Global well-posedness for two dimensional semilinear wave equations
We consider the initial value problem (IVP) for certain semilinear wave equations in two dimensions. It is shown that global well-posedness holds in spaces of lower regularity than that suggested by the energy space H1 x L2x. The technique to be used is adapted from a general scheme originally intro...
- Autores:
-
Fonseca, Germán E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2000
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43750
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43750
http://bdigital.unal.edu.co/33848/
- Palabra clave:
- Nonlinear wave equations
global solutions
initial value problems
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We consider the initial value problem (IVP) for certain semilinear wave equations in two dimensions. It is shown that global well-posedness holds in spaces of lower regularity than that suggested by the energy space H1 x L2x. The technique to be used is adapted from a general scheme originally introduced by J. Bourgain to establish global well posedness of the cubic nonlinear Schrödinger equation. |
---|