun. 47, 7140 (2011).
195. Yuvakkumar, R. & Hong, S. I. Nd2O3: novel synthesis and characterization. J. Sol-Gel Sci. Technol. 73, 511–517 (2015).
196. Tunell, G., Posnjak, Ε. & Ksanda, C. J. Geometrical and Optical Properties, and Crystal Structure of Tenorite. Zeitschrift für Krist. - Cryst. Mater. 90, (1935).
197. Gilmore, C. J., Kaduk, J. A. & Schenk, H. International Tables for Crystallography Volume H: Powder diffraction. International Tables for Crystallography H, (International Union of Crystallography, 2019).
198. Yang, Q., Wiersum, A. D., Llewellyn, P. L., Guillerm, V., Serre, C. & Maurin, G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem. Commun. 47, 9603 (2011).
199. Constable, E. C., Housecroft, C. E., Price, J. R. & Zampese, J. A. When five are six: the myth of five-coordinate copper(ii) in supramolecular chemistry. CrystEngComm 12, 3163 (2010).
200. Arduini, A. L., Garnett, M., Thompson, R. C. & Wong, T. C. T. Magnetic and Spectral Studies on Cobalt(II) and Copper(II) Salts of Methylsulfuric, Trifluoromethylsulfuric, and Paratolylsulfuric Acids. Can. J. Chem. 53, 3812–3819 (1975).
201. Aminoff, G. XXIV. Über Lauephotogramme und Struktur von Zinkit. Zeitschrift für Krist. - Cryst. Mater. 56, (1921).
202. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
203. Lide, D. R. CRC Handbook of Chemistry and Physics. Review of Scientific Instruments (2005).
204. Yampolskii, Y., Pinnau, I. & Freeman, B. Materials Science of Membranes for Gas and Vapor Separation Materials Science of Membranes for Gas and Vapor Separation. Membrane Technology (2006). doi:10.1002/047002903X
205. Belmabkhout, Y., Guillerm, V. & Eddaoudi, M. Low concentration CO 2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chem. Eng. J. 296, 386–397 (2016).
206. Yang, R. T. Adsorbents: Fundamentals and Applications. America (John Wiley & Sons, Inc., 2003).
207. D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chemie - Int. Ed. 49, 6058–6082 (2010).
208. Zhao, R. L., Yue, K. F., Zhou, C. S., Cheng, Q. D. M., Shi, J. T., Liu, Y. L. & Wang, Y. Y. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorganica Chim. Acta 402, 25–32 (2013).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 146 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79694/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79694/2/1152447599.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79694/3/1152447599.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
e153711438c7f51f209b2d336fe3ddc8
0f83a04ad2447aa9cba2dc7328293358
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090051507716096
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Muñoz Acevedo, Juan Carlos9febf6fa56a6f9b8cf7adb1c171a1540Pabón Gelves, Elizabeth29dab4728be81c8d9276a582c19c9b32600Cardona González, Daniela5507becd9027a057c68ac381b32bd5d3Ciencia de Materiales Avanzados2021-06-23T21:04:47Z2021-06-23T21:04:47Z2021https://repositorio.unal.edu.co/handle/unal/79694Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLas redes metal-orgánicas (MOFs) son materiales porosos con aplicaciones en diversas áreas de la industria, tecnología y medio ambiente. El diseño molecular de MOFs ha estado ligado a la naturaleza química del centro metálico, al tipo de ligandos orgánicos, a la relación de la interacción metal-ligando y a su geometría, lo que implica que para garantizar la estabilidad y la supramolecularidad de la red es necesario explorar con ligandos, las condiciones con las cuales se puede obtener una estructura tipo MOF. Se sintetizaron redes metal-orgánicas por medio de una estrategia de ligandos mixtos heteroestructurales; usando los ácidos trans,trans-mucónico (MA) y sulfosuccínico (SSA), acompañados del conector 4,4’-bipiridina (4B) con metales como el Cu (II) y Zn (II). Los compuestos se prepararon por diversas rutas de síntesis a reflujo, solvotermal y agitación y se caracterizaron las propiedades morfológicas, estructurales, térmicas y superficiales por medio de microscopía óptica, FT-IR, XRPD y TGA. Adicionalmente se usó análisis de SC-XRD para la determinación estructural de una nueva estructura 1D de fórmula molecular [Cu(HSSA)(4B)(H2O)2]n·H2O con espacios entre las cadenas con alta polarizabilidad y por lo tanto promisorias para la adsorción selectiva de CO2. Tomado de la fuente)Metal-organic frameworks (MOF) are porous materials with applications in diverse areas like industry, technology and environment. The molecular design of MOFs can be linked to the nature of the metal, organic linker, metal-linker interaction and geometry, implying that is necessary the exploration of synthetic conditions with the linkers to ensure the stability and supramolecularity of the framework. This work presents the synthesis of metal-organic frameworks via heterostructural mixed-linker strategy with trans,trans-muconic acid (MA), sulfosuccinic acid (SSA) and the auxiliary linker 4,4’-bipyridine (4B) coordinated to Cu (II) and Zn(II). The compounds have been synthesized by reflux, solvothermal and agitation conditions and the morphology, structure, thermic and surface area properties were characterized with optic microscopy, FT-IR, XRPD and TGA. SC-XRD analysis was additionally used to determinate the new 1D structure of molecurlar formula [Cu(HSSA)(4B)(H2O)2]n·H2O with free inter-chain spaces, high polarizability and potential selective adsorption properties for CO2 capture. (Tomdo de la fuente)MaestríaMágister en Ciencias - QuímicaSíntesis de materiales porosos146 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines::546 - Química inorgánicaMetales - Características físico-químicasMOFPorosidadMetal-organic frameworksAdsorptionRedes metal-orgánicasPorosidadAdsorciónSíntesis de redes metal-orgánicas heteroestructurales con ligandos mixtos.Synthesis of heterostructural mixed-ligand metal-organic frameworksTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science (80-. ). 