Global well-posedness for two dimensional semilinear wave equations

We consider the initial value problem (IVP) for certain semilinear wave equations in two dimensions. It is shown that global well-posedness holds in spaces of lower regularity than that suggested by the energy space H1 x L2x. The technique to be used is adapted from a general scheme originally intro...

Full description

Autores:
Fonseca, Germán E.
Tipo de recurso:
Article of journal
Fecha de publicación:
2000
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43750
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43750
http://bdigital.unal.edu.co/33848/
Palabra clave:
Nonlinear wave equations
global solutions
initial value problems
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We consider the initial value problem (IVP) for certain semilinear wave equations in two dimensions. It is shown that global well-posedness holds in spaces of lower regularity than that suggested by the energy space H1 x L2x. The technique to be used is adapted from a general scheme originally introduced by J. Bourgain to establish global well posedness of the cubic nonlinear Schrödinger equation.