Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida

ilustraciones, gráficas, tablas

Autores:
Rubiano Moreno, Nayel María
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83251
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83251
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Perforación
Mecánica de rocas
Boring
Rock mechanics
Perforación horizontal dirigida
PHD
Plaxis 3D
Elementos finitos
Efecto de arco
Horizontal directional drilling
HDD
Finite Element Method
Arching effect
Modelo matemático
Mathematical models
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_f95c34939e5dcac5b6d649b1e8fccfdd
oai_identifier_str oai:repositorio.unal.edu.co:unal/83251
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
dc.title.translated.eng.fl_str_mv Numerical simulation of the arching effect and drilling fluid pressure in a horizontal directional drilling
title Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
spellingShingle Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Perforación
Mecánica de rocas
Boring
Rock mechanics
Perforación horizontal dirigida
PHD
Plaxis 3D
Elementos finitos
Efecto de arco
Horizontal directional drilling
HDD
Finite Element Method
Arching effect
Modelo matemático
Mathematical models
title_short Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
title_full Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
title_fullStr Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
title_full_unstemmed Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
title_sort Modelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigida
dc.creator.fl_str_mv Rubiano Moreno, Nayel María
dc.contributor.advisor.spa.fl_str_mv Barbosa Cruz, Edgard Robert
Beltrán Calvo, Gloria Inés
dc.contributor.author.spa.fl_str_mv Rubiano Moreno, Nayel María
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Perforación
Mecánica de rocas
Boring
Rock mechanics
Perforación horizontal dirigida
PHD
Plaxis 3D
Elementos finitos
Efecto de arco
Horizontal directional drilling
HDD
Finite Element Method
Arching effect
Modelo matemático
Mathematical models
dc.subject.lemb.spa.fl_str_mv Perforación
Mecánica de rocas
dc.subject.lemb.eng.fl_str_mv Boring
Rock mechanics
dc.subject.proposal.spa.fl_str_mv Perforación horizontal dirigida
PHD
Plaxis 3D
Elementos finitos
Efecto de arco
dc.subject.proposal.eng.fl_str_mv Horizontal directional drilling
HDD
Finite Element Method
Arching effect
dc.subject.unesco.spa.fl_str_mv Modelo matemático
dc.subject.unesco.eng.fl_str_mv Mathematical models
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-08-26
dc.date.accessioned.none.fl_str_mv 2023-02-02T17:46:37Z
dc.date.available.none.fl_str_mv 2023-02-02T17:46:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83251
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83251
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Baumert, M. E., & Allouche, E. N. (2002). Methods for Estimating Pipe Pullback Loads for Horizontal Directional Drilling (HDD) Crossings. Journal of Infrastructure Systems, 8(1), 12–19. https://doi.org/10.1061/(asce)1076-0342(2002)8:1(12)
Baumert, M. E., Allouche, E. N., & Moore, I. D. (2005). Drilling Fluid Considerations in Design of Engineered Horizontal Directional Drilling Installations. International Journal of Geomechanics, 5(4), 339–349. https://doi.org/10.1061/(asce)1532-3641(2005)5:4(339)
Cai, L., Xu, G., Polak, M. A., and Knight, M. (2017). Horizontal directional drilling pulling forces prediction methods – A critical review. Tunnelling and Underground Space Technology, 69(November 2015), 85–93. https://doi.org/10.1016/j.tust.2017.05.026
Deltares, K. (2009). The trenchless technique horizontal directional drilling Soil related risks and risk mitigation. In Proceeding of the 4th Pipeline Technology Conference, 99–109. http://ezproxy.upm.edu.my:2260/ehost/pdfviewer/pdfviewer?vid=13&sid=74bed4d9-8c93-4c38-8a77-49b6923eb9dc%40sessionmgr113&hid=124
Elwood, D. (2008). Hydraulic fracture experiments in a frictional material and approximations for maximum allowable mud pressure. 1988, 1681–1688. http://qspace.library.queensu.ca/handle/1974/1343
Faghih, A., Yi, Y., Bayat, A., & Osbak, M. (2015). Fluidic Drag Estimation in Horizontal Directional Drilling Based on Flow Equations. Journal of Pipeline Systems Engineering and Practice, 6(4), 1–8. https://doi.org/10.1061/(asce)ps.1949-1204.0000200
Guohui, L., Xiaocheng, M., & Chunling, Y. (2016). Engineering innovation of a length of nearly 3300m large diameter pipeline installed by HDD. Earth Sciences Research Journal, 20(1), P1–P5. https://doi.org/10.15446/esrj.v20n1.54504
Han, J., Wang, F., Al-Naddaf, M., & Xu, C. (2017). Progressive Development of Two-Dimensional Soil Arching with Displacement. International Journal of Geomechanics, 17(12), 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0001025.