341, (2013).2. Öhrström, L. Let’s Talk about MOFs—Topology and Terminology of Metal-Organic Frameworks and Why We Need Them. Crystals 5, 154–162 (2015).3. Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 20, 132–142 (2018).4. Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L. & Su, C.-Y. Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014).5. Müller-Buschbaum, K. Luminescent MOFs and Frameworks. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering 1–20 (Elsevier, 2015). doi:10.1016/B978-0-12-409547-2.11493-36. Tominaka, S. & Cheetham, A. K. Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Adv. 4, 54382–54387 (2014).7. Falcaro, P., Ricco, R., Doherty, C. M., Liang, K., Hill, A. J. & Styles, M. J. MOF positioning technology and device fabrication. Chem. Soc. Rev. 43, 5513–5560 (2014).8. Wang, L., Han, Y., Feng, X., Zhou, J., Qi, P. & Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016).9. Cai, H., Huang, Y. L. & Li, D. Biological metal-organic frameworks: Structures, host-guest chemistry and bio-applications. Coord. Chem. Rev. (2017). doi:10.1016/j.ccr.2017.12.00310. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).11. Yaghi, O. M., Li, H., Eddaoudi, M. & O’Keeffe, M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).12. Czaja, A. U., Trukhan, N. & Müller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).13. Li, B. & Chen, B. Porous Lanthanide Metal–Organic Frameworks for Gas Storage and Separation. in Structure and Bonding 119, 75–107 (2014).14. Bunck, D. N. & Dichtel, W. R. Mixed Linker Strategies for Organic Framework Functionalization. Chem. - A Eur. J. 19, 818–827 (2013).15. Bitzer, J. & Kleist, W. Synthetic Strategies and Structural Arrangements of Isoreticular Mixed‐Component Metal–Organic Frameworks. Chem. – A Eur. J. 25, 1866–1882 (2019).16. Pang, Q., Tu, B. & Li, Q. Metal–organic frameworks with multicomponents in order. Coord. Chem. Rev. 388, 107–125 (2019).17. Ali Akbar Razavi, S. & Morsali, A. Linker functionalized metal-organic frameworks. Coord. Chem. Rev. 399, 213023 (2019).18. Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M. & Zhou, H.-C. Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014).19. Ugale, B., Singh, D. & Nagaraja, C. M. Temperature dependent structural variation from 2D supramolecular network to 3D interpenetrated metal-organic framework: In situ cleavage of S-S and C-S bonds. J. Solid State Chem. 226, 273–278 (2015).20. Qu, X.-L. & Yan, B. Ln(III)-Functionalized Metal–Organic Frameworks Hybrid System: Luminescence Properties and Sensor for trans , trans -Muconic Acid as a Biomarker of Benzene. Inorg. Chem. 57, 7815–7824 (2018).21. Ahmed, F., Roy, S., Naskar, K., Sinha, C., Alam, S. M., Kundu, S., Vittal, J. J. & Mir, M. H. Halogen···halogen interactions in the supramolecular assembly of 2D coordination polymers and the CO2sorption behavior. Cryst. Growth Des. 16, 5514–5519 (2016).22. Pletnev, M. Y. Chemestry of surfactants. (1996). doi:10.1016/S1383-7303(01)80062-423. Fu, J.-H., Wang, Y.-L., Chen, Y., Hu, C.-H. & Tang, L. A one-dimensional heterometallic coordination polymer with a three-dimensional supramolecular framework: poly[μ 2 -aqua-diaqua(2,2′-bipyridyl)(μ 5 -2-sulfonatobutanedioato)copper(II)sodium(I)]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 68, m209–m212 (2012).24. Bo, Q.-B., Sun, G.-X. & Geng, D.-L. Novel Three-Dimensional Pillared-Layer Ln(III)−Cu(I) Coordination Polymers Featuring Spindle-Shaped Heterometallic Building Units. Inorg. Chem. 49, 561–571 (2010).25. Schwedler, I., Henke, S., Wharmby, M. T., Bajpe, S. R., Cheetham, A. K. & Fischer, R. A. Mixed-linker solid solutions of functionalized pillared-layer MOFs – adjusting structural flexibility, gas sorption, and thermal responsiveness. Dalt. Trans. 45, 4230–4241 (2016).26. Batten, S. R., Champness, N. R., Chen, X.-M., Garcia-Martinez, J., Kitagawa, S., Öhrström, L., O’Keeffe, M., Paik Suh, M. & Reedijk, J. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 85, 1715–1724 (2013).27. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chemical Reviews 112, 673–674 (2012).28. Olajire, A. A. Synthesis chemistry of metal-organic frameworks for CO2capture and conversion for sustainable energy future. Renew. Sustain. Energy Rev. 92, 570–607 (2018).29. Roy, S., Chakraborty, A. & Maji, T. K. Lanthanide-organic frameworks for gas storage and as magneto-luminescent materials. Coord. Chem. Rev. 273–274, 139–164 (2014).30. Kobielska, P. A., Howarth, A. J., Farha, O. K. & Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 358, 92–107 (2018).31. Wen, J., Fang, Y. & Zeng, G. Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: A review of studies from the last decade. Chemosphere 201, 627–643 (2018).32. Eddaoudi, M., Moler, D. B., Li, H., Chen, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks. Acc. Chem. Res. 34, 319–330 (2001).33. Wang, H., Zhu, Q.-L., Zou, R. & Xu, Q. Metal-Organic Frameworks for Energy Applications. Chem 2, 52–80 (2017).34. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).35. Van Vleet, M. J., Weng, T., Li, X. & Schmidt, J. R. In Situ, Time-Resolved, and Mechanistic Studies of Metal-Organic Framework Nucleation and Growth. Chem. Rev. 118, 3681–3721 (2018).36. Bae, Y. S., Yazayd’n, A. Ö. & Snurr, R. Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain Ultra-Micropores. Langmuir 26, 5475–5483 (2010).37. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2012).38. Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008).39. Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M. & Yaghi, O. M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–72 (2002).40. Wang, X. L., Qin, C., Wu, S. X., Shao, K. Z., Lan, Y. Q., Wang, S., Zhu, D. X., Su, Z. M. & Wang, E. B. Bottom-up synthesis of porous coordination frameworks: Apical substitution of a pentanuclear tetrahedral precursor. Angew. Chemie - Int. Ed. 48, 5291–5295 (2009).41. Wuest, J. D. Engineering crystals by the strategy of molecular tectonics. Chem. Commun. 5830–5837 (2005). doi:10.1039/b512641j42. Hosseini, M. W. Molecular Tectonics: From Simple Tectons to Complex Molecular Networks. Acc. Chem. Res. 38, 313–323 (2005).43. Perry IV, J. J., Perman, J. A. & Zaworotko, M. J. Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38, 1400 (2009).44. Guillerm, V., Kim, D., Eubank, J. F., Luebke, R., Liu, X., Adil, K., Lah, M. S. & Eddaoudi, M. A supermolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 43, 6141–72 (2014).45. Li, J. R., Timmons, D. J. & Zhou, H. C. Interconversion between molecular polyhedra and metal-organic frameworks. J. Am. Chem. Soc. 131, 6368–6369 (2009).46. Elsaidi, S. K., Mohamed, M. H., Banerjee, D. & Thallapally, P. K. Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coord. Chem. Rev. 358, 125–152 (2018).47. Wen, Y., Zhang, J., Xu, Q., Wu, X. T. & Zhu, Q. L. Pore surface engineering of metal–organic frameworks for heterogeneous catalysis. Coord. Chem. Rev. 376, 248–276 (2018).48. Lee, Y. R., Kim, J. & Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 30, 1667–1680 (2013).49. Jhung, S. H., Lee, J. H., Forster, P. M., Férey, G., Cheetham, A. K. & Chang, J. S. Microwave synthesis of hybrid inorganic - Organic porous materials: phase-selective and rapid crystallization. Chem. - A Eur. J. 12, 7899–7905 (2006).50. Jhung, S. H., Lee, J. H., Yoon, J. W., Serre, C., Férey, G. & Chang, J. S. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability. Adv. Mater. 19, 121–124 (2007).51. Sargazi, G., Afzali, D., Daldosso, N., Kazemian, H., Chauhan, N. P. S., Sadeghian, Z., Tajerian, T., Ghafarinazari, A. & Mozafari, M. A systematic study on the use of ultrasound energy for the synthesis of nickel-metal organic framework compounds. Ultrason. Sonochem. 27, 395–402 (2015).52. Jung, D. W., Yang, D. A., Kim, J., Kim, J. & Ahn, W. S. Facile synthesis of MOF-177 by a sonochemical method using 1-methyl-2-pyrrolidinone as a solvent. Dalt. Trans. 39, 2883–2887 (2010).53. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K. & Pastré, J. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).54. Hartmann, M., Kunz, S., Himsl, D., Tangermann, O., Ernst, S. & Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 24, 8634–8642 (2008).55. Beldon, P. J., Fábián, L., Stein, R. S., Thirumurugan, A., Cheetham, A. K. & Friščić, T. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angew. Chemie Int. Ed. 49, 9640–9643 (2010).56. Friščić, T., Reid, D. G., Halasz, I., Stein, R. S., Dinnebier, R. E. & Duer, M. J. Ion- and liquid-assisted grinding: Improved mechanochemical synthesis of metal-organic frameworks reveals salt inclusion and anion templating. Angew. Chemie - Int. Ed. 49, 712–715 (2010).57. Chen, S.-C., Zhang, Z.-H., Huang, K.-L., Chen, Q., He, M.-Y., Cui, A.-J., Li, C., Liu, Q. & Du, M. Solvent-Controlled Assembly of Manganese(II) Tetrachloroterephthalates with 1D Chain, 2D Layer, and 3D Coordination Architectures. Cryst. Growth Des. 8, 3437–3445 (2008).58. Huang, X.-C., Li, D. & Chen, X.-M. Solvent-induced supramolecular isomerism in silver(i) 2-methylimidazolate. CrystEngComm 8, 3 51 (2006).59. Pedireddi, V. R. & Varughese, S. Solvent-Dependent Coordination Polymers: Cobalt Complexes of 3,5-Dinitrobenzoic Acid and 3,5-Dinitro-4-methylbenzoic Acid with 4,4′-Bipyrdine. Inorg. Chem. 43, 450–457 (2004).60. Wang, F.-K., Yang, S.-Y., Huang, R.-B., Zheng, L.-S. & Batten, S. R. Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture. CrystEngComm 10, 1211 (2008).61. Ma, L., Wang, L.-Y., Lu, D., Batten, S. R. & Wang, J. Structural Variation from 1D to 3D: Effects of Temperature and pH Value on the Construction of Co(II)-H 2 tbip/bpp Mixed Ligands System. Cryst. Growth Des. 9, 1741–1749 (2009).62. Pan, L., Frydel, T., Sander, M. B., Huang, X. & Li, J. The Effect of pH on the Dimensionality of Coordination Polymers. Inorg. Chem. 40, 1271–1283 (2001).63. Fang, Q., Zhu, G., Xue, M., Sun, J., Tian, G., Wu, G. & Qiu, S. Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks. Dalt. Trans. 2202–2207 (2004). doi:10.1039/B402715A64. Chowdhury, P., Bikkina, C., Meister, D., Dreisbach, F. & Gumma, S. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different routes. Microporous Mesoporous Mater. 117, 406–413 (2009).65. Muñoz Acevedo, J. C. Síntesis y carácterización de mallas lantánidos con acidos carboxílicos y aminas aromáticas. (Universidad de Antioquia, 2006).66. Safaei, M., Foroughi, M. M., Ebrahimpoor, N., Jahani, S., Omidi, A. & Khatami, M. A review on metal-organic frameworks: Synthesis and applications. TrAC - Trends Anal. Chem. 118, 401–425 (2019). 