LbSTT, Aspectos generales de la perforación horizontal dirigida. Asociación Ibérica de tecnología sin Zanja. Universidad Politécnica de Valencia. Madrid (2015).
Klaus-Jurgen Bathe - Finite Element Procedures in Engineering Analysis (Prentice-Hall civil engineering and engineering mechanics series) (1982).pdf. (n.d.).
James A. McKelvey. (1994). The anatomy of soil arching. Geotextiles and Geomembranes, 13(5), 317–329. https://doi.org/10.1016/0266-1144(94)90026-4
Lawrence, K., & Knight, M. (1998). Addressing geotechnical considerations of horizontal directional drilling using the new design. 981–985.
Mohd Norizam, M. S., Nuzul Azam, H., Helmi Zulhaidi, S., Abdul Aziz, A., & Nadzrol Fadzilah, A. (2017). Literature review of the benefits and obstacle of horizontal directional drilling. IOP Conference Series: Materials Science and Engineering, 271(1). https://doi.org/10.1088/1757-899X/271/1/012094
More, D. (2012). Innovations in Design, Construction, Operations, and Maintenance –—Doing More with Less. Pipelines 2012, 307–318.
Pardo, G. S., & Sáez, E. (2014). Experimental and numerical study of arching soil effect in coarse sand. Computers and Geotechnics, 57, 75–84. https://doi.org/10.1016/j.compgeo.2014.01.005
Registry, W., & Goldenberg, I. (2013). HD D – H o r i zonta l D i r ectional Drilling . TRENCH LE S S TEC HNOLOGY F OR A SAF E AND EFF ICIENT INS TALLATION O F P I P ELINES
Sargand, S. M., and Masada, T. (2007). Soil Arching over Deeply Buried Thermoplastic Pipe. Transportation Research Record: Journal of the Transportation Research Board, 1849(1), 109–123. https://doi.org/10.3141/1849-13
Shu, B., and Ma, B. (2015). Study of ground collapse induced by large-diameter horizontal directional drilling in a sand layer using numerical modeling. Canadian Geotechnical Journal, 52(10), 1562–1574. https://doi.org/10.1139/cgj-2014-0388
Siddiquee, M. S. A., and Dhar, A. S. (2007). Determination of Pipe Pullback Load for Horizontal Directional Drilling (HDD) Crossings by Finite Element Method. 2006, 1–17. https://doi.org/10.1061/40934(252)110
Sterling, R. L. (2018). ScienceDirect Developments and research directions in pipe jacking and microtunneling. Underground Space. https://doi.org/10.1016/j.undsp.2018.09.001
Stuedlein, A. W., and Meskele, T. (2013). Analysis and Design of Pipe Ramming Installation. 710.
Tien, H. (1996). A Literature Study of the Arching Effect. 1990.
Viehöfer, T., Linthof, T., Bezuijen, A., Box, P. O., and Delft, A. B. (n.d.). STABILITY OF A BOREHOLE DURING HORIZONTAL DIRECTIONAL DRILLING 2 . TEC Tunnel Engineering Consultants , P . O . Box 747 , 3900 AS Veenendaal ,.
Wang, X., and Sterling, R. L. (2007). Stability analysis of a borehole wall during horizontal directional drilling. Tunnelling and Underground Space Technology, 22(5–6), 620–632. https://doi.org/10.1016/j.tust.2007.01.002
Wijeyesekera, D. C., and Warnakulasuriya, S. (2000). Effects of soil arching on the behaviour of flexible pipes buried in trenches of varying widths. April.
Wong, S. K., Giorgini, J. D., You, T. H., Lim, L., & Chadbourne, P. (1994). Navigating through the Venus atmosphere. Advances in the Astronautical Sciences, 87(2), 633–645.