67. Burrows, A. D., Cassar, K., Friend, R. M. W., Mahon, M. F., Rigby, S. P. & Warren, J. E. Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks. CrystEngComm 7, 548 (2005).68. Bauer, S., Bein, T. & Stock, N. High-Throughput Investigation and Characterization of Cobalt Carboxy Phosphonates. Inorg. Chem. 44, 5882–5889 (2005).69. Stock, N. & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933–969 (2012).70. Furukawa, H., Kim, J., Ockwig, N. W., O’Keeffe, M. & Yaghi, O. M. Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. J. Am. Chem. Soc. 130, 11650–11661 (2008).71. Kumar, G. & Gupta, R. Molecularly designed architectures – the metalloligand way. Chem. Soc. Rev. Chem. Soc. Rev 42, 9403–9453 (2013).72. Xiang, S., Li, L., Zhang, J., Tan, X., Cui, H., Shi, J., Hu, Y., Chen, L., Su, C.-Y. & James, S. L. Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J. Mater. Chem. 22, 1862 (2012).73. Lohe, M. R., Rose, M. & Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 6056 (2009). doi:10.1039/b910175f74. Ghorbani-Choghamarani, A., Darvishnejad, Z. & Tahmasbi, B. Schiff base complexes of Ni, Co, Cr, Cd and Zn supported on magnetic nanoparticles: As efficient and recyclable catalysts for the oxidation of sulfides and oxidative coupling of thiols. Inorganica Chim. Acta 435, 223–231 (2015).75. Tu, T. N., Nguyen, M. V., Nguyen, H. L., Yuliarto, B., Cordova, K. E. & Demir, S. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coord. Chem. Rev. 364, 33–50 (2018).76. Su, J. & Chen, J. Lanthanide Metal-Organic Frameworks. Structure and Bonding 163, (Springer Berlin Heidelberg, 2015).77. Luo, F., Batten, S. R., Che, Y. & Zheng, J.-M. Synthesis, Structure, and Characterization of Three Series of 3d–4f Metal-Organic Frameworks Based on Rod-Shaped and (6,3)-Sheet Metal Carboxylate Substructures. Chem. - A Eur. J. 13, 4948–4955 (2007).78. Fordham, S., Wang, X., Bosch, M. & Zhou, H.-C. Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. in Structure and Bonding 119, 1–27 (2014).79. Zhang, S. & Cheng, P. Recent advances in the construction of lanthanide–copper heterometallic metal–organic frameworks. CrystEngComm 17, 4250–4271 (2015).80. Duan, H., Dan, W. & Fang, X. Zinc-coordinated MOFs complexes regulated by hydrogen bonds: Synthesis, structure and luminescence study toward broadband white-light emission. J. Solid State Chem. 260, 159–164 (2018).81. Peña-Rodríguez, R., Molina-González, J. A., Desirena-Enrriquez, H., Rivera-Villanueva, J. M. & Castillo-Blum, S. E. Tunable luminescence modulation and warm light emission of Zn-MOF (4,4′-bipyridyl and zinc acetate) doped with Eu3+ and Tb3+. Mater. Chem. Phys. 223, 494–502 (2018).82. Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O’Keeffe, M., Kim, J. & Yaghi, O. M. Ultrahigh Porosity in Metal-Organic Frameworks. Science (80-. ). 329, 424–428 (2010).83. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012).84. Modak, A. & Jana, S. Advancement in porous adsorbents for post-combustion CO2 capture. Microporous Mesoporous Mater. 276, 107–132 (2018).85. Cotton, S. Lanthanide and Actinide Chemistry - Cotton - Wiley Online Library. (John Wiley & Sons, Ltd, 2006).86. Mendiratta, S., Usman, M. & Lu, K. L. Expanding the dimensions of metal–organic framework research towards dielectrics. Coord. Chem. Rev. 360, 77–91 (2018).87. Tian, Y., Cong, J., Shen, S., Chai, Y., Yan, L., Wang, S. & Sun, Y. Electric control of magnetism in a multiferroic metal-organic framework. Phys. status solidi - Rapid Res. Lett. 8, 91–94 (2014).88. Abtab, S. M. T., Maity, M., Bhattacharya, K., Sañudo, E. C. & Chaudhury, M. Syntheses, Structures, and Magnetic Properties of a Family of Tetranuclear Hydroxido-Bridged Ni II 2 Ln III 2 (Ln = La, Gd, Tb, and Dy) Complexes: Display of Slow Magnetic Relaxation by the Zinc(II)–Dysprosium(III) Analogue. Inorg. Chem. 51, 10211–10221 (2012).89. Yang, R. T. Fundamental Factors for Designing Adsorbent. in Adsorbents: Fundamentals and Applications 8–16 (John Wiley & Sons, Inc., 2003). doi:10.1002/047144409X.ch290. Pearson, G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).91. Deng, H. et al. Large-pore apertures in a series of metal-organic frameworks. Science (80-. ). 336, 1018–1023 (2012).92. Tian, Y.-Q., Chen, Z.-X., Weng, L.-H., Guo, H.-B., Gao, S. & Zhao, D. Y. Two Polymorphs of Cobalt(II) Imidazolate Polymers Synthesized Solvothermally by Using One Organic Template N , N -Dimethylacetamide. Inorg. Chem. 43, 4631–4635 (2004).93. Cai, H., Huang, Y.-L. & Li, D. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2017).94. Carraher, J. M., Matthiesen, J. E. & Tessonnier, J. P. Comments on “Thermodynamics of cis,cis-muconic acid solubility in various polar solvents at low temperature range”. J. Mol. Liq. 224, 420–422 (2016).95. Matthiesen, J. E., Carraher, J. M., Vasiliu, M., Dixon, D. A. & Tessonnier, J. P. Electrochemical Conversion of Muconic Acid to Biobased Diacid Monomers. ACS Sustain. Chem. Eng. 4, 3575–3585 (2016).96. Khalil, I., Quintens, G., Junkers, T. & Dusselier, M. Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chem. 22, 1517–1541 (2020).97. Michaelides, A., Skoulika, S. & Siskos, M. G. 2D and 3D photoreactive lanthanide MOFs of trans,trans-muconic acid. Chem. Commun. 49, 1008–1010 (2013).98. Yoneda, K., Ohba, M., Shiga, T., Oshio, H. & Kitagawa, S. Three-dimensional Ferromagnetic Frameworks of Syn–Anti-type Carboxylate-bridged Ni II and Co II Coordination Polymers. Chem. Lett. 36, 1184–1185 (2007).99. Dimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. Microporous Rare Earth Coordination Polymers: Effect of Lanthanide Contraction on Crystal Architecture and Porosity. Chem. Mater. 14, 2616–2622 (2002). 100. Goel, N. & Kumar, N. Study of four new Cd(II) metal-organic frameworks: Syntheses, structures, and highly selective sensing for 4-nitrophenol. Inorganica Chim. Acta 503, 119352 (2020).101. Siddiqi, Z. A., Sharma, P. K., Shahid, M., Kumar, S., Anjuli & Siddique, A. Structural, electrochemical characterization and SOD mimic activities of 1D chain or 3D network encouraged by unique μ2-bridging by adipate ion in mixed ligand complexes containing α-diimine as auxiliary ligand. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 93, 280–289 (2012).102. Long, L.-S., Wu, Y.-R., Huang, R.-B. & Zheng, L.-S. A Well-Resolved uudd Cyclic Water Tetramer in the Crystal Host of [Cu(adipate)(4,4-bipyridine)]·(H 2 O) 2. Inorg. Chem. 43, 3798–3800 (2004).103. Lin, J.-L. & Zheng, Y.-Q. catena -Poly[[μ-hexanedioato-1κ O 1 :2κ O 6 -bis[aqua(5-carboxypentanoato-κ O )copper(II)]]-di-μ-4,4′-bipyridine-1κ N :1′κ N ′;2κ N :2′κ N ′]. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 61, m501–m503 (2005).104. Nagaraja, C. M., Ugale, B. & Chanthapally, A. Construction of 2D interwoven and 3D interpenetrated metal-organic frameworks of Zn(ii) by varying N,N′-donor spacers. CrystEngComm 16, 4805–4815 (2014).105. Mir, M. H. & Vittal, J. J. Muconate bridged coordination polymers of Cu(II): Effect of auxiliary ligand on their structural architectures. Inorganica Chim. Acta 403, 97–101 (2013).106. Chen, B., Jiang, F., Han, L., Wu, B., Yuan, D., Wu, M. & Hong, M. A novel chiral framework constructed through three-fold interpenetration of (4,4) nets of Ni(II)–muconate–4,4′-bipyridine. Inorg. Chem. Commun. 9, 371–374 (2006).107. Li, N., Feng, R., Zhu, J., Chang, Z. & Bu, X.-H. Conformation versatility of ligands in coordination polymers: From structural diversity to properties and applications. Coord. Chem. Rev. 375, 558–586 (2018).108. Aljammal, N., Jabbour, C., Chaemchuen, S., Juzsakova, T. & Verpoort, F. Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts 9, 512 (2019).109. Liu, Q.-Y., Li, L.-Q., Wang, Y.-L., Yang, E.-L., Wei, J.-J. & Fu, J.-H. New heterometallic frameworks with flexible sulfonate-carboxylate ligand: syntheses, structures, and properties. CrystEngComm 13, 6150 (2011).110. Andruh, M. & Ruiz-Pérez, C. Crystal Engineering of Coordination Polymers. in Macromolecules Containing Metal and Metal-Like Elements 9, 451–511 (John Wiley & Sons, Inc., 2009).111. Desai, A. V., Sharma, S., Let, S. & Ghosh, S. K. N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coord. Chem. Rev. 395, 146–192 (2019).112. Luo, F., Luo, M. B. & Liu, Y. H. Temperature-controlled structure diversity observed in the Zn(ii)-oxalate-4,4′-bipyridine three-member system. CrystEngComm 12, 1750–1753 (2010).113. Lu, J. Y., Lawandy, M. a, Li, J., Yuen, T. & Lin, C. L. A New Type of Two-Dimensional Metal Coordination Systems: Hydrothermal Synthesis and Properties of the First Oxalate−bpy Mixed-Ligand Framework [M(ox)(bpy)] (M = Fe(II), Co(II), Ni(II), Zn(II); ox = C 2 O 4 2- ; bpy = 4,4‘-bipyridine). Inorg. Chem. 38, 2695–2704 (1999).114. Wang, G.-L., Yang, X.-L., Liu, Y., Li, Y.-Z., Du, H.-B. & You, X.-Z. A 3d–3d heterometallic organic framework consisting of two cross-linked coordination polymers. Inorg. Chem. Commun. 11, 814–817 (2008).115. Rodríguez-Martín, Y., Hernández-Molina, M., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. Crystal structures and magnetic properties of two- and three-dimensional malonato-bridged manganese( II ) complexes. Dalt. Trans. 2359–2365 (2003). doi:10.1039/B300291H116. Rodriguez-Martı́n, Y., Ruiz-Pérez*, C., Sanchiz, J., Lloret*, F. & Julve, M. Crystal structure and magnetic properties of the flexible self-assembled two-dimensional square network complex [Cu2(mal)2(H2O)2(4,4′-bpy)] (H2mal=malonic acid and 4,4′-bpy=4,4′-bipyridine). Inorganica Chim. Acta 318, 159–165 (2001).117. Pasán, J., Sanchiz, J., Lloret, F., Julve, M. & Ruiz-Pérez, C. Crystal engineering of 3-D coordination polymers by pillaring ferromagnetic copper( II)-methylmalonate layers. CrystEngComm 9, 478–487 (2007).118. Déniz, M., Pasán, J., Fabelo, O., Cañadillas-Delgado, L., Lloret, F., Julve, M. & Ruiz-Pérez, C. Metal-organic coordination frameworks based on mixed methylmalonate and 4,4′-bipiridine ligands: synthesis, crystal structure and magnetic properties. New J. Chem. 34, 2515 (2010).119. Das, S., Maloth, S. & Pal, S. Nickel(II) coordination polymers-4,4′-bipyridine-connected six- and four-fold metal-succinate helices and their corresponding chiral and achiral networks. Eur. J. Inorg. Chem. 4270–4276 (2011). doi:10.1002/ejic.201100355120. Liu, Y., Feng, Y.-L. & Fu, W.-W. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties. Acta Crystallogr. Sect. C Struct. Chem. 72, 308–312 (2016).121. Ying, S. M., Mao, J. G., Sun, Y. Q., Zeng, H. Y. & Dong, Z. C. Syntheses and crystal structures of three open-frameworks of metal succinates containing a 4,4′-bipyridine ligand. Polyhedron 22, 3097–3103 (2003).122. Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. Coordination Polymers Based on Cobridging of Rigid and Flexible Spacer Ligands: Syntheses, Crystal Structures, and Magnetic Properties of [Mn(bpy)(H 2 O)(C 4 H 4 O 4 )]·0.5bpy, Mn(bpy)(C 5 H 6 O 4 ), and Mn(bpy)(C 6 H 8 O 4 ). Inorg. Chem. 43, 2590–2596 (2004).123. Lyons, E. M., Braverman, M. A., Supkowski, R. M. & LaDuca, R. L. An acentric luminescent cadmium dimethylsuccinate/bipyridine coordination polymer with an uncommon three-dimensional CdSO4 topology. Inorg. Chem. Commun. 