Wu, J., Liao, S. M., and Liu, M. B. (2019). An analytical solution for the arching effect induced by ground loss of tunneling in sand. Tunnelling and Underground Space Technology, 83(October 2018), 175–186. https://doi.org/10.1016/j.tust.2018.09.025
Wu, Y., Lü, G., Xu, L., Zhang, P., and Mao, N. (2014). Engineering difficulties and technical innovation in the Jiangyin Yangtze River Crossing Project 3300 m HDD. Natural Gas Industry, 34(4), 105–110. https://doi.org/10.3787/j.issn.1000-0976.2014.04.017
Xia, H. (2009). Investigation of maximum mud pressure within sand and clay during horizontal directional drilling. 272.
Xu, G., Cai, L., Ji, R., and Wang, Z. (2018). Numerical simulation of pipe-soil interaction during pulling back phase in horizontal directional drilling installations. Tunnelling and Underground Space Technology, 76(June 2017), 194–201. https://doi.org/10.1016/j.tust.2018.03.022
Yan, X., Ariaratnam, S. T., Dong, S., and Zeng, C. (2018). Horizontal directional drilling: State-of-the-art review of theory and applications. Tunnelling and Underground Space Technology, 72(October 2017), 162–173. https://doi.org/10.1016/j.tust.2017.10.005
Yang, C. J., Zhu, W. D., Zhang, W. H., Zhu, X. H., & Ren, G. X. (2011). Determination of Pipe Pullback Loads in Horizontal Directional Drilling Using an Advanced Computational Dynamic Model. 1–13. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000749.
Zhang, C., Hu, J., Qian, L., and Zhang, J. (2018). Local Dent Behavior of Directional Crossing Pipeline Caused by the Boulder in Stratum. Journal of Failure Analysis and Prevention, 18(4), 988–997. https://doi.org/10.1007/s11668-018-0490-9
Zhu, X. H. (2015). Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional drilling. Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, 33, 153–173. https://doi.org/10.1016/B978-0-08-100117-2.00004-2
Zou, J., Chen, G., and Qian, Z. (2019). Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106(October 2018), 1–17. https://doi.org/10.1016/j.compgeo.2018.10.014
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 104 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83251/5/1026577923.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83251/3/AnexosPDFDocumentoFinal1026577923.pdf
https://repositorio.unal.edu.co/bitstream/unal/83251/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83251/6/1026577923.2022.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/83251/7/AnexosPDFDocumentoFinal1026577923.pdf.jpg
bitstream.checksum.fl_str_mv 2b076690fccd6e5292f1ea98761feff9
64818b6e0ae862ab4e6c983b6b31ebc3
eb34b1cf90b7e1103fc9dfd26be24b4a
a02412083b8d110069902db7ef432928
fba5e060fbab5c57f1b58c779861c86b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089780760150016
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barbosa Cruz, Edgard Robertdac4c2e6acf210f1a8a8bc41ceddd170600Beltrán Calvo, Gloria Inés4a4f90ae99921dbf6770cc4c964b5803600Rubiano Moreno, Nayel María7c2a04cac6f1ede2455d248d0f444cf52023-02-02T17:46:37Z2023-02-02T17:46:37Z2022-08-26https://repositorio.unal.edu.co/handle/unal/83251Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa construcción de una perforación horizontal dirigida (PHD) tiene tres (3) etapas principales: la elaboración del túnel piloto, el ensanchamiento de la perforación al diámetro requerido y la instalación de la tubería. Las actividades mencionadas generan en el suelo esfuerzos y deformaciones en los cuales influye el efecto de arco, la profundidad de la cobertura del suelo sobre la PHD y la presión de los lodos de perforación. En el trabajo desarrollado para el análisis de la construcción de una PHD se emplea el programa de computador Plaxis 3D, el cual cuenta con un módulo para la evaluación de túneles, lo que facilita la idealización y la modelación de las PHD. Mediante este módulo el usuario de Plaxis puede analizar una secuencia de pasos de construcción que se repite a lo largo de la perforación en un número de secciones seleccionadas. Por medio de estos pasos se puede analizar la excavación y la estabilización de una PHD, mediante la eliminación secuencial de volúmenes de suelo y la aplicación de una presión estabilizante sobre las paredes de la excavación, las cuales representan el avance de la PHD y el empleo de los lodos de perforación respectivamente. Las evaluaciones realizadas se basan en nueve (9) modelos de análisis mediante elementos finitos en tres dimensiones (3D), los cuales combinan tres (3) arenas de diferente resistencia al corte (compacidad) y tres (3) magnitudes diferentes de la presión de lodos aplicada sobre las paredes de la PHD. Además, se evaluaron dos (2) variables geométricas: el diámetro, incluyendo el túnel piloto y (2) diámetros de ensanchamiento, y la profundidad de la PHD variable, empleando el eje de la perforación inclinado 8° con respecto a la horizontal. La influencia de estas variables y su relación con el efecto de arco es evaluada mediante el análisis de los desplazamientos verticales y horizontales, y de los esfuerzos verticales totales en la clave, la batea y la pared de la perforación. (Texto tomado de la fuente).The construction of a horizontal directional drilling (HDD) has three (3) main stages: the excavation of the pilot tunnel, the expansion of the drilling hole to the required diameter and the installation of the pipe. The mentioned activities generate stresses and deformations in the soil which are influenced by the arching effect, the depth of the soil cover above the HDD and the pressure of the drilling fluid (mud). In the present study, the Plaxis 3D computer program is used for the analysis of the construction of a HDD. Plaxis has a module for the evaluation of tunnels, which facilitates the idealization and modelling of the HDD. Using this module, the Plaxis user can analyse a sequence of construction steps that is repeated throughout the borehole in several selected sections. Through those steps of analysis, the excavation and stabilization of a HDD can be examined by means of the sequential removal of volumes of soil and the application of a stabilizing pressure on the walls of the excavation, which represent the advance of the HDD and the use of drilling mud respectively. The evaluations carried out here are based on nine (9) three-dimensional (3D) finite element analysis models, which combine three (3) sands of different shear strength (density) and three (3) different magnitudes of mud pressure applied on the walls of the PHD. In addition, two (2) geometric variables were evaluated: including the pilot tunnel diameter and (2) underreaming diameters, and a variable PHD depth, using the borehole axis tilted 8° below the horizontal. The influence of those variables and their relationship with the arching effect is evaluated by analysing the vertical and horizontal displacements, and the total vertical stresses in the crown, the invert and the springline (wall) of the drilling hole.Incluye anexosMaestríaMagíster en Ingeniería - GeotecniaModelación y análisis en geotecniaxix, 104 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaPerforaciónMecánica de rocasBoringRock mechanicsPerforación horizontal dirigidaPHDPlaxis 3DElementos finitosEfecto de arcoHorizontal directional drillingHDDFinite Element MethodArching effectModelo matemáticoMathematical modelsModelación numérica del efecto de arco y la presión de lodos en una perforación horizontal dirigidaNumerical simulation of the arching effect and drilling fluid pressure in a horizontal directional drillingTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBaumert, M. E., & Allouche, E. N. (2002). Methods for Estimating Pipe Pullback Loads for Horizontal Directional Drilling (HDD) Crossings. Journal of Infrastructure Systems, 8(1), 12–19. https://doi.org/10.1061/(asce)1076-0342(2002)8:1(12)Baumert, M. E., Allouche, E. N., & Moore, I. D. (2005). Drilling Fluid Considerations in Design of Engineered Horizontal Directional Drilling Installations. International Journal of Geomechanics, 5(4), 