11, 855–858 (2008).124. Vaidhyanathan, R., Bradshaw, D., Rebilly, J.-N., Barrio, J. P., Gould, J. A., Berry, N. G. & Rosseinsky, M. J. A Family of Nanoporous Materials Based on an Amino Acid Backbone. Angew. Chemie Int. Ed. 45, 6495–6499 (2006).125. Shi, Z., Zhang, L., Gao, S., Yang, G., Hua, J., Gao, L. & Feng, S. Coordination Polymers: Structural Transformation from Two to Three Dimensions through Ligand Conformation Change. Inorg. Chem. 39, 1990–1993 (2000).126. Ma, B.-Q., Mulfort, K. L. & Hupp, J. T. Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions. Inorg. Chem. 44, 4912–4914 (2005).127. Fujii, K., Garay, A. L., Hill, J., Sbircea, E., Pan, Z., Xu, M., Apperley, D. C., James, S. L. & Harris, K. D. M. Direct structure elucidation by powder X-ray diffraction of a metal–organic framework material prepared by solvent-free grinding. Chem. Commun. 46, 7572 (2010).128. Batool, M., Ibrahim, S., Iqbal, B., Ali, S., Badshah, A., Abbas, S., Turner, D. R. & Nadeem, M. A. Novel cobalt-fumarate framework as a robust and efficient electrocatalyst for water oxidation at neutral pH. Electrochim. Acta 298, 248–253 (2019).129. Lah, N., Cigić, I. K. & Leban, I. Solvothermal synthesis of a novel mixed valence Cu(I)/Cu(II) complex containing sulphate, malate and 4,4′-bipyridine, [CuICu 2II(mal)(SO4)(bpy)2·H 2O]n. Unique binding mode of the malate anion. Inorg. Chem. Commun. 6, 1441–1444 (2003).130. Zavakhina, M. S., Samsonenko, D. G., Virovets, A. V., Dybtsev, D. N. & Fedin, V. P. Homochiral Cu(II) and Ni(II) malates with tunable structural features. J. Solid State Chem. 210, 125–129 (2014).131. Duan, L.-M., Xie, F.-T., Chen, X.-Y., Chen, Y., Lu, Y.-K., Cheng, P. & Xu, J.-Q. Syntheses, Structures, and Magnetic Properties of Three Novel Metal−Malate−Bipyridine Coordination Polymers with Layered and Pillared Topology. Cryst. Growth Des. 6, 1101–1106 (2006).132. Zingiryan, A., Zhang, J. & Bu, X. Cooperative Self-Assembly of Chiral L-Malate and Achiral Succinate in the Formation of a Three-Dimensional Homochiral Framework. Inorg. Chem. 47, 8607–8609 (2008).133. Rather, B. & Zaworotko, M. J. A 3D metal-organic network, [Cu2(glutarate)2(4,4′-bipyridine)], that exhibits single-crystal to single-crystal dehydration and rehydrationElectronic supplementary information (ESI) available: experimental details, IR, TGA and XRPD of all compounds. See ht. Chem. Commun. 2, 830–831 (2003).134. Zheng, Y.-Q. & Ying, E.-B. New α,ω-dicarboxylate coordination polymers with 4,4′-bipyridine: Cu(bpy)(C5H6O4), Zn(bpy)(C5H6O4), Zn(bpy)(C6H8O4) and Mn(bpy)(C8H12O4)·H2O. Polyhedron 24, 397–406 (2005).135. Chen, B., Ji, Y., Xue, M., Fronczek, F. R., Hurtado, E. J., Mondal, J. U., Liang, C. & Dai, S. Metal−Organic Framework with Rationally Tuned Micropores for Selective Adsorption of Water over Methanol. Inorg. Chem. 47, 5543–5545 (2008).136. Borkowski, L. A. & Cahill, C. L. Crystal Engineering with the Uranyl Cation II. Mixed Aliphatic Carboxylate/Aromatic Pyridyl Coordination Polymers: Synthesis, Crystal Structures, and Sensitized Luminescence. Cryst. Growth Des. 6, 2248–2259 (2006).137. Nettleman, J. H., Supkowski, R. M. & LaDuca, R. L. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4′-bipyridine. J. Solid State Chem. 183, 291–303 (2010).138. Wang, B., Xie, L.-H., Wang, X., Liu, X.-M., Li, J. & Li, J.-R. Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ. 3, 191–228 (2018).139. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F. & Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 307, 147–187 (2016).140. Banerjee, R., Day, G. M., Friščić, T. & Zhang, H. 2016 New talent: crystal engineering at its biggest and strongest. CrystEngComm 18, 3963–3967 (2016).141. Trickett, C. A., Helal, A., Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E. & Yaghi, O. M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2, 17045 (2017).142. Rieth, A. J., Tulchinsky, Y. & Dincă, M. High and Reversible Ammonia Uptake in Mesoporous Azolate Metal–Organic Frameworks with Open Mn, Co, and Ni Sites. J. Am. Chem. Soc. 138, 9401–9404 (2016).143. Bhatt, P. M., Belmabkhout, Y., Assen, A. H., Weseliński, Ł. J., Jiang, H., Cadiau, A., Xue, D.-X. & Eddaoudi, M. Isoreticular rare earth fcu -MOFs for the selective removal of H 2 S from CO 2 containing gases. Chem. Eng. J. 324, 392–396 (2017).144. Solovyeva, M. V., Gordeeva, L. G., Krieger, T. A. & Aristov, Y. I. MOF-801 as a promising material for adsorption cooling: Equilibrium and dynamics of water adsorption. Energy Convers. Manag. 174, 356–363 (2018).145. Cheon, Y. E., Park, J. & Suh, M. P. Selective gas adsorption in a magnesium-based metal–organic framework. Chem. Commun. 5436 (2009). doi:10.1039/b910228k146. Dinča, M., Dailly, A., Liu, Y., Brown, C. M., Neumann, D. A. & Long, J. R. Hydrogen storage in a microporous metal-organic framework with exposed Mn2+coordination sites. J. Am. Chem. Soc. 128, 16876–16883 (2006).147. Mason, J. A., Oktawiec, J., Taylor, M. K., Hudson, M. R., Rodriguez, J., Bachman, J. E., Gonzalez, M. I., Cervellino, A., Guagliardi, A., Brown, C. M., Llewellyn, P. L., Masciocchi, N. & Long, J. R. Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527, 357–361 (2015).148. Schlichte, K., Kratzke, T. & Kaskel, S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous Mesoporous Mater. 73, 81–88 (2004).149. Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A. & De Vos, D. E. Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chem. - A Eur. J. 12, 7353–7363 (2006).150. Corma, A., Iglesias, M., Llabrés i Xamena, F. X. & Sánchez, F. Cu and Au Metal-Organic Frameworks Bridge the Gap between Homogeneous and Heterogeneous Catalysts for Alkene Cyclopropanation Reactions. Chem. - A Eur. J. 16, 9789–9795 (2010).151. Pérez-Mayoral, E., Musilová, Z., Gil, B., Marszalek, B., Položij, M., Nachtigall, P. & Čejka, J. Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework. Dalt. Trans. 41, 4036 (2012).152. Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H. & Čejka, J. Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol. 3, 500–507 (2013).153. Phan, N. T. S., Vu, P. H. L. & Nguyen, T. T. Expanding applications of copper-based metal–organic frameworks in catalysis: Oxidative C–O coupling by direct C–H activation of ethers over Cu2(BPDC)2(BPY) as an efficient heterogeneous catalyst. J. Catal. 306, 38–46 (2013). 154. Feldblyum, J. I., Keenan, E. A., Matzger, A. J. & Maldonado, S. Photoresponse Characteristics of Archetypal Metal–Organic Frameworks. J. Phys. Chem. C 116, 3112–3121 (2012).155. Yamada, T., Otsubo, K., Makiura, R. & Kitagawa, H. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chem. Soc. Rev. 42, 6655 (2013).156. Münch, A. S., Seidel, J., Obst, A., Weber, E. & Mertens, F. O. R. L. High-Separation Performance of Chromatographic Capillaries Coated with MOF-5 by the Controlled SBU Approach. Chem. - A Eur. J. 17, 10958–10964 (2011).157. Lu, G., Farha, O. K., Zhang, W., Huo, F. & Hupp, J. T. Engineering ZIF-8 Thin Films for Hybrid MOF-Based Devices. Adv. Mater. 24, 3970–3974 (2012).158. Cui, Y., Xu, H., Yue, Y., Guo, Z., Yu, J., Chen, Z., Gao, J., Yang, Y., Qian, G. & Chen, B. A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. J. Am. Chem. Soc. 134, 3979–3982 (2012).159. Díaz, R., Orcajo, M. G., Botas, J. A., Calleja, G. & Palma, J. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012).160. An, J., Farha, O. K., Hupp, J. T., Pohl, E., Yeh, J. I. & Rosi, N. L. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nat. Commun. 3, 604–606 (2012).161. Cai, H., Xu, L.-L., Lai, H.-Y., Liu, J.-Y., Ng, S. W. & Li, D. A highly emissive and stable zinc(ii) metal–organic framework as a host–guest chemopalette for approaching white-light-emission. Chem. Commun. 53, 7917–7920 (2017).162. Sontz, P. A., Bailey, J. B., Ahn, S. & Tezcan, F. A. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. J. Am. Chem. Soc. 137, 11598–11601 (2015).163. Zhao, M. & Wu, C.-D. Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Co-catalyst Platform. ChemCatChem 9, 1192–1196 (2017).164. Hansen, J., Ruedy, R., Sato, M. & Lo, K. GLOBAL SURFACE TEMPERATURE CHANGE. Rev. Geophys. 48, RG4004 (2010).165. Wang, Q., Luo, J., Zhong, Z. & Borgna, A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ. Sci. 4, 42–55 (2011).166. Ben-Mansour, R., Habib, M. A. A., Bamidele, O. E. E., Basha, M., Qasem, N. A. A. A. A., Peedikakkal, A., Laoui, T. & Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review. Appl. Energy 161, 225–255 (2016).167. Pearce, C. K., Grosse, D. W. & Hessel, W. Effect of molecular structure on infrared spectra of six isomers of bipyridine. J. Chem. Eng. Data 15, 567–570 (1970).168. Topacli, Ar. & Akyüz, S. 4,4’-Bipyridyl: vibrational assignments and force field. Spectrochim. Acta 51A, 633–641 (1995).169. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Journal of Chemical Education 77, (John Wiley & Sons, Inc., 2008).170. Liu, B. One-dimensional copper hydroxide nitrate nanorods and nanobelts for radiochemical applications. Nanoscale 4, 7194 (2012).171. Ferraro, J. R. & Walker, W. R. Infrared Spectra of Hydroxy-Bridged Copper(II) Compounds. Inorg. Chem. 4, 1382–1386 (1965).172. Xiu-min, S. H. I., Hai-yan, W., Yan-bing, L. I., Jing-xiu, Y., Lei, C., Ge, H. U. I., Wei-qing, X. U. & Bing, Z. Spectroscopic Studies on Co ( II ), Ni ( II ), Zn ( II ) Complexes with 4 , 4 ′ -Bipyridine. Chem. Res. Chinese Univ. 26, 1011–1015 (2010).173. Czakis-Sulikowska, D. & Czylkowska, A. Complexes of Mn(II), Co(II), Ni(II) and Cu(II) with 4,4′-bipyridine and dichloroacetates. Synthesis, thermal and other properties. J. Therm. Anal. Calorim. 71, 395–405 (2003).174. Seguel, G. V., Rivas, B. L. & Órdenes, P. Syntheses and characterizations of copper complexes: Interaction of copper acetate dihydrate with 4,4’-bipyridine. J. Chil. Chem. Soc. 60, 3080–3082 (2015).175. Guerriero, P., Casellato, U., Tamburini, S., Vigato, P. A. & Graziani, R. Lanthanide complexes with compartmental schiff bases. Inorganica Chim. Acta 129, 127–138 (1987).176. Carnall, W. T., Siegel, S., Ferraro, J. R., Tani, B. & Gebert, E. A New Series of Anhydrous Double Nitrate Salts of the Lanthanides. Structural and Spectral Characterization1. Inorg. Chem. 12, 560–564 (1973).177. Musgrave, T. R. & Mattson, C. E. Coordination chemistry of 4,4’-bipyridine. Inorg. Chem. 7, 1433–1436 (1968).178. Langford, J. I. & Wilson, A. J. C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978).179. Ahuja, I. S. & Tripathi, S. X–Ray Diffraction Studies on 4,4′-Bipyridyl Complexes with Cobalt(II)-, Nickel(II)-, Zinc(II),- and Cadmium(II) Nitrates. Cryst. Res. Technol. 