339–349. https://doi.org/10.1061/(asce)1532-3641(2005)5:4(339)Cai, L., Xu, G., Polak, M. A., and Knight, M. (2017). Horizontal directional drilling pulling forces prediction methods – A critical review. Tunnelling and Underground Space Technology, 69(November 2015), 85–93. https://doi.org/10.1016/j.tust.2017.05.026Deltares, K. (2009). The trenchless technique horizontal directional drilling Soil related risks and risk mitigation. In Proceeding of the 4th Pipeline Technology Conference, 99–109. http://ezproxy.upm.edu.my:2260/ehost/pdfviewer/pdfviewer?vid=13&sid=74bed4d9-8c93-4c38-8a77-49b6923eb9dc%40sessionmgr113&hid=124Elwood, D. (2008). Hydraulic fracture experiments in a frictional material and approximations for maximum allowable mud pressure. 1988, 1681–1688. http://qspace.library.queensu.ca/handle/1974/1343Faghih, A., Yi, Y., Bayat, A., & Osbak, M. (2015). Fluidic Drag Estimation in Horizontal Directional Drilling Based on Flow Equations. Journal of Pipeline Systems Engineering and Practice, 6(4), 1–8. https://doi.org/10.1061/(asce)ps.1949-1204.0000200Guohui, L., Xiaocheng, M., & Chunling, Y. (2016). Engineering innovation of a length of nearly 3300m large diameter pipeline installed by HDD. Earth Sciences Research Journal, 20(1), P1–P5. https://doi.org/10.15446/esrj.v20n1.54504Han, J., Wang, F., Al-Naddaf, M., & Xu, C. (2017). Progressive Development of Two-Dimensional Soil Arching with Displacement. International Journal of Geomechanics, 17(12), 1–12. https://doi.org/10.1061/(asce)gm.1943-5622.0001025.LbSTT, Aspectos generales de la perforación horizontal dirigida. Asociación Ibérica de tecnología sin Zanja. Universidad Politécnica de Valencia. Madrid (2015).Klaus-Jurgen Bathe - Finite Element Procedures in Engineering Analysis (Prentice-Hall civil engineering and engineering mechanics series) (1982).pdf. (n.d.).James A. McKelvey. (1994). The anatomy of soil arching. Geotextiles and Geomembranes, 13(5), 317–329. https://doi.org/10.1016/0266-1144(94)90026-4Lawrence, K., & Knight, M. (1998). Addressing geotechnical considerations of horizontal directional drilling using the new design. 981–985.Mohd Norizam, M. S., Nuzul Azam, H., Helmi Zulhaidi, S., Abdul Aziz, A., & Nadzrol Fadzilah, A. (2017). Literature review of the benefits and obstacle of horizontal directional drilling. IOP Conference Series: Materials Science and Engineering, 271(1). https://doi.org/10.1088/1757-899X/271/1/012094More, D. (2012). Innovations in Design, Construction, Operations, and Maintenance –—Doing More with Less. Pipelines 2012, 307–318.Pardo, G. S., & Sáez, E. (2014). Experimental and numerical study of arching soil effect in coarse sand. Computers and Geotechnics, 57, 75–84. https://doi.org/10.1016/j.compgeo.2014.01.005Registry, W., & Goldenberg, I. (2013). HD D – H o r i zonta l D i r ectional Drilling . TRENCH LE S S TEC HNOLOGY F OR A SAF E AND EFF ICIENT INS TALLATION O F P I P ELINESSargand, S. M., and Masada, T. (2007). Soil Arching over Deeply Buried Thermoplastic Pipe. Transportation Research Record: Journal of the Transportation Research Board, 1849(1), 109–123. https://doi.org/10.3141/1849-13Shu, B., and Ma, B. (2015). Study of ground collapse induced by large-diameter horizontal directional drilling in a sand layer using numerical modeling. Canadian Geotechnical Journal, 52(10), 1562–1574. https://doi.org/10.1139/cgj-2014-0388Siddiquee, M. S. A., and Dhar, A. S. (2007). Determination of Pipe Pullback Load for Horizontal Directional Drilling (HDD) Crossings by Finite Element Method. 2006, 1–17. https://doi.org/10.1061/40934(252)110Sterling, R. L. (2018). ScienceDirect Developments and research directions in pipe jacking and microtunneling. Underground Space. https://doi.org/10.1016/j.undsp.2018.09.001Stuedlein, A. W., and Meskele, T. (2013). Analysis and Design of Pipe Ramming Installation. 710.Tien, H. (1996). A Literature Study of the Arching Effect. 1990.Viehöfer, T., Linthof, T., Bezuijen, A., Box, P. O., and Delft, A. B. (n.d.). STABILITY OF A BOREHOLE DURING HORIZONTAL DIRECTIONAL DRILLING 2 . TEC Tunnel Engineering Consultants , P . O . Box 747 , 3900 AS Veenendaal ,.Wang, X., and Sterling, R. L. (2007). Stability analysis of a borehole wall during horizontal directional drilling. Tunnelling and Underground Space Technology, 22(5–6), 620–632. https://doi.org/10.1016/j.tust.2007.01.002Wijeyesekera, D. C., and Warnakulasuriya, S. (2000). Effects of soil arching on the behaviour of flexible pipes buried in trenches of varying widths. April.Wong, S. K., Giorgini, J. D., You, T. H., Lim, L., & Chadbourne, P. (1994). Navigating through the Venus atmosphere. Advances in the Astronautical Sciences, 87(2), 633–645.Wu, J., Liao, S. M., and Liu, M. B. (2019). An analytical solution for the arching effect induced by ground loss of tunneling in sand. Tunnelling and Underground Space Technology, 83(October 2018), 175–186. https://doi.org/10.1016/j.tust.2018.09.025Wu, Y., Lü, G., Xu, L., Zhang, P., and Mao, N. (2014). Engineering difficulties and technical innovation in the Jiangyin Yangtze River Crossing Project 3300 m HDD. Natural Gas Industry, 34(4), 105–110. https://doi.org/10.3787/j.issn.1000-0976.2014.04.017Xia, H. (2009). Investigation of maximum mud pressure within sand and clay during horizontal directional drilling. 272.Xu, G., Cai, L., Ji, R., and Wang, Z. (2018). Numerical simulation of pipe-soil interaction during pulling back phase in horizontal directional drilling installations. Tunnelling and Underground Space Technology, 76(June 2017), 194–201. https://doi.org/10.1016/j.tust.2018.03.022Yan, X., Ariaratnam, S. T., Dong, S., and Zeng, C. (2018). Horizontal directional drilling: State-of-the-art review of theory and applications. Tunnelling and Underground Space Technology, 72(October 2017), 162–173. https://doi.org/10.1016/j.tust.2017.10.005Yang, C. J., Zhu, W. D., Zhang, W. H., Zhu, X. H., & Ren, G. X. (2011). Determination of Pipe Pullback Loads in Horizontal Directional Drilling Using an Advanced Computational Dynamic Model. 1–13. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000749.Zhang, C., Hu, J., Qian, L., and Zhang, J. (2018). Local Dent Behavior of Directional Crossing Pipeline Caused by the Boulder in Stratum. Journal of Failure Analysis and Prevention, 18(4), 988–997. https://doi.org/10.1007/s11668-018-0490-9Zhu, X. H. (2015). Failure analysis and solution studies on drill pipe thread gluing at the exit side of horizontal directional drilling. Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, 33, 153–173. https://doi.org/10.1016/B978-0-08-100117-2.00004-2Zou, J., Chen, G., and Qian, Z. (2019). Tunnel face stability in cohesion-frictional soils considering the soil arching effect by improved failure models. Computers and Geotechnics, 106(October 2018), 1–17. https://doi.org/10.1016/j.compgeo.2018.10.014InvestigadoresPúblico generalORIGINAL1026577923.2022.pdf1026577923.2022.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf6960377https://repositorio.unal.edu.co/bitstream/unal/83251/5/1026577923.2022.pdf2b076690fccd6e5292f1ea98761feff9MD55AnexosPDFDocumentoFinal1026577923.pdfAnexosPDFDocumentoFinal1026577923.pdfAnexo: análisis de resultadosapplication/pdf14091768https://repositorio.unal.edu.co/bitstream/unal/83251/3/AnexosPDFDocumentoFinal1026577923.pdf64818b6e0ae862ab4e6c983b6b31ebc3MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83251/4/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD54THUMBNAIL1026577923.2022.pdf.jpg1026577923.2022.pdf.jpgGenerated Thumbnailimage/jpeg4709https://repositorio.unal.edu.co/bitstream/unal/83251/6/1026577923.2022.pdf.jpga02412083b8d110069902db7ef432928MD56AnexosPDFDocumentoFinal1026577923.pdf.jpgAnexosPDFDocumentoFinal1026577923.pdf.jpgGenerated Thumbnailimage/jpeg3824https://repositorio.unal.edu.co/bitstream/unal/83251/7/AnexosPDFDocumentoFinal1026577923.pdf.jpgfba5e060fbab5c57f1b58c779861c86bMD57unal/83251oai:repositorio.unal.edu.co:unal/832512024-08-13 23:38:18.216Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=