26, K92–K96 (1991).180. Chohan, Z. H., Praveen, M. & Ghaffaf, A. Synthesis, Characterisation and Biological Role of Anions (Nitrate, Sulphate, Oxalate and Acetate) in Co(II), Cu(II) and Ni(II) Metal Chelates of Some Schiff Base Derived Amino Acids. Synth. React. Inorg. Met. Chem. 28, 1673–1687 (1998).181. Morita, M., Takahashi, H., Yabushita, S. & Takahashi, K. Why does the IR spectrum of hydroxide stretching vibration weaken with increase in hydration? Phys. Chem. Chem. Phys. 16, 23143–23149 (2014).182. Brusau, E. V., Pedregosa, J. C., Narda, G. E., Echeverria, G. & Punte, G. Seven-Coordinated Diaquasuccinatocadmium(II) Bidimensional Polymer: Crystal Structure and Vibrational and Thermal Behavior. J. Solid State Chem. 153, 1–8 (2000).183. Dianu, M. L., Kriza, A., Stanica, N. & Musuc, A. M. Transition metal M(II) complexes with isonicotinoylhydrazone-9-anthraldehyde. J. Serbian Chem. Soc. 75, 1515–1531 (2010).184. Barbooti, M. M. Thermal behaviour of copper oxides and copper sulphate in the presence of carbon. Sol. Energy Mater. 10, 35–40 (1984).185. Baimuratova, R. K., Dzhardimalieva, G. I., Golubeva, N. D., Dremova, N. N. & Ivanov, A. V. Coordination polymers based on trans, trans -muconic acid: synthesis, structure, adsorption and thermal properties. Pure Appl. Chem. 92, 859–870 (2020).186. Tilley, R. J. D. Crystals and Crystal Structures. (John Wiley & Sons, Ltd, 2006).187. Côté, A. P. & Shimizu, G. K. H. The supramolecular chemistry of the sulfonate group in extended solids. Coord. Chem. Rev. 245, 49–64 (2003).188. Xu, Z. P. & Braterman, P. S. High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. J. Mater. Chem. 13, 268–273 (2003).189. Evanson, K. W., Thorstenson, T. A. & Urban, M. W. Surface and interfacial FTIR spectroscopic studies of latexes. II. Surfactant–copolymer compatibility and mobility of surfactants. J. Appl. Polym. Sci. 42, 2297–2307 (1991).190. Mohamed, G. G., El-Gamel, N. E. A. & Nour El-Dien, F. A. Preparation, chemical characterization, and electronic spectra of 6-(2-pyridylazo)-3-acetamidophenol and its metal complexes. Synth. React. Inorg. Met. Chem. 31, 347–358 (2001).191. Gimenez, P. & Fereres, S. Effect of Heating Rates and Composition on the Thermal Decomposition of Nitrate Based Molten Salts. Energy Procedia 69, 654–662 (2015).192. Moore, W. J. & Williams, E. L. Decomposition of Zinc Oxide by Zinc Vapor. J. Phys. Chem. 63, 1516–1517 (1959).193. Elliott, N. A Redetermination of the Carbon—Oxygen Distance in Calcite and the Nitrogen—Oxygen Distance in Sodium Nitrate. J. Am. Chem. Soc. 59, 1380–1382 (1937).194. Michaelides, A., Skoulika, S. & Siskos, M. G. Photoreactive 3D microporous lanthanide MOFs: formation of a strained ladderane in a partial single crystal-to-single crystal manner. Chem. Commun. 47, 7140 (2011).195. Yuvakkumar, R. & Hong, S. I. Nd2O3: novel synthesis and characterization. J. Sol-Gel Sci. Technol. 73, 511–517 (2015).196. Tunell, G., Posnjak, Ε. & Ksanda, C. J. Geometrical and Optical Properties, and Crystal Structure of Tenorite. Zeitschrift für Krist. - Cryst. Mater. 90, (1935).197. Gilmore, C. J., Kaduk, J. A. & Schenk, H. International Tables for Crystallography Volume H: Powder diffraction. International Tables for Crystallography H, (International Union of Crystallography, 2019).198. Yang, Q., Wiersum, A. D., Llewellyn, P. L., Guillerm, V., Serre, C. & Maurin, G. Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem. Commun. 47, 9603 (2011).199. Constable, E. C., Housecroft, C. E., Price, J. R. & Zampese, J. A. When five are six: the myth of five-coordinate copper(ii) in supramolecular chemistry. CrystEngComm 12, 3163 (2010).200. Arduini, A. L., Garnett, M., Thompson, R. C. & Wong, T. C. T. Magnetic and Spectral Studies on Cobalt(II) and Copper(II) Salts of Methylsulfuric, Trifluoromethylsulfuric, and Paratolylsulfuric Acids. Can. J. Chem. 53, 3812–3819 (1975).201. Aminoff, G. XXIV. Über Lauephotogramme und Struktur von Zinkit. Zeitschrift für Krist. - Cryst. Mater. 56, (1921).202. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).203. Lide, D. R. CRC Handbook of Chemistry and Physics. Review of Scientific Instruments (2005).204. Yampolskii, Y., Pinnau, I. & Freeman, B. Materials Science of Membranes for Gas and Vapor Separation Materials Science of Membranes for Gas and Vapor Separation. Membrane Technology (2006). doi:10.1002/047002903X205. Belmabkhout, Y., Guillerm, V. & Eddaoudi, M. Low concentration CO 2 capture using physical adsorbents: Are metal–organic frameworks becoming the new benchmark materials? Chem. Eng. J. 296, 386–397 (2016).206. Yang, R. T. Adsorbents: Fundamentals and Applications. America (John Wiley & Sons, Inc., 2003).207. D’Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chemie - Int. Ed. 49, 6058–6082 (2010).208. Zhao, R. L., Yue, K. F., Zhou, C. S., Cheng, Q. D. M., Shi, J. T., Liu, Y. L. & Wang, Y. Y. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorganica Chim. Acta 402, 25–32 (2013).EspecializadoLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79694/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1152447599.2021.pdf1152447599.2021.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4506253https://repositorio.unal.edu.co/bitstream/unal/79694/2/1152447599.2021.pdfe153711438c7f51f209b2d336fe3ddc8MD52THUMBNAIL1152447599.2021.pdf.jpg1152447599.2021.pdf.jpgGenerated Thumbnailimage/jpeg4583https://repositorio.unal.edu.co/bitstream/unal/79694/3/1152447599.2021.pdf.jpg0f83a04ad2447aa9cba2dc7328293358MD53unal/79694oai:repositorio.unal.edu.co:unal/796942024-07-23 23:33:36.171Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==